Общий ответ на инфекцию

Выявить ЗППП бывает непросто — многие половые инфекции долгое время протекают бессимптомно, у одного человека может быть сразу несколько таких заболеваний, притом что признаки некоторых из этих болезней очень похожи. Так что только на основании жалоб поставить диагноз практически невозможно. Лабораторные исследования определяют наличие заболеваний гораздо точнее. Как сдают анализы на половые инфекции и как к ним подготовиться?

Какие половые инфекции можно диагностировать с помощью лабораторных анализов

Половые инфекции очень разнообразны, и заразиться ими просто — в группу риска попадают все, кто имел хотя бы один незащищенный половой контакт любого типа. Разумеется, большое количество контактов с большим количеством партнеров повышает шансы заражения.

Все ЗППП можно условно разделить на несколько групп:

  • бактериальные половые инфекции . К бактериальным половым инфекциям относятся сифилис, хламидиоз, гонорея, микоплазмоз, уреаплазмоз и некоторые другие;
  • вирусные половые инфекции . К ним относится вирус папилломы человека, который, в зависимости от типа, может быть и практически безвредным, и смертельно опасным по причине канцерогенности. Еще одна известная вирусная половая инфекция — ВИЧ. К вирусным инфекциям относятся также гепатиты всех типов, герпес, контагиозный моллюск и некоторые другие;
  • паразитарные половые инфекции. К этому типу относятся фтириаз (лобковый педикулез), вызываемый лобковыми вшами, и чесотка.

Все эти заболевания можно определить лабораторными методами. Иногда требуется несколько разных тестов, чтобы с полной уверенностью установить, есть ли у пациента болезнь, и если есть, то одна или несколько. Сейчас разрабатываются высокочувствительные неинвазивные тесты (например, методика ПЦР), которые позволяют определить заболевание с очень большой долей вероятности. Сегодня точность таких тестов приближается к 100%, однако всегда есть крошечный шанс ложноположительного или ложноотрицательного результата, и в сомнительных случаях тест иногда повторяют — либо используют другую методику.

Биохимический анализ крови является безусловно информативным только при подозрении на вирусные гепатиты, так как в крови здоровых людей содержание АсАт и АлАт колеблется от 5 до 40 Ед./л, а при вирусных гепатитах эти показатели растут. Сегодня этот метод применяют в основном для контроля лечения, а не для первичной диагностики.

Бактериологический посев — это помещение биоматериала в среду, наиболее благоприятную для размножения бактерий. Через несколько дней бактерии начинают активно размножаться, и эксперты получают возможность идентифицировать их, а также подобрать подходящий препарат для лечения. Посев — метод точный, но требующий времени — от 2-х дней до нескольких недель. Зато он помогает выявить практически все грибковые и бактериальные инфекции.

Этот метод основан на выявлении в сыворотке крови специфических белков-иммуноглобулинов, которые появляются как иммунный ответ на инфекцию. Применяется для обнаружения хламидиоза, сифилиса, гепатитов и других вирусных заболеваний.

Одним из подходов метода является ИФА (иммуноферментный анализ). Он предполагает выявление в крови антител к определенным инфекциям. Наш организм вырабатывает особые клетки для обезвреживания различных возбудителей болезней. Если число антител высоко, значит, заболевание присутствует. ИФА позволяет установить не только наличие болезни, но и ее стадию — острую или хроническую. Это недорогой, быстрый и эффективный анализ на половые инфекции.

При диагностике половых инфекций этим методом пациенту внутрикожно вводят препараты ослабленных возбудителей болезни или антигены к ним. Если человек не болен и никогда не контактировал с этим возбудителем, проба будет отрицательной, в противном случае на месте укола возникнет воспаление.

ПЦР (полимеразная цепная реакция) считается одним из самых современных и точных способов лабораторной диагностики половых инфекций. Он заключается в копировании фрагмента ДНК возбудителя. ПЦР позволяет определить наличие заболевания, даже если инфекция никак себя не проявляет, а возбудитель присутствует в крови в очень малых количествах. К тому же метод ПЦР эффективен для обнаружения любых инфекций — как вирусных, так и бактериальных. Но у него есть и недостаток — он требует идеального соблюдения технологии, так как даже малейшее загрязнение образца может исказить результат.

Любой человек должен регулярно проходить анализы на половые инфекции. Некоторые возбудители могут попасть в организм даже при родах, поэтому примерно у 5% детей обнаруживаются половые инфекции. А уж если человек взрослый и живет половой жизнью, он и вовсе не застрахован от их появления. Использование презерватива значительно снижает риск, но не сводит его на нет. Так что прохождение анализов на половые инфекции должно быть обязательным ежегодным мероприятием.

Иногда этого требует не только здравый смысл, но и закон. Для работы на некоторых предприятиях необходима санитарная книжка, а для ее получения нужно пройти анализы на половые инфекции.

И совершенно необходимо обратиться к врачу, если вы заметили, что с половой сферой что-то не в порядке. Тревожный сигнал — зуд слизистых половых органов, необычные выделения любого вида и в любых объемах, неприятный запах, боль и чувство тяжести в нижней части живота, болезненное или затрудненное мочеиспускание.

Анализы на половые инфекции — обязательная часть мероприятий при подготовке к беременности, причем как для мужчины, так и для женщины. Некоторые половые инфекции, которые обычно протекают бессимптомно, очень опасны для беременных женщин и могут привести к невынашиванию или патологиям.

Подготовка к сдаче анализов необходима для того, чтобы результат был как можно более точным. Меры зависят от типа анализа и от материала.

Если на анализ сдается кровь, рекомендуется на протяжении 3–4-х дней до исследования не пить спиртное, не есть тяжелую пищу, не перегреваться, не заниматься спортом и, если это возможно, не нервничать. Анализ крови сдается утром натощак через 8–12 часов после последнего приема пищи. Если вы принимаете какие-либо медикаменты или пищевые добавки, об этом обязательно нужно сообщить врачу.

Если исследуется мазок или соскоб со слизистых оболочек, к вышеописанным правилам добавляется запрет на половые контакты — от них следует воздерживаться как минимум на 3 дня до сдачи анализа. В день исследования не следует проводить гигиенические процедуры половых органов, а за 3–4 дня нужно полностью отказаться от любых средств интимной гигиены, для женщин — также от тампонов и любых влагалищных свечей, гелей и мазей. При сдаче мазка из мочеиспускательного канала нельзя мочиться за 3 часа до исследования.

При помощи ватного тампона врач берет на анализ материал со стенок влагалища, уретры и цервикального канала шейки матки у женщин и из уретрального канала у мужчин. Это безболезненная и нетравматичная процедура, которая не требует никакой реабилитации. Мазок используется, в частности, для бактериологического посева.

Для большинства исследований врач берет кровь из вены. Количество ее незначительно и пациенту также не требуется никакого восстановления. Кровь — материал для проведения таких анализов, как ПЦР, ИФА, анализ по серологическому методу.

Она может также являться материалом для анализа по методу ПЦР. Желательно сдавать анализ непосредственно в лаборатории, где вам выдадут специальную емкость. Так исключается любой шанс того, что тара окажется нестерильной, а образец будет храниться в неподходящих условиях.

Как и любую другую болезнь, половые инфекции проще предупредить, чем вылечить. Методы профилактики просты: при половых контактах любого типа необходимо пользоваться презервативом, а при отказе от барьерных методов предохранения оба партнера должны пройти анализы на половые инфекции и вылечить все обнаруженные заболевания.



Основные факты

  • Вирус гепатита D (HDV) представляет собой вирус, для репликации которого необходим вирус гепатита B (HBV). Инфицирование HDV происходит только одновременно с HBV или в виде суперинфекции по отношению к HBV.
  • Передача вируса чаще всего происходит перинатальным путем от матери ребенку, а также при контакте с кровью или другими биологическими жидкостями.
  • Вертикальная передача от матери ребенку происходит редко.
  • Не менее 5% всех людей с хронической инфекцией также инфицированы HDV. Другими словами, во всем мире число инфицированных HDV составляет 15-20 млн. человек. Тем не менее, это только приблизительная цифра, поскольку многие страны не ведут учета распространенности гепатита D.
  • С 1980 г. наблюдается снижение общего числа случаев инфекции гепатита D в мире. Эта тенденция, главным образом, связана с успехами глобальной программы вакцинации против гепатита В.
  • Коинфекция HDV-HBV считается самой тяжелой формой хронического вирусного гепатита ввиду более быстрого смертельного исхода от болезней печени и гепатоклеточной карциномы.
  • В настоящее время показатели эффективности курсов лечения, в целом, невысоки.
  • Инфекцию гепатита D можно предотвратить посредством иммунизации против гепатита В.

Гепатит D — это болезнь печени, протекающая как в острой, так и хронической форме, вызываемая вирусом гепатита D (HDV), для репликации которого необходим вирус HBV. Заражение вирусом гепатита D происходит только в присутствии вируса гепатита B. Коинфекция HDV-HBV считается наиболее тяжелой формой хронического вирусного гепатита гепатита ввиду более быстрого смертельного исхода от болезней печени и гепатоклеточной карциномы.

Единственным способом предотвращения инфекции HDV является вакцина против гепатита B.

Острый гепатит: одновременное инфицирование HBV и HDV может приводить к гепатиту в умеренной или тяжелой форме или даже к фульминантному гепатиту, но обычно за этим следует полное выздоровление, и хронический гепатит D развивается редко (менее чем в 5% случаев острого гепатита).

Суперинфекция: HDV может инфицировать человека, уже имеющего хроническую инфекцию HBV. Суперинфекция HDV при хроническом гепатите B ускоряет развитие более тяжелых форм болезни в любом возрасте у 70-90% людей. Суперинфекция HDV ускоряет развитие цирроза почти на 10 лет по сравнению с моноинфекцией HBV, несмотря на то, что HDV подавляет репликацию HBV. Механизм, ввиду которого HDV вызывает более тяжелый гепатит и ускоренное развитие фиброза по сравнению с моноинфекцией HBV остается неясным.

Риску инфицирования HDV подвержены хронические носители HBV.

Люди, у которых нет иммунитета к HBV (как естественного после болезни, так и в результате иммунизации вакциной против гепатита B), подвергаются риску инфицирования HBV, что сопряжено с риском инфицирования HDV.

Высокая распространенность гепатита D среди людей, употребляющих инъекционные наркотики, указывает на то, что употребление наркотиков является серьезным фактором риска коинфекции HDV.

Сексуальные контакты с высоким уровнем риска (например, у работников секс-индустрии) – также фактор повышенного риска инфекции HDV.

Миграция из стран с высокой распространенностью HDV в страны с низкой его распространенностью может оказывать влияние на эпидемиологическую ситуацию в принимающей стране.

Инфекция HDV диагностируется путем выявления высоких титров иммуноглобулина G (IgG) и иммуноглобулина M (IgM), антител к HDV, и подтверждается путем выявления РНК HDV в сыворотке.

Однако широкий доступ к диагностике HDV отсутствует, как и стандартизированный подход к анализу на наличие РНК HDV, который используется для мониторинга ответа на противовирусную терапию.

При отсутствии возможности количественного анализа РНК HDV целесообразным маркером для мониторинга реакции на лечение является HBsAg. Снижение титра HBsAg часто свидетельствует об исчезновении поверхностного антигена и клиренсе HDV, хотя исчезновение поверхностного антигена редко встречается при лечении.

В текущих руководствах обычно рекомендуется прием пегилированного интерферона альфа в течение как минимум 48 недель независимо от форм ответа на лечение. Общий уровень устойчивого вирусологического ответа низкий, однако это лечение является независимым фактором, ассоциированным с меньшей вероятностью прогрессирования заболевания.

Для пациентов с фульминантным гепатитом и болезнью печени на последних стадиях может рассматриваться возможность трансплантации печени. Необходимы новые терапевтические средства и стратегии. Новые препараты, такие как ингибитор пренилирования или ингибиторы входа HBV, дали предварительные положительные результаты.

ВОЗ не публиковала конкретных рекомендаций в отношении гепатита D. Тем не менее, рекомендованные меры по предотвращению передачи HBV, такие как иммунизация против гепатита B, безопасная практика инъекций, обеспечение безопасности крови и услуги по снижению вреда, заключающиеся в предоставлении стерильных игл и шприцев, эффективны для предотвращения передачи HDV.

В мае 2016 г. Всемирная ассамблея здравоохранения приняла первую “Глобальную стратегию сектора здравоохранения по вирусному гепатиту на 2016-2021 гг.”. В этой стратегии подчеркивается решающая роль всеобщего охвата услугами здравоохранения, а задачи стратегии находятся в соответствии с задачами в рамках Целей в области устойчивого развития. Главной целью стратегии является ликвидация вирусного гепатита в качестве проблемы общественного здравоохранения, и это отражено в глобальных задачах по сокращению числа новых случаев инфекции вирусного гепатита на 90% и сокращению смертности от вирусного гепатита на 65% к 2030 году. Действия, которые должны проводить страны и Секретариат ВОЗ для выполнения этих задач, изложены в стратегии.

Для оказания поддержки странам в ходе выполнения глобальных целей по гепатиту в рамках Повестки дня в области устойчивого развития на период до 2030 г. ВОЗ проводит работу по следующим направлениям:

  • повышение осведомленности, укрепление партнерств и мобилизация ресурсов;
  • разработка основанной на фактических данных политики и сбор данных для информационного обеспечения практических действий;
  • предотвращение передачи инфекции;
  • расширение услуг в области скрининга, ухода и лечения.

Кроме того, ежегодно 28 июля ВОЗ проводит Всемирный день борьбы с гепатитом для повышения осведомленности о вирусном гепатите и более глубокого осмысления связанных с ним проблем.

У РНК-содержащих ретровирусов сначала происходит обратная транскрипция генома в ДНК, затем ее интеграция в клеточные хромосомы и лишь после этого транскрипция генов.

Цитопатические эффекты при вирусных инфекциях разнообразны, они определяются как вирусом, так и клеткой и сводятся к разрушению клетки (цитолитический эффект), сосуществованию вируса и клетки без гибели последней (латентная и персистирующая инфекция) и трансформации клетки.

Вовлеченность организма в инфекционный процесс зависит от ряда обстоятельств - количества погибших клеток, токсичности вирусов и продуктов распада клеток, от реакций организма, начиная от рефлекторных и заканчивая иммунными. Количество погибших клеток влияет на тяжесть инфекционного процесса. Например, будут ли поражены при гриппе только клетки носа и трахеи или вирус поразит клетки эпителия альвеол, зависит тяжесть и исход болезни.

Хотя вирусы и не образуют типичных токсинов, однако и вирионы, и вирусные компоненты, накапливающиеся в пораженных тканях, выходя в кровоток, оказывают токсическое действие. Неменьшее токсическое действие оказывают и продукты распада клеток. В этом случае действие вирусной инфекции столь же неспецифично, как и действие патогенных организмов, убивающих клетки и вызывающих их аутолиз. Поступление токсинов в кровь вызывает ответную реакцию - лихорадку, воспаление, иммунный ответ. Лихорадка является преимущественно рефлекторным ответом на поступление в кровь и воздействие на ЦНС токсичных веществ.

Если лихорадка - общий ответ организма на вирусную инфекцию, то воспаление - это местная многокомпонентная реакция. При воспалении происходят инфильтрация пораженных тканей макрофагами, утилизация продуктов распада, репарация и регенерация. Одновременно развиваются реакции клеточного и гуморального иммунитета. На ранних стадиях инфекции действуют неспецифические киллеры и антитела класса IgM. Затем вступают в действие основные факторы гуморального и клеточного иммунитета. Однако гораздо раньше, уже в первые часы после заражения, начинает действовать система интерферона, представляющая семейство секреторных белков, вырабатываемых клетками организма в ответ на вирусы и другие стимулы. Описанные явления относятся к так называемой острой репродуктивной вирусной инфекции. Взаимодействие вируса и клеток может происходить, как отмечалось выше, без гибели последних. В этом случае говорят о латентной, т.е. бессимптомной или персистирующей хронической вирусной инфекции. Дальнейшая экспрессия вируса, образование вирусспецифических белков и вирионов вызывает синтез антител, на этой стадии латентная инфекция переходит в персистирующую и появляются первые признаки болезни.

Репродукция вируса в клетках сопровождается развитием цитопатических процессов, специфичных для разных вирусов и для разных типов инфекционных процессов. Цитопатические процессы при вирусных инфекциях разнообразны, они определяются как вирусом, так и клетками, причем специфика их больше "задается" клеткой, нежели вирусом, и сводится в основном к разрушению клеток, сосуществованию вируса и клеток без гибели последних и трансформация клеток. Несмотря на значительные различия цитоцидного действия разных вирусов, в общем, они сходны. Подавление синтеза клеточных макромолекул - нуклеиновых кислот и белков, а также истощение энергетических ресурсов клетки ведут к необратимым процессам, заканчивающимся гибелью пораженной клетки. Повреждение клеток вирусами, их отмирание и распад переносят вирусную инфекцию с клеточного уровня на уровень организма в целом.

При встрече организма с вирусной инфекцией продукция интерферона (растворимого фактора, вырабатываемого вирус-инфицированными клетками, способного индуцировать антивирусный статус в неинфицированных клетках) становится наиболее быстрой реакцией на заражение, формируя защитный барьер на пути вирусов намного раньше специфических защитных реакций иммунитета, стимулируя клеточную резистентность, - делая клетки непригодными для размножения вирусов.

Продукция и секреция цитокинов относятся к самым ранним событиям, сопутствующим взаимодействию микроорганизмов с макрофагами. Этот ранний неспецифический ответ на инфекцию важен по нескольким причинам: он развивается очень быстро, поскольку не связан с необходимостью накопления клона клеток, отвечающих на конкретный антиген; ранний цитокиновый ответ влияет на последующий специфический иммунный ответ.

Интерферон активирует макрофаги, которые затем синтезируют интерферон-гамма, ИЛ-1, 2, 4, 6, ФНО, в результате макрофаги приобретают способность лизировать вирус-инфицированные клетки.

Интерферон-гамма является специализированным индуктором активации макрофагов, который способен индуцировать экспрессию более 100 разных генов в геноме макрофага.

Продуцентами этой молекулы являются активированные Т-лимфоциты (Тh1-тип) и естественные киллеры (NK-клетки). Интерферон-гамма индуцирует и стимулирует продукцию провоспалительных цитокинов (ФНО, ИЛ-1, 6), экспрессию на мембранах макрофагов, антигенов МНС II; гамма-интерферон резко усиливает антимикробную и противовоспалительную активность путем повышения продукции клетками супероксидных радикалов, а усиление иммунного фагоцитоза и антителоопосредованной цитотоксичности макрофагов под влиянием гамма-интерферона связано с усилением экспрессии Fc-рецепторов для JgG. Активирующее действие интерферона-гамма на макрофаги опосредовано индукцией секреции этими клетками ФНО -альфа. Этот пик наблюдается совместно с ФНО-альфа. Максимум продукции ИЛ-4 наступает через 24-48 ч с момента активации клеток. При этом ИЛ-4 рассматривается как цитокин, ограничивающий иммуновоспалительные реакции и снижающий ответ организма на инфекцию, угнетая при этом экспрессию гамма-интерферона. Интерферон-гамма ин витро усиливает фагоцитарную активность нейтрофилов, что обусловлено усилением экспрессии Fc-рецепторов и поверхностных белков семейства интегринов на нейтрофилы. Это позволяет нейтрофилам осуществлять цитотоксические функции и фагоцитоз. В качестве основных эффекторных клеток воспалительного процесса, они обеспечивают элиминацию инфекта из организма.

Взаимодействие цитокина с клеткой определяется универсальной биологической системой, специфическим механизмом которой является рецепторный аппарат, связанный с восприятием метаболического кода. Для проявления биологической активности цитокина необходимо присутствие на поверхности чувствительных клеток специфических рецепторов, которые могут экспрессироваться параллельно с синтезом цитокина. Рецепторы цитокинов представляют собой комплексы, состоящие из двух и более рецепторных молекул, которые объединяются на мембране клетки-мишени и образуют высокоаффинный рецепторный комплекс. Большинство рецепторов состоит из отдельных молекул, связывающих цитокины, которые ассоциируются после связывания лиганда с сигналпередающим рецепторным компонентом; часть рецепторов существует как растворимые изоформы, способные связывать и растворять цитокины, а часть функционирует как многокомпонентные блоки; механизм комплексирования субъединиц рецепторов объясняет плейотропные и дублирующие эффекты цитокинов, имеющих большое структурное сходство. Рецепторы ИЛ-10 имеют гомологию рецепторов интерферона, и подобно ИЛ-10 индуцирует экспрессию в моноцитах гена Fc- рецептора. Для полного функционирования цитокиновой системы необходимы повышение уровня цитокина в ответ на инфект и экспрессия нормального количества рецепторов к ним на клетках. Изменение рецепторов после их связывания с цитокином заключается в интернализации комплексов цитокин - рецептор внутрь клетки. На поверхности клеток рецептор появляется заново, постепенно синтезируясь в течение 24-36 ч (время появления рецепторов интерферон-альфа). В этот период клетки остаются чувствительными к последующим дозам цитокина, чем объясняется эффективность введения препаратов интерферона и их индукторов три раза в неделю.

Пик продукции цитокинов после стимуляции макрофагов наблюдается через 1-2,6,18-48 ч, а пик продукции интерферон-гамма наступает через 20 ч после первого выхода цитокина из клетки. Поскольку интерферон-гамма ингибирует миелопоэз, то нормализация числа нейтрофилов после элиминации инфекта связана с системой регуляции нейтропоэза. Через 6 ч после стимуляции интерферон-альфа для выполнения своих функций NK-rклетки (активность которых регулируется ИЛ-1, 4, 2) продуцируют гамма-интерферон, в результате чего происходит лизис инфицированных клеток.

При антигенной стимуляции клеток трансдукция сигнала с активированного рецептора на генетический аппарат осуществляется с помощью внутриклеточных регуляторных систем, компоненты которых (белки мембран, ферментов, хроматина) связываются с чувствительными к ним последовательностями ДНК. После связывания цитокина (интерферон) с поверхностными клеточными мембранными рецепторами происходит активация ферментов протеинкиназы-С (ПКС), тирозинкиназы, ц-АМФзависимой протеинкиназы, серин-треонинкиназы. Интерферон-альфа активирует tyk 2 и jak 1-киназы, а интерферон-гамма активирует jak 1 и 2-киназы. Далее факторы транскрипции перемещаются в ядро клетки и связывают гены раннего ответа.

Первый ответ клеток на цитокин - это быстрая индукция генов раннего ответа ("immediate early" генов), в число которых и входит ген интерферон-гамма. Стимуляция экспрессии этих генов важна для выхода клеток из Go-стадии и перехода в Gi-стадию и дальнейшей прогрессии клеточного цикла. Их индукция происходит после активации рецепторов роста на клеточной мембране и активации протеин-киназной системы. Гены раннего ответа являются ключевыми регуляторами клеточной пролиферации и дифференцировки, кодируют белки, регулирующие репликацию ДНК.

Таким образом, при активации клеток происходит стимуляция генов раннего ответа, что ассоциируется с изменением фаз клеточного цикла. Основная протективная роль в иммунном ответе, направленном против внутриклеточных паразитов (грибы, простейшие, вирусы, микобактерии туберкулеза), принадлежит клеточным механизмам. Способность перечисленных возбудителей переживать и размножаться внутри клеток делает их защищенными от действия антител и системы комплемента. Резистентность к антимикробным факторам макрофагов позволяет им длительно переживать внутри этих клеток. Для элиминации возбудителя необходим специфический клеточно-опосредованный ответ. Его специфичность определяется антигенраспознающими СД8+-Т-лимфоцитами, которые пролиферируют, активируются и формируют клон эффекторных цитотоксических лимфоцитов. Решающий момент специфического иммунного ответа - это ответ СД4+Т-лимфоцитов с хелперной направленностью на распознавание антигена. На этом этапе определяется форма иммунного ответа: либо с преобладанием гуморального иммунитета, либо с преобладанием клеточных реакций (ГЗТ). Направление дифференцировки СД4 + -лимфоцитов, от которого зависит форма специфического иммунного ответа, контролируется цитокинами, образующимися в ходе воспалительной реакции. Так, в присутствии ИЛ-12 и интерферон-гамма СД4 + -лимфоциты дифференцируются в воспалительные Тh1-клетки, начинают продуцировать и секретировать интерлейкин-2, интерферон-гамма, ФНО и определяют клеточный характер специфического иммунного ответа. Присутствие ИЛ-12 обеспечивается его продукцией макрофагами, а интерферон-гамма - естественными киллерами, активированными в раннюю фазу ответа на внутриклеточно паразитирующие бактерии и вирусы. В отличие от этого, в присутствии ИЛ-4 СД4 + -лимфоциты дифференцируются в хелперы Тh 2, которые начинают продуцировать и секретировать ИЛ-4, ИЛ-5, ИЛ-6 и запускают гуморальный иммунный ответ, т.е. синтез специфических антител - иммуноглобулинов. Воспалительные Тh 1-лимфоциты нужны для борьбы с внутриклеточными паразитами, а Тh 2 хелперы нужны для элективной защиты от внеклеточных паразитов.

Вирусная инфекция может вызывать быстрое подавление экспрессии ряда клеточных генов (из которых наиболее изучены интерфероновые гены и гены, кодирующие дс-РНК-зависимые ферменты -2,5-ОАС и ПК-дс), принимающих участие в антивирусном действии. Специальные исследования механизма антивирусного действия интерферонов и дс-РНК в клеточных и бесклеточных системах показали ключевую роль в этом процессе вышеуказанных ферментов. ПК-дс, взаимодействуя с дс-РНК, фосфорилируется и в активной форме фосфорилирует регуляторные факторы транскрипции и трансляции, из которых наиболее изучен инициирующий фактор трансляции (eIF2).

ПК-дс выполняет регуляторную роль в системе клеточной пролиферации на уровне факторов трансляции и активации ряда генов цитокинов. Вероятно, существует связь между подавлением транскрипции мРНК и ПК-дс, угнетением общего синтеза клеточного белка при вирусных инфекциях и накоплением в ядрах клеток белка нуклеокапсида и белка NSP2. Фрагментация клеточных хромосом, наблюдающаяся на ранних сроках вирусной инфекции, может быть одной из причин подавления экспрессии генов, участвующих в противовирусном ответе.

Есть основания предполагать участие белков NSP2 в регуляции активности генов цитокинов - низкомолекулярных белковых регуляторных веществ, продуцируемых клетками и способных модулировать их функциональную активность. Нарушения в системе цитокинов приводят к нарушению кооперативных взаимодействий иммунокомпетентных клеток и нарушению иммунного гомеостаза.

В последние годы показано, что ИЛ- 12, относящийся к провоспалительным цитокинам, является ключевым для усиления клеточно-опосредованного иммунного ответа и инициации эффективной защиты против вирусов.

Средства терапии гриппа и ОРЗ можно разделить на этиотропные, иммунокорригирующие, патогенетические и симптоматические. Приоритет принадлежит этиотропным препаратам, действие которых направлено непосредственно на возбудитель инфекции. Все препараты этиотропного действия целесообразно рассматривать с учетом их точек приложения в цикле репродукции вирусов гриппа и других ОРЗ.

Применение химиопрепаратов для профилактики и лечения гриппа и ОРЗ относится к базовой терапии и является общепризнанным мировым стандартом. Многолетние клинические исследования достоверно выявили их высокую лечебно-профилактическую значимость. Химиотерапевтические средства представлены тремя основными группами: это блокаторы М2-каналов (амантадин, ремантадин); ингибиторы нейраминидазы (занамивир, озельтамивир) и ингибиторы протеаз (амбен, аминокапроновая кислота, трасилол). Препараты оказывают прямое антивирусное действие, нарушая различные фазы репликативного цикла вирусов. Несколько особняком стоит группа вирулицидных препаратов, применяемых местно для предотвращения адсорбции и проникновения вирионов в клетки.

  1. Грипп и другие респираторные вирусные инфекции / под ред. О.И. Киселева, И.Г. Мариничева, А.А. Сомининой. - СПб, 2003.
  2. Дриневский В.П., Осидак Л.В., Цыбалова Л.М. Острые респираторные инфекции у детей и подростков // Практическое руководство под редакцией О.И. Киселева. - СПб, 2003.
  3. Железникова Г.Ф., Иванова В.В., Монахова Н.Е. Варианты иммунопатогенеза острых инфекций у детей. СПб, 2007. - 254 с.
  4. Ершов Ф.И. Грипп и другие ОРВИ // Антивирусные препараты. Справочник. - М., 2006. - С.226-247.
  5. Ершов Ф.И., Романцов М.Г. Антивирусные средства в педиатрии. - М., 2005. - С.159-175.
  6. Ершов Ф.И., Киселев О.И. Интерфероны и их индукторы (от молекул до лекарств). М., 2005. - С.287-292.
  7. Иванова В.В. Острые респираторно-вирусные заболевания // Инфекционные болезни у детей. - М., 2002.
  8. Онищенко Г.Г., Киселев О.И., Соминина А.А. Усиление надзора и контроля за гриппом как важнейший элемент подготовки к сезонным эпидемиям и очередной пандемии. - М., 2004. - С.5-9.
  9. Об утверждении стандарта медицинской помощи больным гриппом, вызванным идентифицированным вирусом гриппа (грипп птиц) // Приказ Минздравсоцразвития №460 от 07.06.2006 г.
  10. Романцов М.Г., Ершов Ф.И.Часто болеющие дети: Современная фармакотерапия. - М., 2006. - 192 с.
  11. Стандартизированные принципы диагностики, лечения и экстренной профилактики гриппа и других острых респираторных инфекций у детей / под ред. О.И. Киселева. - Санкт-Петербург. - 2004. - С.82-95.
  12. Лекарственные средства в фармакотерапии патологии клетки / под ред. Т.Г.Кожока. - М., 2007.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции