Антитела способные поражать бактерии вирусы вырабатываются



Бывает, заболев ОРВИ или гриппом, люди спешат в аптеку за антибиотиком, не отдавая себе отчета в том, что вирусное заболевание им вылечить невозможно. Ведь антибиотик — лекарство, направленное на подавление болезнетворных бактерий, но никак не вирусов. От последних могут помочь только противовирусные препараты.


Бактерии и вирусы — это микроскопические организмы, которые могут вызывать заболевания, как у людей, так и у животных или растений. Хотя бактерии и вирусы могут иметь некоторые общие характеристики, они также очень разные. Бактерии обычно намного больше, чем вирусы, и их можно рассмотреть при помощи обычного микроскопа. Вирусы примерно в 1000 раз меньше бактерий и видны только под электронным микроскопом. Бактерии являются одноклеточными организмами, которые размножаются независимо от других организмов. Вирусы нуждаются в помощи живой клетки для воспроизведения.

Примечательно, что вирус имеет гораздо меньшие размеры, чем бактерии. Потому они и способны проходить через антибактериальный фильтр. Размер вируса варьирует от нескольких десятков до трёхсот нанометров. Они недоступны для микроскопического исследования через световое оборудование. Именно это долгое время не позволяло их обнаружить даже при исследовании тканей заражённых организмов.


Проникая в клетки вирусы, начинают свою пагубную деятельность. Иммунная система человека вырабатывает антитела, которые отправляются на поиски злобного паразита. Только вот ни антитела, ни лейкоциты из-за своих огромных размеров не могут проникать сквозь мембрану оболочек человеческих клеток. Обычно соединительная ткань, где находятся микробы, хорошо омывается кровью, а присутствие в организме ее насыщенной антибиотиком помогает мгновенно справляться с ними.

Вирусы проникают в клетку живого организма или бактерию и заставляют органоиды (рибосомы) клетки синтезировать вирусные белки, из которых потом собираются множественные копии вируса. При выходе вирусов из клетки чаще всего происходит её гибель. Новые вирусы с большой скоростью захватывают другие клетки. Так вирус заставляет организм работать на себя. Так, собственно, и прогрессирует инфекция.


Вирус либо разрушает клетку хозяина, либо провоцируют ответ иммунной системы, который проявляется такими симптомами, как чувство усталости, повышение температуры и даже тяжелое повреждение тканей.

Если визуально представить себе огромный дом в 20-25 этажей, то маленькая, упавшая с подоконника коробка спичек это соотношение размеров микроба и вируса. Потому им легко паразитировать, функционировать, питаясь цитоплазмой, при этом, не повреждая внешние ее клетки. Некоторые даже используют в свою пищу микробов, подобные вирусы еще называют фагоцитами.


Иммунная система, как и многие другие физиологические системы, состоит из молекул, клеток, тканей и органов. Главный орган иммунной системы — это вилочковая железа, или тимус — орган, который находится за грудиной и производит особые клетки, самые главные клетки иммунной системы.

— По сути это клетки-регуляторы и клетки-солдаты, и эта армия стоит на защите нашего организма. Но к встрече с вирусом ее нужно готовить. На формирование иммунитета уходит от двух недель до трёх месяцев после прививки. Поэтому ее лучше делать не накануне, а до предположительного времени эпидемии.

Клетки вакцинированного человека подготовлены и научены бороться с вирусом в отличие от клеток невакцинированного. Они выделяют антитела, которые блокируют вирус. Профилированная клетка знает, какие частички нужно выработать, чтобы заблокировать конкретный вирус. Поэтому организм нужно готовить к возможной встрече с вирусом — иммунизировать вакциной, содержащей антигены.

Таким образом, строение вируса предполагает паразитический образ жизни, который необходим микроорганизмам для защиты от окружающей среды. Хотя вирусы достаточно свободно передвигаются в пространстве от одного хозяина к другому. Поэтому они создают высокий риск эпидемий тех заболеваний, где вирусы выступают возбудителем.


Вирус табачной мозаики поражает не только растения табака, но и плодовую мушку, которая им питается. Таким образом, продлевая жизнь мушки и её плодовитость (принося пользу), вирус вредит растениям;
Вирус, поражающий грибок, который размножается в траве возле геотермальных источников, позволяет растению выживать в условиях повышенной температуры. Это выгодно вирусному организму для сохранения хозяина в труднодоступных для истребления местах, где температура достигает 50 градусов по Цельсию;
Некоторые вирусы защищают организм хозяина от проникновения и размножения в организме других вирусных агентов. Вирус охраняет свою территорию и в некоторых случаях не приносит значительного вреда хозяину для сохранения места проживания.

Интересно, что с течением времени такие вирусы становятся не столько паразитами, сколько частью самого организма. Поэтому он начинает передаваться из поколения в поколение и определяется генетическим кодом, как полезное свойство, которое подлежит передаче. Таким образом, вирус сохраняет свое место и наделяет организм хозяина новыми свойствами для выживания.

Передаваться вирусы могут также от больных животных. Часто причиной становится употребление заражённого мяса или тесный контакт с заражёнными особями. Хотя существуют и вирусы, которые не способны передаваться между видами. Такие микроорганизмы для человека и других животных относительно безопасны. Чаще всего человек заражается, употребляя мясо крупного рогатого скота и домашней птицы. Но известны вирусы, которые разносятся дикими животными, например, голубями. Кроме того, при укусах заражённых млекопитающих передаётся вирус бешенства и другие.


Человек может передавать вирусную инфекцию разными путями. В зависимости от локализации возбудителя и особенностей заболевания выделяются следующие пути передачи от человека к человеку:
Воздушно-капельный. Такой вариант передачи присущ в основном вирусам, поражающим дыхательную систему. Вирус витает в воздухе и передаётся потенциальному хозяину в момент вдыхания заражённых воздушных масс;

Половой. Многие вирусы локализуются на слизистых оболочках, затем поражая весь организм. Нередко такие паразиты попадают в организм здорового человека при половом контакте. При этом даже использование презерватива не всегда может защитить от заражения. Влажные поцелуи также могут стать причиной заражения;

Гематогенный. Это происходит в процессе переливания заражённой крови. Чаще всего такое бывает при экстренном переливании, когда кровь не проходит должной проверки с обязательным периодом хранения;

Бытовой. В некоторых случаях вирус может передаваться через личные вещи или попадание на повреждённую кожу заражённых выделений организма больного. Таким путём может передаваться ряд вирусных гепатитов и СПИД, хотя и считается, что вероятность заражения в этом случае относительно низкая.


Некоторые вирусы требуют также хирургического вмешательства для устранения очага инфекции. В частности, представителей контагиозного моллюска или папилломатозные образования (ВПЧ) необходимо удалять хирургическим путём. После удаления проводят иммуномодулирующую терапию, которая направлена на восстановление защитных функций организма. Любой вирус опасен тем, что вызывает подавление иммунной системы, подвергая организм опасности заражения любыми заболеваниями. Особенно этим отличается ВИЧ. Поэтому с ним так сложно бороться и поддерживать жизнеспособность пациента.

Вирусы окружают нас и могут проникать в наш организм. Становясь паразитами, они начинают отбирать ресурсы человеческого организма и медленно убивать нас. Поэтому важно соблюдать меры предосторожности и своевременно проходить вакцинацию. Особенно это важно для тех, кто по профессии много контактирует с людьми, которые могут быть заражены какими-либо вирусами.

В связи с возможностью передачи вируса даже по воздуху или через слизистые оболочки следует укреплять свое здоровье и избегать сомнительных контактов. Беспорядочные половые связи и тесное взаимодействие с больным человеком может привести к заражению. При этом человек может даже не знать о том, что имеет заболевание, и вести самый обычный образ жизни. Поэтому лучше всегда быть осторожными в общении, а также заботиться о себе и своих близких.

Вирус быстро размножается, поедая цитоплазму клеток, вскоре ему становится мало полученного, и он пробивает оболочку клетки, сразу атаковывается антителами. Но если иммунитет упал, то медикаментозное воздействие может рекомендовать врач, например использование иммуноглобулина. Тогда кровью с активными веществами вирус убивать проще, тем более, когда ни уже остались незащищенными и вышли из человеческих клеток. С успехом используются в антивирусной терапии ацикловир, вирамун, эпивир, ремантадин и другие препараты. Именно по этой причини вирусы бесполезно лечить антибактериальной терапией.


Но вся сложность состоит в том, что более девяноста процентов вирусов в человеческом организме находится именно в клетках, а там их не убить и не достать. То есть, по сути, лекарствами их не убить, а пока синтезируются антитела и глобулины внутри организма, особенно если у человека слабый иммунитет пройдет много времени. А за этот период вирус может нанести достаточно вреда организму. Ученых тревожит незащищенность нашего тела от вирусной природы заболеваний.

Бактерии: бактерии являются прокариотическими клетками, которые показывают все характеристики живых организмов. Бактериальные клетки содержат органеллы и ДНК, которые погружены в цитоплазму и окружены клеточной стенкой. Эти органеллы выполняют жизненно важные функции, позволяющие бактериям получать энергию из окружающей среды и воспроизводится.

Вирусы: Вирусы не считаются клетками, а существуют как частицы нуклеиновой кислоты (ДНК или РНК), заключенные в оболочку белка. Также известные как вирионы, вирусные частицы существуют где-то между живыми и неживыми организмами. Хотя они содержат генетический материал, они не имеют клеточной стенки или органелл, необходимых для производства и воспроизводства энергии. Вирусы полагаются исключительно на клетку-хозяина для репликации.


В то время как большинство бактерий безвредны, а некоторые даже полезны для людей, другие бактерии способны вызывать заболевания. Патогенные бактерии, которые вызывают заболевание, продуцируют токсины, разрушающие клетки организма. Они могут вызывать пищевое отравление и другие серьезные заболевания, включая менингит, пневмонию и туберкулез.

Бактериальные инфекции можно лечить антибиотиками, которые очень эффективны при уничтожении бактерий. Однако из-за чрезмерного использования антибиотиков бактерии получили сопротивление к ним. Некоторые из них даже стали известны как супербактерии, поскольку получили устойчивость к множеству современных антибиотиков. Вакцины также полезны для предотвращения распространения бактериальных заболеваний. Лучший способ защитить себя от бактерий и других микробов — это правильно и часто мыть руки.

Вирусы являются патогенами, которые вызывают ряд заболеваний, включая ветрянку, грипп, бешенство, Эбола, болезнь Зика и ВИЧ/СПИД. Вирусы способны вызывать постоянные инфекции, в которых они находятся в состоянии покоя, и могут быть повторно активированы позднее. Некоторые вирусы вызывают изменения в клетках-хозяевах, которые приводят к развитию рака. Известно, что эти вирусы вызывают раковые заболевания, такие как рак печени, рак шейки матки и лимфома Беркитта. Антибиотики не работают против вирусов. Лечение вирусных инфекций обычно связано с лекарствами, которые лечат симптомы инфекции, а не сам вирус. Как правило, иммунная система самостоятельно борется с вирусами. Вакцины также могут использоваться для предотвращения некоторых вирусных инфекций.


Лекарств от вирусной инфекции не существует? На самом деле, они есть. Большинство противовирусных препаратов действуют по одному из трех механизмов.

Второй – нарушение структуры новых вирусных частиц. Подобного рода лекарственные препараты представляют собой измененные аналоги азотистых оснований, служащих материалом для синтеза нуклеиновых кислот. Из-за структурного сходства они встраиваются в ДНК или РНК размножающегося в клетках вируса, делая новые вирусные частицы дефектными, неспособными к поражению новых клеток. Пример такого препарата – ацикловир, применяющийся для лечения герпетических инфекций.

Третий механизм – не допустить попадание вируса в клетку. Лекарство препятствуют отсоединению вирусной ДНК или РНК от белковой оболочки, из-за чего генетический материал вируса теряет способность проникать сквозь клеточную мембрану. Так действует, например, ремантадин.


Все вышеперечисленные препараты действуют только на активно размножающиеся вирусы.

Кандидат химических наук О. БЕЛОКОНЕВА.

Известно, что высшим живым существам иммунная система необходима для того, чтобы бороться с инфекционными болезнями, то есть с простейшими живыми организмами-патогенами: бактериями, микробами, грибками и конечно же вирусами. Но, скорее всего, мало кто задумывался над тем, есть ли иммунитет у беспозвоночных животных, например у насекомых. Поиски ответа на этот, казалось бы, простой вопрос привели к открытию нового класса уникальных веществ.

Оказывается, иммунной системы в том понимании, к которому мы привыкли, у насекомых нет. У них не вырабатываются защитные белковые молекулы - антитела, способные блокировать попавшие в организм чужеродные белки. Между тем ученым давно известно, что с болезнетворными микроорганизмами насекомые все же умеют бороться. Но как? Впервые на этот вопрос удалось ответить в 1980 году группе исследователей под руководством Ханса Бомана из Стокгольмского университета (Швеция). Гусенице шелкопряда Hyalophora cecropia сделали инъекцию раствора, зараженного бактериями, а затем собрали и проанализировали химические вещества, которые выделила инфицированная гусеница в ответ на укол. В результате ученые получили два новых химических соединения - пептидные молекулы, состоящие из 35-39 аминокислот. Их назвали цекропинами в честь шелкопряда. Антимикробная активность цекропинов оказалась очень высокой. Вскоре подобные вещества нашли в секрете бабочек и мух.

В принципе, антимикробные вещества, представляющие собой короткие молекулы из 24-40 аминокислот, известны давно. Более полувека назад были выделены антимикробные пептиды грамицидин и низин, которые широко используются в фармацевтической и пищевой промышленности. Давно описаны растительные антибактериальные пептиды и пептиды из пчелиного яда. Тем не менее открытие Бомана вызвало интерес. Во-первых, выделенные пептиды на первый взгляд очень напоминали давно известное вещество мелиттин, содержащееся в пчелином яде, но с одной маленькой разницей - в отличие от мелиттина, цекропины убивали клетки бактерий только типа Escherichia coli (так называемые грамотрицательные бактерии) и совершенно не действовали ни на другие микроорганизмы, ни на клетки высших организмов. Понятно, что такая высокая избирательность действия делала цекропины потенциальными кандидатами на применение в качестве лекарства. Во-вторых, стало ясно, что цекропины и им подобные вещества обеспечивают защиту насекомых от разных болезней, то есть природный иммунитет.

Вслед за цекропинами были идентифицированы и другие вещества из секреторных выделений различных насекомых. Некоторые из них избирательно уничтожают грамположительные бактерии, другие (выделенные из секрета плодовой мушки - дрозофилы) - грибковые микроорганизмы. Великое множество антимикробных пептидов выделено из ядов различных насекомых и пресмыкающихся: змей, скорпионов, пауков, ос. В конце 1980-х годов Майкл Заслофф, работающий в системе Национальных институтов здоровья в Бетесде (США), открыл, что кожный покров обыкновенной лягушки в ответ на микробное поражение или повреждение запускает сильнейшую систему биохимической защиты - выделяет большое количество антимикробных пептидов, состоящих из 23 аминокислот. Заслофф назвал новые соединения "магайнины" (производное от древнееврейского слова, означающего "щит, защита"). Уже в 1988 году Заслофф оставил фундаментальную науку с тем, чтобы основать компанию "Магайнин Фармасьютиклс", по сей день весьма успешно работающую на рынке фармацевтических препаратов.

Поначалу среди исследователей бытовало мнение, что антимикробные пептиды вырабатываются секреторными органами только низших существ, не имеющих развитой иммунной системы. Но уже в 1988 году было показано, что и млекопитающие - кролики, коровы и даже люди - могут выделять похожие вещества. Причем происходит это преимущественно в области кишечника, респираторного тракта и мочеточников. Пептиды постоянно вырабатываются даже в "спокойном" состоянии организма, а при воспалении или повреждении органов происходит всплеск их синтеза. Поэтому сегодня одна из основных целей - поиск веществ, стимулирующих выброс антимикробных пептидов в организме человека. К удивлению исследователей, соединение, подстегивающее природный иммунитет, нашлось в дрожжах и йогурте. Оказалось, что это аминокислота изолейцин, не синтезирующаяся в организме, а поступающая в него исключительно с продуктами питания.

Как уже было сказано выше, антимикробные пептиды вырабатывают даже растения. Растительные пептиды - тионины - открыты очень давно, почти 50 лет назад. По структуре они похожи на антимикробные пептиды насекомых и так же эффективно уничтожают грибковые микроорганизмы, а против бактерий практически бессильны. Пептид дрозомицин из плодовой мушки по строению похож на дефензин из семян редьки, антимикробные пептиды из секрета бабочек напоминают тионины из семян ячменя или пшеницы.

Многие исследователи считали, что у насекомых и пресмыкающихся антимикробные пептиды - практически единственная система защиты от болезней, а у высших позвоночных, обладающих нейроэндокринной и иммунной системами, это своего рода атавизм. Но потом ученые нашли экспериментальные подтверждения того, что антимикробные пептиды жизненно необходимы и организму млекопитающих. Так, в 1999 году в Калифорнийском университете (США) у подопытных мышей "выключили" ген, который отвечал за синтез фермента, активировавшего выработку антимикробного пептида в тонком кишечнике. По сравнению с обычными животными такие мыши быстрее подхватывали различные кишечные бактериальные инфекции и чаще умирали от них.

Каким образом антимикробным пептидам удается быстро и эффективно уничтожать бактерии, остается загадкой. Но все же кое-какие закономерности в структуре и механизме их действия ученым уже известны. Доказано, что большинство таких пептидов взаимодействуют с клеточной мембраной бактерий, вернее, с двойным липидным слоем мембраны. Кроме того, антимикробные пептиды всегда несут на себе положительный заряд, а на поверхности липидного бислоя бактериальной мембраны - заряд отрицательный. Потому понятно, что ключевую роль в антибактериальном действии играют электростатические взаимодействия положительно заряженных пептидов и отрицательно заряженной оболочки бактерий. Но чистой электростатикой активность пептидов не объяснить. Ведь иногда пептиды уничтожают один вид бактерий, а другой, с таким же поверхностным зарядом, не замечают. Кроме того, неясно, как некоторые положительно заряженные пептиды разрушают электрически нейтральную мембрану клеток млекопитающих. Особенно непонятно, а некоторым ученым кажется даже мистикой, что пептиды, даже если разрушают клетки высших животных, никогда не поражают клетки "хозяина".

Не последнюю роль играет и тот факт, что молекулы большинства известных антимикробных пептидов при попадании в окружение липидов клеточной мембраны превращаются из неупорядоченных линейных в правосторонние спиральные. Видимо, спиральная структура необходима для того, чтобы пронизать мембрану микробной клетки. Но еще более важное свойство пептидов - амфифильность. Это означает, что заряженные и незаряженные группы аминокислот расположены по разные стороны молекулы, то есть заряд распределен не равномерно, а сконцентрирован на одном участке пептида. Пептид как бы "сжал весь заряд в кулак", чтобы поразить мишень - клеточную мембрану бактерии.

Для описания механизма проникновения пептида через мембрану ученые придумали несколько моделей. Наиболее распространена так называемая "порообразующая" модель, согласно которой пептиды при взаимодействии с липидным бислоем встраиваются в мембрану, пронизывая ее насквозь, причем структура пор может быть различной. Иногда молекулы пептидов выстраиваются перпендикулярно плоскости мембраны, плотно прилегая друг к другу и образуя цилиндрическую бочку. Поэтому такой способ разрушения мембраны и называется "бочковым". А в некоторых случаях стенки поры состоят как из пептидных, так и из липидных молекул. Тогда пора имеет форму тора ("тороидальный" механизм). Когда поры изрешечивают всю мембрану, она теряет устойчивость, и содержимое микробной клетки выходит наружу - болезнетворная бацилла погибает. Есть и другая модель (она называется "ковровой"), в соответствии с которой положительно заряженные молекулы пептидов как бы выстилают отрицательно заряженную мембрану бактерии, образуя молекулярный "ковер". Когда вся поверхность бактерии занята пептидами, ее мембрана просто начинает разрываться на куски.

Новые антимикробные вещества могут стать альтернативой антибиотикам, к большинству которых бактерии приобрели устойчивость. Ведь, чтобы побороть болезнетворные микроорганизмы, ученым приходится создавать все новые и новые производные старых препаратов. На это уходят годы, а пациенты ждать не могут. Антимикробные пептиды, хотя несколько уступают антибиотикам по эффективности, действуют намного быстрее и, что самое главное, уничтожают бактерии, устойчивые к известным антибиотикам. Однако применять в клинике в качестве антибиотиков и антигрибковых средств можно только те пептиды, которые не разрушают клетки млекопитающих. К сожалению, большинство природных пептидов наряду с антимикробным обладают некоторым гемолитическим действием, то есть разрушают человеческие эритроциты. Конечно, хорошо бы создать искусственные аналоги природных соединений, обладающих антибактериальной, но не имеющих гемолитической активности. Однако механизм действия пептидов до сих пор непонятен, а потому направленный молекулярный дизайн весьма затруднителен.

Но даже несмотря на это, в последнее время появились перспективы клинического использования антимикробных пептидов. Так, в Германии уже начались клинические испытания препарата на основе антимикробного пептида, выделенного из секрета плодовой мушки. Он достаточно эффективен при лечении тяжелых грибковых поражений, которые нередко вызывают осложнения после химио-терапи и или операции по пересадке органов. Антимикробные пептиды вырабатываются тканями человеческого организма в ответ на локальное поражение или инфекцию. Поэтому они очень полезны для лечения местных воспалительных процессов. Магайнины успешно используются (правда, пока на стадии клинических испытаний) для лечения полимикробных поражений стопы при диабете. В США проводят испытания пептида из нейтрофилов свиньи. Его предполагается использовать для лечения язв в ротовой полости у онкологических больных после радио- и химиотерапии, а также (в форме аэрозоля) тяжелых форм пневмонии, требующих искусственной вентиляции легких. С помощью современных антибиотиков особенно трудно бороться с грамположительными бактериями - они устойчивы против всех имеющихся в арсенале медиков препаратов. Такие бактерии часто поражают края тканей, соприкасающихся с трубками катетера. А пептиды, синтезированные канадскими химиками, эффективно с ними борются.

Иногда антимикробные пептиды находят довольно неожиданное применение. Так, бактериальный пептид низин применяется как консервант продуктов, для сохранения свежести роз и даже как лекарство для рыб. Ученые предлагают использовать цекропины для хранения и дезинфекции контактных линз. Недавно обнаружили, что магайнины могут не только бороться с микроорганизмами, вызывающи ми венерические заболевания, включая и ВИЧ, но и разрушать сперматозоиды, что делает возможным создание препарата, сочетающего в себе свойства антисептика и контрацептива.

Многие исследования показали, что по непонятной причине опухолевые клетки более чувствительны к действию антимикробных пептидов, чем нормальные. Вероятно, это происходит потому, что раковые клетки обладают некоторым дополнительным отрицательным зарядом на поверхности мембраны. Но, скорее всего, противоопухолевый эффект антимикробных пептидов обусловлен целым комплексом причин. Как бы то ни было, уже получены обнадеживающие результаты по лечению меланомы, рака яичников и лимфомы, но пока только у подопытных животных.

Сейчас эффективных специфических противовирусных препаратов практически не существует. Поэтому антивирусная активность антимикробных пептидов кажется медикам многообещающей. Пептиды могут "расправляться" с вирусами различными способами. Во-первых, некоторые из них просто взаимодействуют с вирусом непосредственно, блокируя его активность. Таким способом они "выключают" вирусы герпеса, стоматита и даже ВИЧ. Во-вторых, пептиды могут блокировать размножение вирионов ВИЧ в инфицированном организме. Так действуют уже знакомые нам цекропины и мелиттин. И, наконец, что уж совсем удивительно, некоторые пептиды "притворяются" каким-либо жизненно необходимым для вируса молекулярным компонентом его белковой оболочки. Например, мелиттин по структуре похож на один из функциональных регионов вируса табачной мозаики, и поэтому его избыток может полностью подавить активность вируса. Так что получение трансгенных растений со встроенным геном мелиттина для борьбы с этим вирусом - не за горами.

О трансгенных растениях стоит сказать особо. На сегодняшний день - это наиболее экономически выгодный путь внедрения антимикробных пептидов. Ведь выделение их из природных объектов - растений, насекомых, тканей животных - очень трудоемко, а выход ничтожен. Химический синтез пептидов хотя и полностью автоматизирован, но весьма дорог для широкого промышленного использования. Сейчас удалось снизить стоимость грамма пептида в среднем до 50-100 долларов, но эта цена по-прежнему оставляет антимикробные препараты на основе пептидов недоступными для большинства пациентов. Другое дело - трансгенные растения. Достаточно встроить соответствующий ген в геном растения, и оно начинает вырабатывать антимикробные вещества. Успешно проводятся полевые испытания с трансгенным табаком, картофелем, томатом и рапсом. В результате генно-инженерных манипуляций растения со встроенными генами антимикробных пептидов приобретают устойчивость к различным грибковым и бактериальным заболеваниям. Ученые не исключают, что в скором времени на фермах появятся трансгенные коровы со встроенным геном цекропина, который сделает их устойчивыми ко многим инфекциям. Проводятся эксперименты и с трансгенной рыбой. Подобные исследования традиционно являются объектом самой жесткой критики со стороны общественности. Хотя, впрочем, неизвестно, что вреднее - встроенный ген антимикробного пептида или тонны антибиотиков и гормонов роста, скормленных коровам или свиньям.

Общность структур антимикробных пептидов растений, насекомых и даже некоторых позвоночных указывает на то, что у них одни и те же прародители, то есть это сохранившаяся с древнейших времен система защиты организмов от патогенов. Многие ученые высказывают предположения о роли, которую пептиды сыграли в процессе эволюции многоклеточных. Но, несмотря на свою "старомодность" по сравнению с иммунной системой, они продолжают оставаться эффективным оружием против грибков, бактерий и вирусов для большинства представителей земной флоры и фауны. В природе они особенно важны для насекомых, осьминогов, морских звезд и прочих животных, у которых нет ни лимфоцитов, ни тимуса, ни антител, чтобы бороться с чужеродными микробами. А на человека этому древнему, но мощному противомикробному и противовирусному оружию, видимо, еще предстоит поработать.

Все новости

Что такое вирусы и как с ними бороться: разбираемся в теме с микробиологом

Вирусы слишком малы, чтобы их можно было разглядеть под обычным микроскопом. Поэтому их исследуют под электронным микроскопом

Фото: Тимофей Калмаков

Каждый год пермяки и жители других городов уходят на больничный из-за вирусных инфекций. Сейчас идет весенняя волна ОРВИ. Мы собрали самые интересные факты о вирусах, в этом нам помогла доцент кафедры микробиологии и вирусологии Пермского государственного медицинского университета имени Вагнера, кандидат медицинских наук и автор более 50 научных работ о вирусах Светлана Поспелова.

Вирусы — что же это такое?

Вирус — это микроорганизм, являющийся захватчиком клеток всего живого. Термин возник от латинского слова virus, обозначающего яд. Вирус не является клеткой, а представляет собой молекулу ДНК или РНК (рибонуклеиновой кислоты), упакованную в белковую оболочку — капсид.

— Размер вирусов составляет меньше одной сотой части средней бактерии, поэтому их сложно исследовать, — говорит Светлана Поспелова. — Наука, которая занимается изучением вирусов, называется вирусологией. Число подробно изученных вирусов доходит до пяти тысяч, однако считается, что их реальное количество превышает миллион.

Светлана Поспелова — автор более 50 работ о вирусах

Фото: Тимофей Калмаков

Живут за счёт других. Настоящие паразиты!

Вирусы живут, как настоящие паразиты — не способны размножаться сами по себе, поскольку не имеют клеточного строения. Они проникают в клетку живого организма или бактерию и заставляют органоиды (рибосомы) клетки синтезировать вирусные белки, из которых потом собираются множественные копии вируса. При выходе вирусов из клетки чаще всего происходит её гибель. Новые вирусы с большой скоростью захватывают другие клетки. Так вирус заставляет организм работать на себя. Так, собственно, и прогрессирует инфекция.

Вирус либо разрушает клетку хозяина, либо провоцируют ответ иммунной системы, который проявляется такими симптомами, как чувство усталости, повышение температуры и даже тяжелое повреждение тканей.

— В первые же сутки заболевания вирус поражает организм, — говорит вирусолог. — Может ограничиться слизистыми оболочками, а может попасть в кровоток. И это уже гораздо серьезней. Течение и исход заболевания во многом зависит от качества и скорости ответа на инфекцию иммунной системы.

На кафедре микробиологии и вирусологии много наглядных схем и рисунков, посвященных вирусам и заражению ими

Фото: Тимофей Калмаков

Вирусы и бактерии — не одно и тоже!

Бывает, заболев ОРВИ или гриппом, люди спешат в аптеку за антибиотиком, не отдавая себе отчета в том, что вирусное заболевание им вылечить невозможно. Ведь антибиотик — лекарство, направленное на подавление болезнетворных бактерий, но никак не вирусов. От последних могут помочь только противовирусные препараты.

Размеры бактерий и вирусов различны, по отношению друг к другу это макро- и микроорганизмы, что сравнимо с размерами Солнца и Земли. Вирусы в сотни раз мельче бактерий.

В чашке Петри микробиологи выращивают бактерии и изучают их рост и изменения

Фото: Тимофей Калмаков

Иммунитет — это настоящая армия, которая стоит на защите организма

Иммунная система, как и многие другие физиологические системы, состоит из молекул, клеток, тканей и органов. Главный орган иммунной системы — это вилочковая железа, или тимус — орган, который находится за грудиной и производит особые клетки, самые главные клетки иммунной системы.

— По сути это клетки-регуляторы и клетки-солдаты, и эта армия стоит на защите нашего организма. Но к встрече с вирусом ее нужно готовить. На формирование иммунитета уходит от двух недель до трёх месяцев после прививки. Поэтому ее лучше делать не накануне, а до предположительного времени эпидемии.

Клетки вакцинированного человека подготовлены и научены бороться с вирусом в отличие от клеток невакцинированного. Они выделяют антитела, которые блокируют вирус. Профилированная клетка знает, какие частички нужно выработать, чтобы заблокировать конкретный вирус. Поэтому организм нужно готовить к возможной встрече с вирусом — иммунизировать вакциной, содержащей антигены.

Вирусы, кроме гриппа, вызывают многие болезни, в том числе герпес, корь и свинку. С большинством вирусов иммунная система справляется без каких-либо осложнений. Некоторые вирусы, например, герпес, могут долго оставаться в скрытом состоянии, проявляясь лишь временами. От других может защитить только вакцинация.

За дверь лаборатории посторонних не пускают

Фото: Тимофей Калмаков

Иммунитет и вегетарианцы

Антитела — это белковые соединения плазмы крови, препятствующие размножению микроорганизмов и нейтрализующие выделяемые ими токсические вещества. Отсутствие белка в меню веганов, впрочем, как и вегетарианцев, вызывает опасения у учёных.

— Эти белки нужно из чего-то синтезировать. А что делать, если организм человека кроме листа салата ничего не получил? Для взрослых такое питание вполне допустимо. Однако многие вегетарианцы принимают это решение — не есть мясо — за своих детей, но для развития детям нужны белки. Они же растут, им нужно синтезировать свои белки, а из чего, если не хватает аминокислот? И, конечно, страдает иммунная система, потому что защищающие от инфекции антитела — это тоже белки.

Стерильная химическая посуда необходима для опытов в лаборатории микробиологии и вирусов

Фото: Тимофей Калмаков

Такой смертельный грипп

Что делают люди, когда начинают болеть? Правильно, бегут в аптеку за противовирусным препаратом.

— Этот способ защиты может помочь лишь в первые три дня и становится потом практически бесполезным. К этому времени клетки человека начинают вырабатывать белок интерферон, который синтезируется нашими клетками и способен защитить от гриппа и других вирусов. Первые три дня заболевания решающие — либо мы успеем заблокировать вирус, либо не успеем.

В первые же сутки заболевания вирус поражает организм. Может проявляться в виде кашля, насморка, недомогания и повышенной температуры

Фото: Сергей Федосеев

Нужно просто обратиться в регистратуру

Если детям прививки делают в массовом порядке в школах и детских садах, то взрослые даже и не вспоминают об этой необходимости. Но вовремя сделанная прививка может спасти жизнь.

— Любой человек может прийти в поликлинику и обратиться в регистратуру, сказав, что хочет вакцинироваться. Вакцина поступает в августе — сентябре. И это самое оптимальное время, когда лучше всего делать прививку. Каждый год грипп меняется, но мы отслеживаем изменившиеся варианты и можем их прогнозировать.

Лучше заранее позаботиться о здоровье и провакцинироваться от вирусов

Фото: Тимофей Калмаков

Не переохлаждаться и не пить спиртное!

Многие и не знают, что после вакцинации очень важно не пренебрегать правилами. Чаще всего врач проговаривает рекомендации скороговоркой и пациенты их не слышат. Несоблюдение правил может вызвать побочные эффекты и даже серьезные осложнения.

— Вакцину можно делать только здоровому, не простуженному человеку.

Бывает, что в садах и школах детей вакцинируют друг за другом, и среди них попадаются те, кто начал болеть, но это неочевидно.

Иммунной системе может не хватить сил, чтобы бороться и с начинающими болезнями, и с антигенами введенной вакцины, любая лишняя нагрузка — помеха в формировании иммунитета.

После прививки в течение трех дней нужно снизить нагрузку на организм взрослого человека, а тем более ребенка. Постарайтесь отменить сложную тренировку, начало ремонта или генеральную уборку, чтобы не переутомляться. Взрослым необходимо воздержаться от выпивки, потому что алкоголь на фоне вакцинации может привести к аллергической реакции, так как аллергия возникает из-за гиперреакции некоторой звеньев той же иммунной системы.

Прививки нужно планировать. Не нужно ходить в эти дни в баню и сауну. Визиты к стоматологу тоже лучше отменить, или прививку перенести на другое время. Особенно если предстоит удаление зуба и местный наркоз.

Также не стоит делать прививку перед экзаменом. Помимо отдыха, в эти дни нужно хорошее белковое питание.

— Люди, которые пренебрегли правилами, жалуются, что потом появляются осложнения, но нужно понять элементарное — после введения вакцины организм борется с инфекцией и ослаблен.

Это не бабушкина кладовая, а рабочий стол лаборанта-микробиолога

Фото: Тимофей Калмаков

Превратили обезьяну в человека

Геном людей состоит из огромного количества генов. Когда его стали расшифровывать, поняли что есть структурные гены, которые кодируют строение наших белков, ферментов, а есть такие генетические фрагменты, назначение которых было непонятным. Современные технологии позволили вычислить, что это древние вирусы, которые встроились в геном когда-то и остались там. Зарубежные авторы считают, что это способствовало превращению обезьяны в человека. Это одна из теорий.

— Вирусы могут заставить делать организм то, что ему не свойственно. Например, больные животные уходят умирать в темный угол жилья. Но, пораженные вирусом бешенства, они начинает кусать человека, а волки даже приходят на улицы города. Вирус становится хозяином всего макроорганизма. А нам все кажется, что они такие простые — всего-то кусочки ДНК или РНК.

Подписывайся на наш канал в Telegram и читай главные новости Перми раньше всех. Есть новость — присылай фото и видео на почту Написать письмо или пиши нам в VK .

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции