Острая гипоксия при отравлении газом

Ужасная мода пришла к детям в наше время. Дети пьют и нюхают газ из зажигалок! Причем дети, начиная с 10 лет!

С магазинных полок пропадают туалетные освежители воздуха и газ для заправки зажигалок. Подростки выбирают для самоуничтожения новые модные тренды.

При вдыхании газовой смеси из пакета или непосредственно из баллона в легкие попадают капли бутана, который в тепле организма переходит в газообразное состояние и расширяется. При переходе в газ объем бутана увеличивается в 250-300 раз. Фактически капля бутана вытесняет из легких человека воздух. Несколько капель приводят к смертельному исходу. Легкие растягиваются, мелкие сосуды рвутся, кровь и плазма выходят в полость бронхов, возможно выделение пены из дыхательных путей.

Человек судорожно пытается сделать вдох широко раскрытым ртом, кожа, особенно на лице, синеет, отчетливо проступают сосуды. Человек мечется, хватаясь за горло, расцарапывает кожу. Зрачки расширяются. Непосредственного перед смертью возникают судороги, потеря сознания, непроизвольное мочеиспускание и дефекация.

Концентрация одорантов и присадок в легких при вдыхании газовой смеси оказывается гораздо выше, чем предусмотрено техническими нормами. Едкие и раздражающие одоранты вызывают бронхоспазм, возможны аллергические реакции, защитное выделение слизи в дыхательных путях, что усиливает кислородное голодание. Реакция организма на избыток одорантов похожа на приступ бронхиальной астмы. Отмечена также рефлекторная остановка дыхания при отравлении метилмеркаптаном.

Газовая смесь в организме человека достаточно инертна, в отличии от паров органических растворителей и спиртов (ацетона, толуола, пропанола и др.), в кровь и другие ткани пропан и бутан попадают действительно в малых, следовых количествах. Однако этого малого количества оказывается достаточно для развития специфического токсического действия.

Последствия хронического потребления газовой смеси.

По наблюдению исследователей, от газовой смеси страдают все клетки мозга, как основные (нейроны), так и поддерживающие (глиальные). Наибольшая выраженность проблем оказалась в белом веществе мозга (проводящие волокна).

Подобные поражения мозга приводят к снижению интеллекта, суждения и юмор становятся плоскими, характерно стереотипное повторение одних и тех же фраз, анекдотов. Больные с трудом подбирают нужные слова, речь все больше заменяется междометиями.

Способность отличить главное от второстепенного падает, резко ухудшается память, понимание логических связей между поступком и его последствиями снижается. Для больного становиться невозможно обучение и усвоение нового опыта.

Эмоциональный контроль ослабевает, больные в зависимости от типа личности неадекватно вспыльчивы или слезливы, поступают без учета чувств окружающих.

Работоспособность также утрачивается, больные не могут длительно концентрировать внимание, очень быстро устают.

Энцефалопатия развивается у потребителей газовой смеси через 1-3 года после начала регулярного злоупотребления.

Интересно, что переживания при вдыхании газовой смеси отличаются фрагментарностью, бедностью, удовольствия не доставляют. Появление галлюцинаций возможно в состоянии выраженной гипоксии, так же, как и при других гипоксических увлечениях (задержке дыхания, самоудушении и др.).

При развитии энцефалопатии порог появления галлюцинаций и иллюзий снижается, обманы восприятия часто носят внушенный характер, однако их содержание остается бедным, стереотипным и вряд ли может объяснить стремление к повторению интоксикации.

Первая помощь при отравлении.

Первая помощь заключается в максимально быстром восстановлении газообмена и эвакуации газовой смеси из легких пострадавшего.

Примерный алгоритм действий при оказании первой помощи при отравлении газом включает в себя определенную последовательность действий:

·вынесите или выведите человека из опасного помещения; удалите от дыхательных путей емкости с газом (например, пакеты).

·уложите на бок на свежем воздухе и растяните пуговицы верхней одежды;

·срочно вызовите бригаду скорой помощи;

·при отсутствии движений грудной клетки сделайте искусственное дыхание (Голову пострадавшего запрокинуть кверху, одной рукой оттянуть его нижнюю челюсть кпереди и книзу, а пальцами другой зажать нос.

Проводящему искусственное дыхание сделать максимальный вдох, наклониться к пострадавшему, прижаться плотно губами к его открытому рту и сделать максимальный выдох. В этот момент следить за тем, чтобы по мере поступления воздуха в дыхательные пути и легкие пострадавшего грудная клетка его максимально расправлялась. Выполните два интенсивных вдоха пострадавшему, а затем убедитесь, что кислород распространяется по всему телу. Для этого в течение 10 секунд наблюдайте, дышит ли пациент (или кашляет), изменяется ли цвет его кожных покровов. Если пациент подает признаки жизни, продолжайте искусственное дыхание в ритме 1 вдох на каждые 6 секунд до прибытия скорой помощи, или до тех пор, пока пострадавший полностью не придет в себя)

·если не прощупывается пульс, то проводится массаж сердца через грудную клетку в сочетании с искусственным дыханием (необходимо встать на колени возле пострадавшего, принять устойчивую позу. Ладони крест-накрест накладываются на место схождения ребер и грудины, локти должны быть выпрямлены. Сделайте 30 нажатий (за 15-20 секунд), после чего делается два вдоха исскуственного дыхания. Сила сжатия должна быть достаточно большой – реберный угол с грудиной должен опускаться примерно на 4 см. внутрь. Курс из 30 нажатий и 2 вдохов) необходимо повторять, пока пострадавший не придет в себя или до прибытия врачей).

При искусственном дыхании важно следить за тем, чтобы не вдохнуть выделяющиеся из легких пострадавшего газ.

Не оставляйте пострадавшего без присмотра до приезда врачей. Следите за отхождением рвотных масс. Если человек находится в бессознательном состоянии, то может произойти аспирация рвотных масс в дыхательные пути. Для предотвращения этого необходимо держать голову человека наклоненной вбок и чуть вперед.

При оказании первой врачебной помощи необходимо максимально быстро обеспечить больного кислородом, часто это оказывается достаточным. Симптоматически оказываются иные реанимационные мероприятия. Детоксикационная терапия мало эффективна по причине низкой растворимости и химической инертности газовой смеси, специфического антидота не существует.

Как помочь подростку

Если вы заметили выше перечисленные симптомы у своего ребёнка, тогда вам следует поговорить с ним: зачем он это делает, не слишком ли дорогой ценой он за это расплатится, не нужна ли ему помощь, не кажется ли ему, что было бы лучше не начинать, не пытается ли он с помощью этого занятия уйти от других проблем, знает ли он, чем рискует?

Но самым действенным будет нахождение новых интересов и видов деятельности, которые помогут юноше или девушке обрести статус в среде ровесников, получить положительные эмоции и удовлетворить потребность в самореализации.

Кем станут наши дети, какими они вырастут, будут ли они нам достойной сменой или все наши мечты об их будущем превратятся в прах, - все это зависит от нас с вами. Будьте внимательней к ребёнку, больше проводите с ним времени, чтобы меньше оставалось минут на опыты над собой во вред своему здоровью!

Заведующая отделением профилактики


Признаки гипоксии весьма разнообразны и почти всегда зависят от степени ее выраженности, длительности воздействия и причины возникновения. Мы приведем самые основные симптомы и объясним их причины развития.

Гипоксия бывает острой (развивается через несколько минут, часов) от начала воздействия причинного фактора или может быть хронической (развивается медленно, на протяжении нескольких месяцев или лет).

Острая гипоксия имеет более ярко выраженную клиническую картину и тяжелые быстро развивающиеся последствия для организма, которые могут быть необратимыми. Хроническая гипоксия т.к. развивается медленно, позволяет организму больного адаптироваться к ней, поэтому пациенты с тяжелой дыхательной недостаточностью на фоне хронических легочных заболеваний живут длительное время без драматических симптомов. В то же время хроническая гипоксия так же приводит к необратимым последствиям.

1) Увеличение частоты дыхания, для усиления поступления кислорода к легким и его дальнейший транспорт кровью. Вначале дыхание частое и глубокое, однако, по мере истощения дыхательного центра становится редким и поверхностным.

3) Выброс депонированной крови в кровоток и усиленное образование эритроцитов – для увеличения количества переносчиков кислорода.

4) Замедление функционирования некоторых тканей, органов и систем, с целью уменьшения потребления кислорода.

Вышеперечисленные механизмы при острой гипоксии краткосрочные быстро истощаются, что приводит к смерти пациента. При хронической гипоксии они способны длительно функционировать, компенсируя кислородный голод, но приносят постоянные страдания больному.

Низкое содержание кислорода в тканях проявляется их окрашиванием в синюшный цвет (цианоз). Цианоз может быть диффузным (распространенным) например при бронхоспазме. Бывает акроцианоз -синюшный цвет пальцев и ногтевых пластинок и может быть цианоз носогубного треугольника. Например, при острой и хронической сердечной и дыхательной недостаточности.

Помимо характерного вышеописанного симптомокомплекса для диагностики гипоксии используют лабораторно-интрументальные методы исследования.

• Пульсоксиметрия – самый простой способ определения гипоксии. Достаточно одеть на палец пульсоксиметр и через несколько секунд будет определено насыщение (сатурация) крови кислородом. В норме этот показатель не ниже 95%.

• Исследование газового состава и кислотно-щелочного равновесия артериальной и венозной крови. Данный вид позволяет провести количественную оценку главенствующих показателей гомеостаза организма: парциальное давление кислорода, углекислого газа, pH – крови, состояние карбонатного и бикарбонатного буфера и т.д.

• Исследование газов выдыхаемого воздуха. Например капнография, СО-метрия и т.д.

Лечебные мероприятия должны быть направлены на устранение причины гипоксии, борьбу с недостатком кислорода, коррекцию изменений в системе гомеостаза.

Иногда для борьбы с гипоксией достаточно простого проветривания помещения или прогулки на свежем воздухе. В случаях гипоксии, которая стала следствием заболеваний легких, сердца, крови или отравлений – требуются более серьезные мероприятия.

• Гипоксическая (экзогенная) — применение кислородного оборудования (кислородные аппараты, кислородные боллончики, кислородные подушки и т.д.);

• Дыхательная (респираторная) — применение бронхорасширяющих препаратов, антигипоксантов, дыхательных аналептиков и т.д., использование концентраторов кислорода или централизованной подачи кислорода вплоть до искусственной вентиляции легких. При хронической дыхательной гипоксии лечение кислородом становится одним из главных компонентов;

• Гемическая (кровяная) — переливание крови, стимуляция кроветворения, лечение кислородом;

• Циркуляторная — коррегирующие операции на сердце и (или) сосудах, сердечные гликозиды и прочие препараты с кардиотропным эффектом. Антикоагуллянты, антиагреганты для улучшения микроциркуляции. В ряде случаев применяется кислородотерапия .

• Гистоксическая (тканевая) — антидоты при отравлении, искусственная вентиляция легких, препараты улучшающие утилизацию кислорода тканями, гипербарическая оксигенация;

Как видно из сказанного почти при всех видах гипоксии находит применение лечение кислородом: от дыхания смесью из кислородных баллончиков или концентратора кислорода до до искусственной вентиляции легких. Помимо этого для борьбы с гипоксией используют препараты позволяющие восстановить кислотно-щелочное равновесие в крови, нейро и кардиопротекторы.

Кислородные баллончики являются бюджетным и удобным средством лечения гипоксии. Они не требуют настройки, особых навыков обращения, обслуживания, их удобно брать с собой. Ниже представлена подборка наиболее популярных моделей кислородных баллончиков:





Однако, стоит учитывать, что у кислородных баллончиков есть некоторые недостати. Во-первых, баллончики имеют свойство заканчиваться - в среднем, девяти литрового баллончика хватает на 70 - 100 вдохов и если необходимо продолжительное лечения, то нужен будет их большой запас. Во-вторых, если гипоксия является сопутствующим эффектом к другому заболеванию, баллончики, скорее всего, окажутся бесполезны.

В таких случаях, неоспоримым преимуществом обладают кислородные концентраторы. Это аппараты, которые вырабатывают из окружающего воздуха обогащенную кислородом смесь для дыхания. Такая кислородотерапия компенсирует гипоксию, что приводит к уменьшению одышки и интоксикации:





Статью подготовил Гершевич Вадим Михайлович
(врач торакальный хирург, кандидат медицинских наук).

Остались вопросы? Позвоните нам сейчас по телефону бесплатной линии 8 (800) 100-75-76 и мы с радостью квалифицированно проконсультируем и ответим на все интересующие Вас вопросы.

10.1. Классификация гипоксических состояний

Гипоксия – типовой патологический процесс, характеризующийся снижением содержания кислорода в крови (гипоксемией) и тканях, развитием комплекса вторичных неспецифических метаболических и функциональных расстройств, а также реакцией адаптации.

Первая классификация гипоксических состояний была предложена Баркрофтом (1925), а затем дополнена и усовершенствована И.Р. Петровым (1949). Классификация И.Р. Петрова используется и в наше время. Согласно этой классификации различают гипоксии экзогенного и эндогенного происхождения.

В основе гипоксии экзогенного происхождения лежит недостаток кислорода во вдыхаемом воздухе, в связи с чем выделяют нормобарическую и гипобарическую гипоксию. К гипоксиям эндогенного происхождения относятся следующие типы:

а) дыхательная (респираторная); б) сердечно-сосудистая (циркуляторная); в) гемическая (кровяная); г) тканевая (гистотоксическая); д) смешанная.

По течению различают:

• молниеносную (в течение нескольких секунд, например, при разгерметизации летательных аппаратов на большой высоте);

• острую (которая развивается через несколько минут или в пределах часа в результате острой кровопотери, острой сердечной или дыхательной недостаточности, при отравлении угарным газом, цианидами, при шоке, коллапсе);

• подострую (она формируется в течение нескольких часов при попадании в организм метгемоглобинообразователей, таких как нитраты, бензол, а в ряде случаев в результате медленно нарастающей дыхательной или сердечной недостаточности;

• хроническую гипоксию, которая возникает при дыхательной и сердечной недостаточности и других формах патологии, а также при хронической анемии, пребывании в шахтах, колодцах, при работе в водолазных и защитных костюмах.

а) местную (локальную) гипоксию, развивающуюся при ишемии, венозной гиперемии, престазе и стазе в зоне воспаления;

б) общую (системную) гипоксию, которая наблюдается при гиповолемии, сердечной недостаточности, шоке, коллапсе, ДВС-синдроме, анемиях.

Известно, что наиболее устойчивыми к гипоксии являются кости, хрящи и сухожилия, которые сохраняют нормальную структуру и жизнеспособность в течение многих часов при полном прекращении снабжения кислородом. Поперечно-полосатые мышцы выдерживают гипоксию в течение 2 часов; почки, печень – 20-30 минут. Наиболее чувствительна к гипоксии кора головного мозга.

10.2. Общая характеристика этиологических и патогенетических факторов гипоксий экзогенного и эндогенного происхождения

Экзогенный тип гипоксии развивается при уменьшении парциального давления кислорода в воздухе, поступающем в организм. При нормальном барометрическом давлении говорят о нормобарической экзогенной гипоксии (примером может служить нахождение в замкнутых помещениях малого объема). При снижении барометрического давления развивается гипобарическая экзогенная гипоксия (последнее наблюдается при подъеме на высоту, где РО2 воздуха снижено примерно до 100 мм рт. ст. Установлено, что при снижении РО2 до 50 мм рт. ст. возникают тяжелые расстройства, несовместимые с жизнью).

В ответ на изменение показателей газового состава крови (гипоксемию и гиперкапнию) возбуждаются хеморецепторы аорты, каротидных клубочков, центральные хеморецепторы, что вызывает стимуляцию бульбарного дыхательного центра, развитие тахи- и гиперпное, газового алкалоза, увеличение числа функционирующих альвеол.

Эндогенные гипоксические состояния являются в большинстве случаев результатом патологических процессов и болезней, приводящих к нарушению газообмена в легких, недостаточному транспорту кислорода к органам или к нарушению его утилизации тканями.

Дыхательная (респираторная) гипоксия

Респираторная гипоксия возникает вследствие недостаточности газообмена в легких, которая может быть обусловлена следующими причинами: альвеолярной гиповентиляцией, сниженной перфузией кровью легких, нарушением диффузии кислорода через аэрогематический барьер, и соответственно, нарушением вентиляционно-перфузионного соотношения. Патогенетическую основу дыхательной гипоксии составляют снижение содержания оксигемоглобина, повышение концентрации восстановленного гемоглобина, гиперкапния и газовый ацидоз.

Гиповентиляция легких является результатом действия ряда патогенетических факторов:

а) нарушения биомеханических свойств дыхательного аппарата при обструктивных и рестриктивных формах патологии;

б) расстройств нервной и гуморальной регуляции вентиляции легких;

в) снижения перфузии легких кровью и нарушения диффузии О2 через аэрогематический барьер;

г) избыточного внутри- и внелегочного шунтирования венозной крови.

Циркуляторная (сердечно-сосудистая, гемодинамическая) гипоксия развивается при локальных, региональных и системных нарушениях гемодинамики. В зависимости от механизмов развития циркуляторной гипоксии можно выделить ишемическую и застойную формы. В основе циркуляторной гипоксии может лежать абсолютная недостаточность кровообращения или относительная при резком возрастании потребности тканей в кислородном обеспечении (при стрессорных ситуациях).

Генерализованная циркуляторная гипоксия возникает при сердечной недостаточности, шоке, коллапсе, обезвоживании организма, ДВС-синд-роме и т.д., причем, если нарушения гемодинамики возникают в большом круге кровообращения, насыщение крови кислородом в легких может быть нормальным, а нарушается его доставка к тканям в связи с развитием венозной гиперемии и застойных явлений в большом круге кровообращения. При нарушениях гемодинамики в сосудах малого круга кровообращения страдает оксигенация артериальной крови. Локальная циркуляторная гипоксия возникает в зоне тромбоза, эмболии, ишемии, венозной гиперемии в тех или иных органах и тканях.

Особое место занимает гипоксия, связанная с нарушением транспорта кислорода в клетки при снижении проницаемости мембран для О2. Последнее наблюдается при интерстициальном отеке легких, внутриклеточной гипергидратации.

Для циркуляторной гипоксии характерны: снижение РаО2, увеличение утилизации О2 тканями вследствие замедления кровотока и активации системы цитохром, возрастание уровня ионов водорода и углекислого газа в тканях. Нарушение газового состава крови приводит к рефлекторной активации дыхательного центра, развитию гиперпноэ, увеличению скорости диссоциации оксигемоглобина в тканях.

Гемический (кровяной) тип гипоксии возникает в результате уменьшения эффективной кислородной емкости крови и, следовательно, ее кислород транспортирующей функции. Транспорт кислорода от легких к тканям почти полностью осуществляется при участии Hb. Главными звеньями снижения кислородной емкости крови являются:

1) уменьшение содержания Нb в единице объема крови и в полном объеме, например, при выраженных анемиях, обусловленных нарушением костно-мозгового кроветворения различного генеза, при постгеморрагических и гемолитической анемиях.

2) нарушение транспортных свойств Нb, которое может быть обусловлено либо снижением способности Нb эритроцитов связывать кислород в капиллярах легких, либо транспортировать и отдавать оптимальное количество его в тканях, что наблюдается при наследственных и приобретенных гемоглобинопатиях.

Окись углерода содержится в высокой концентрации в выхлопных газах двигателей внутреннего сгорания, в бытовом газе и т.д.

Выраженные нарушения жизнедеятельности организма развиваются при увеличении содержания в крови НbСО до 50% (от общей концентрации гемоглобина). Повышение его уровня до 70-75 % приводит к тяжелой гипоксемии и летальному исходу.

Карбоксигемоглобин имеет ярко-красный цвет, поэтому при его избыточном образовании в организме кожа и слизистые становятся красными. Устранение СО из вдыхаемого воздуха приводит к диссоциации НbСО, но этот процесс протекает медленно и занимает несколько часов.

Воздействие на организм ряда химических соединений (нитратов, нитритов, окисла азота, бензола, некоторых токсинов инфекционного происхождения, лекарственных средств: феназепама, амидопирина, сульфаниламидов, продуктов ПОЛ и т.д.) приводит к образованию метгемоглобина, который не способен переносить кислород, так как содержит окисную форму железа (Fe3+).

Окисная форма Fe3+ обычно находится в связи с гидроксилом (ОН-). МетНb имеет темно-коричневую окраску и, именно этот оттенок приобретают кровь и ткани организма. Процесс образования метНb носит обратимый характер, однако его восстановление в нормальный гемоглобин происходит относительно медленно (в течение нескольких часов), когда железо Нb вновь переходит в закисную форму. Образование метгемоглобина не только снижает кислородную емкость крови, но и уменьшает способность активного оксигемоглобина диссоциировать с отдачей кислорода тканям.

Тканевая (гистотоксическая) гипоксия развивается вследствие нарушения способности клеток поглощать кислород (при нормальной его доставке к клетке) или в связи с уменьшением эффективности биологического окисления в результате разобщения окисления и фосфорилирования.

Развитие тканевой гипоксии связывают со следующими патогенетическими факторами:

1. Нарушением активности ферментов биологического окисления в процессе:

а) специфического связывания активных центров фермента, например, цианидами и некоторыми антибиотиками;

б) связывания SН-групп белковой части фермента ионами тяжелых металлов (Аg2+, Нg2+, Сu2+), в результате чего образуются неактивные формы фермента;

в) конкурентного блокирования активного центра фермента веществами, имеющими структурную аналогию с естественным субстратом реакции (оксалаты, малонаты).

2. Нарушением синтеза ферментов, которое может возникать при дефиците витаминов В1 (тиамина), ВЗ (РР), никотиновой кислоты и др., а также при кахексии различного происхождения.

3. Отклонениями от оптимума физико-химических параметров внутренней среды организма: рН, температуры, концентрации электролитов и др. Эти изменения возникают при разнообразных заболеваниях и патологических состояниях (гипотермиях и гипертермиях, недостаточности почек, сердца и печени, анемиях) и снижают эффективность биологического окисления.

4. Дезинтеграцией биологических мембран, обусловленной воздействием патогенных факторов инфекционной и неинфекционной природы, сопровождающейся снижением степени сопряжения окисления и фосфорилирования, подавлением образования макроэргических соединений в дыхательной цепи. Способностью разобщать окислительное фосфорилирование и дыхание в митохондриях обладают: избыток ионов Н+ и Са2+, свободных жирных кислот, адреналина, тироксина и трийодтиронина, некоторых лекарственных веществ (дикумарина, грамицидина и др.). В этих условиях увеличиваются расход кислорода тканями. В случаях набухания митохондрий, разобщения окислительного фосфорилирования и дыхания большая часть энергии трансформируется в тепло и не используется для ресинтеза макроергов. Эффективность биологического окисления снижается.

1. Гипоксия – это:

А. недостаток кислорода в тканях

В. уменьшение содержания кислорода во вдыхаемом воздухе

С. снижение парциального давления кислорода во вдыхаемом воздухе

2. Выберите наиболее правильное определение: кислородная емкость крови

А - это максимальное количество кислорода, растворенного в крови

В. – это максимальное количество кислорода, связанное объёмом крови при полном насыщении гемоглобина кислородом.

3. Экзогенная гипоксия обусловлена:

А. заболеваниями лёгких

В. снижением парциального давления кислорода во вдыхаемом воздухе

С. заболеваниями сердца

Д. уменьшением количества гемоглобина в крови

4. Можно ли отнести отравление угарным газом к дыхательному типу гипоксии?

5. По какому типу развивается гипоксия при горной болезни?

6. Может ли возникнуть острое отравление СО при концентрации его в воздухе 0,1%?

7. Каково парциальное давление углекислого газа в венозной крови?

8. Какая причина может привести к тканевому типу гипоксии?

А. горная болезнь

В. ателектаз легких

С. отравление цианидами

Д. образование метгемоглобина

9. Эндогенная гипоксия обусловлена:

А. заболеваниями легких

В. снижением парциального давления кислорода во вдыхаемом воздухе

С. заболеваниями сердца

Д. уменьшением количества гемоглобина в крови

10. Где расположены хеморецепторы, реагирующие на изменение парциального давления кислорода и углекислого газа?

В. каротидные синусы

С. продолговатый мозг

11. Каково парциальное давление углекислого газа в артериальной крови?

12. Выберите наиболее правильное определение:

А. коэффициентом утилизации кислорода называется часть кислорода, поглощаемая эритроцитами

В. коэффициентом утилизации кислорода называется часть кислорода, поглощаемая тканями из артериальной крови

13. Назовите ткань, наиболее чувствительную к гипоксии:

14. Изменяется ли сродство гемоглобина к кислороду при повышении парциального давления углекислого газа в крови?

В. не изменяется

15. Изменяется ли диссоциация гемоглобина при гипоксии?

В. не изменяется

16. Какие компенсаторные механизмы включаются при гипокапнии?

снижение возбудимости дыхательного центра

задержка углекислого газа в организме

включение бикарбонатного буфера

17. Что может привести к дыхательному типу гипоксии?

приступ бронхиальной астмы

повреждение дыхательной мускулатуры

18. Сердечно-сосудистый тип гипоксии возникает при:

приступе бронхиальной астмы

19. При тяжелой степени кислородного голодания возникает:

периодическое дыхание Чейн-Стокса

20. К каким последствиям ведёт гиперкапния?

1. повышение возбудимости дыхательного центра

3. включение белковых буферных систем

4. включение гемоглобиновой буферной системы

21. Какие причины могут привести к тканевому типу гипоксии?

1. горная болезнь

4. отравление цианидами

II тип. Для каждого вопроса, пронумерованного цифрой, подберите один или несколько соответствующих ответов, обозначенных буквенным индексом.

22. К какому типу гипоксии относятся перечисленные ниже виды гипоксий?

1. гипоксическая А. эндогенный тип гипоксии

2. гемическая В. экзогенный тип гипоксии

Ответ: А-2,3,4,5,6; В-1.

23. Какие факторы вызывают смещение кривой диссоциации оксигемоглобина?

1. смещение кривой диссоциации вправо А. повышение температуры

2. смещение кривой диссоциации влево В. снижение напряжения кислорода в крови

С. увеличение концентрации Н и двуокиси углерода

Д. повышение напряжения кислорода в крови

24. Какой тип гипоксии развивается при:

1. горной болезни А. гипоксическая гипоксия

2. ателектазе лёгких В. циркуляторная гипоксия

3. авитаминозе С. гемическая гипоксия

4. отравлении цианидами Д. дыхательная гипоксия

Отравление угарным газом

Монооксид углерода, окись углерода, оксид углерода (II), угарный газ, СО,- бесцветный газ без запаха, плотность по воздуху 0,97 (то есть чуть легче воздуха).

Угарный газ образуется в небольших количествах везде, где происходит горение или тление углеродсодержащих веществ. Основные продукты горения — углекислый газ и вода. Чем меньше поступление кислорода к очагу горения, тем больше образуется угарного газа.

До опасных концентраций он может накопиться при определенных условиях:


  • автомобильные двигатели (автомобиль заведен в замкнутом помещении по неосторожности или намеренно);
  • электростанции (бензиновые и дизельные генераторы в подвалах, подсобных помещениях при неисправности системы отведения выхлопных газов);
  • газовые водонагреватели и котлы (при неисправности системы отведения продуктов сгорания);
  • бытовые газовые плиты (при неисправности конфорок и/или недостаточной вентиляции);
  • дровяные печи (неисправен дымоход или слишком рано закрыли заслонку);
  • прочие источники энергии, где происходит горение соединений углерода;
  • пожары;
  • в химической промышленности (при авариях и утечках)

Отравление угарным газом в США приводит к 50 000 посещений отделений экстренной медицинской помощи ежегодно, из них 15 000 не связаны с пожаром и попыткой суицида. Отравление СО — ведущая причина смерти от непреднамеренного отравления в США.
По данным отечественных источников, угарный газ становится причиной 17,5% летальных исходов от отравлений.

Молекула СО обладает высоким сродством к гемоглобину — более чем в 200 раз выше, чем молекула кислорода. Поэтому даже небольшая концентрация СО в воздухе приводит к тому, что все больше молекул гемоглобина превращаются в карбоксигемоглобин HbCO, который распадается медленно и накапливается в крови. Карбоксигемоглобин не выполняет функцию транспорта кислорода в ткани (гемическая гипоксия), что определяет характер токсического воздействия: преимущественное поражение нервной системы и миокарда.

Скорость наступления симптомов и тяжесть отравления зависит от концентрации СО в воздухе. 0,5 об.% угарного газа вызывает летальный исход в течение 5 — 10 минут.

Поступление угарного газа в организм ускоряется при пониженном атмосферном давлении, при физической активности, при увеличении частоты дыхания, при ускоренном темпе метаболизма, а также в случае анемии.
Таким образом, курильщик с хронической анемией на беговой дорожке в горах заработает отравление намного быстрее, чем полнокровный сибарит, мирно спящий на уровне моря (впрочем, для уснувшего в атмосфере угарного газа это не утешение).

Угарный газ связывается с миоглобином (сродство в 50 раз выше, чем у кислорода), а также с иными внутриклеточными соединениями, содержащими в своей структуре двухвалентное железо (цитохром Р450, цитохромоксидаза, каталаза, пероксидаза, сукцинатдегидрогеназа, тирозиназа и т.д.) — возникает тканевая гипоксия. Внутриклеточная токсичность реализуется в основном при хроническом воздействии яда.

Отравление угарным газом не имеет патогномоничных симптомов. Головная боль отмечается у 84% пациентов. Остальные симптомы разнообразны и могут маскироваться даже под гастроэнтерит или ОРВИ. Ярко-красный цвет кожи характерен для тяжелых форм отравления и обусловлен цветом карбоксигемоглобина, в большой концентрации содержащегося в крови.

При обследовании пациента следует особое внимание уделить неврологическому статусу, в т.ч. выявлять признаки угнетения или спутанности сознания. Характерны нарушения памяти с дезориентацией относительно места и времени, зрительно-слуховыми галлюцинациями, болезненной интерпретацией окружающей действительности. Возможны нарушения координации движений, тонические судороги, спонтанные миофибрилляции.
Гипертермия центрального генеза — один из ранних признаков токсического отека головного мозга при остром отравлении угарным газом тяжелой степени.

Со стороны дыхательной системы — инспираторная одышка центрального характера. У пострадавших в пожаре следует прицельно выявлять термоингаляционную травму (кашель с копотью в мокроте, бронхорея, боль при дыхании, нарушение проходимости ВДП вследствие отека).

Необходимо исключить травмы.

В связи с риском аритмий и ишемии миокарда следует зарегистрировать 12-канальную ЭКГ и мониторировать ритм до передачи в стационар.

Симптоматика в зависимости от концентрации карбоксигемоглобина (норма 0,5%):
Даже нормальный уровень карбоксигемоглобина в крови после известной экспозиции не исключает диагноза отравления угарным газом.

Стандартные пульсоксиметры не отличают “окраску” карбоксигемоглобина от оксигемоглобина, поэтому будут показывать ложный нормальный результат сатурации. Современные портативные пульсоксиметры (CO-оксиметры) способны определять карбоксигемоглобин в крови, но показания их недостаточно точны и, по некоторым источникам, могут применяться только для скрининга при массовом поступлении пострадавших.

У пострадавших с длительной потерей сознания возможно развитие синдрома позиционного сдавления с последующей миоглобинурией и острой почечной недостаточностью. Также у таких пациентов возникают поражения кожи по типу буллезных дерматитов и некротических дерматомиозитов, также приводящих к миоглобинурии.

В качестве отдаленных (через 2 — 40 суток) последствий тяжелого отравления СО нередки поражения периферической нервной системы (плекситы, полиневриты), развитие астеновегетативного синдрома, токсической энцефалопатии, корсаковского амнестического синдрома.

Смертность от тяжелой степени отравления угарным газом даже при своевременном и качественном лечении достигает 30%.

Симптомы, схожие с острым отравлением, проявляются постепенно и могут исчезать на некоторое время в зависимости от экспозиции. Обычно хронические отравления развиваются при воздействии небольших концентраций угарного газа на протяжении длительного времени, что увеличивает риск развития неврологических осложнений. Симптомы неспецифичны и включают головную боль, изменения личности, расстройства внимания, деменцию, психозы, паркинсонизм, атаксию, периферическую нейропатию и потерю слуха.


  • Биомаркеры повреждения миокарда — в случае изменений на ЭКГ, кардиальных жалоб, анамнеза ИБС, возраста более 65 лет.
  • При умышленном отравлении исключить сочетанное воздействие других токсических веществ (медикаментов).
  • Концентрация HbCO в артериальной или венозной крови.
  • Исключить метгемоглобинемию, отравление этанолом (часто сопутствует), отравление цианидами (вероятно в дыму пожара).
  • Газовый состав артериальной крови. Метаболический ацидоз коррелирует с ранней смертностью.
  • Уровень лактат-ионов не коррелирует с тяжестью отравления СО, но может иметь значение при отравлении цианидами.
  • В клиническом анализе крови возможен умеренный лейкоцитоз, в биохимическом — гипергликемия. Креатинфосфокиназа повышена при рабдомиолизе (синдром позиционного сдавления).
  • Наличие белка и глюкозы в моче характерно для хронического отравления.
  • Анализ мочи на ХГЧ у женщин репродуктивного возраста.

Приоритетное направление лечения — скорейшее удаление СО из организма. Среднее время полураспада карбоксигемоглобина 320 минут при дыхании атмосферным воздухом, 80 минут на 100% кислороде при атмосферном давлении, и 23 минуты в барокамере на 100% кислороде при давлении в 3 атмосферы. Таким образом, как можно быстрее следует начать оксигенотерапию высоким потоком 100% кислорода через лицевую маску или эндотрахеальную трубку.

Оксигенотерапию следует продолжать до нормализации уровня карбоксигемоглобина в крови (менее 3%) и устранения симптоматики, обычно в течение 6 часов.

При угнетении сознания до комы показана интубация трахеи и проведение ВВЛ или ИВЛ.

Научные данные по применению гипербарической оксигенации (ГБО) при отравлении угарным газом противоречивы.

Западные исследования не выявили достоверного снижения летальности у пациентов с отравлением СО, проходивших ГБО, она остается на уровне 3%. Таким образом, ГБО рассматривается как средство профилактики стойких отдаленных неврологических последствий, нередких при отравлениях СО.

По Кокрейновскому обзору 2011 года, включавшему 6 рандомизированных клинических исследований (всего 1361 пациент), положительный эффект ГБО был доказан в двух исследованиях, четыре не выявили положительного эффекта. Эксперты Кокрейновской коллаборации заключили, что не могут поддержать применение ГБО при отравлении СО в связи с недостаточными научными доказательствами.

Клиническая политика Американской ассоциации врачей экстренной медицины (American College of Emergency Physicians, ACEP) 2008 года гласит:
1. ГБО — один из вариантов терапии при отравлении угарным газом, однако не следует включать ГБО в протоколы лечения в качестве обязательного компонента.
2. Не существует клинического критерия, который позволяет выделить подгруппу пациентов, которым ГБО с большей вероятностью будет полезна или причинит вред.

Отечественные руководства [4, 5], а также некоторые западные [6] рекомендуют ГБО в качестве эффективного и безопасного метода профилактики отдаленных неврологических последствий отравления угарным газом.
Исследовалось также сочетанное применение ГБО и терапевтической гипотермии. В четырех клинических случаях было показано прекрасное неврологическое восстановление после тяжелого отравления угарным газом.

Рандомизированное клиническое исследование на 103 пациентах выявило положительный эффект эритропоэтина: существенное снижение отдаленных неврологических последствий, увеличение доли пациентов с полным восстановлением, лучшие неврологические исходы по сравнению с контрольной группой.

Все отечественные источники рекомендуют применение специфического антидота угарного газа — ацизола — в дозе 1 мл 6% раствора внутримышечно как можно раньше при любой степени отравления. Нам не удалось найти клинических исследований ацизола, однако он широко применяется в российской токсикологической практике. Упоминаний об ацизоле в зарубежных руководствах нет. Допускается профилактический прием ацизола пожарными и спасателями перед за 30 — 40 минут пред входом в зону задымления (загазованности) в дозе 120 мг, повторно можно через 1,5 — 2 часа.

Угарный газ токсичен для плода. Уровень карбоксигемоглобина в крови плода выше, чем в крови матери. Время элиминации карбоксигемоглобина из фетальной крови выше, чем из материнской. Возможна гибель плода либо неврологические нарушения у ребенка в результате отравления угарным газом средней или тяжелой степени. Некоторые эксперты рекомендуют применение ГБО у беременных с уровнем карбоксигемоглобина выше 15% либо при выявлении отклонений в витальных показателях плода.
Многочисленные исследования показали, что отравление угарным газом у беременных, не приведшее к нарушению сознания, не ухудшает прогноз по срокам беременности и последующему развитию детей. Говоря проще, риск для плода существует только при тяжелом отравлении матери угарным газом.

Остановка кровообращения
В исследовании 18 клинических случаев остановки кровообращения в результате токсического действия угарного газа с успешной реанимацией ни один пациент не дожил до выписки из стационара, несмотря на полноценное лечение, включая ГБО.

При отравлении угарным газом, связанным с неявными причинами (неисправность газового и отопительного оборудования), пострадавшие и очевидцы могут не осознавать причин ухудшения самочувствия, поэтому вам поступит вызов на “без сознания”, “внезапное заболевание” и т.п. Опасность угарного газа для медицинских работников усугубляется отсутствием ярких, однозначных симптомов отравления.

Вас должно насторожить появление сходных симптомов у двух и более лиц на вызове. В таком случае сразу обеспечьте свою безопасность: прицельно расспросите о возможных источниках отравления. При малейшем подозрении на воздействие опасных веществ покиньте опасное место вместе с пострадавшими и сообщите диспетчеру о ситуации на вызове с целью организации реагирования пожарных (спасателей). Выясните у пострадавших, кто может оставаться в загазованном помещении. Организуйте проверку соседних квартир (помещений), куда может проникнуть газ.

Не всегда есть возможность обеспечить быструю и безопасную эвакуацию пострадавших из загазованного помещения, в таком случае необходимо обеспечить сквозной поток воздуха, открыв окна и/или двери, выходящие на противоположные стороны здания (на лестничную клетку).

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции