Воздействие радиации на вирусы

ВОЗДЕЙСТВИЕ РАДИАЦИИ НА ЖИВОЙ ОРГАНИЗМ.
РАДИОЭКОЛОГИЯ



Королев Владимир Геннадьевич,
доктор биологических наук

При воздействии радиации на любой живой организм главной мишенью ее воздействия является генетический материал клетки или вируса. При этом чувствительность этой мишени превышает чувствительность других биологических мишеней (белков, мембран. надмолекулярных структур в десятки раз). Причиной радиационной гибели многоклеточных организмов является гибель фракции наиболее чувствительных и незаменимых для жизнедеятельности организма клеток, которые, в свою очередь, гибнут из-за поражения их генетического материала.

Генетический материал всех клеток и большинства вирусов представлен молекулами ДНК. Огромные полимерные нити ДНК (в клетках человека суммарная длина 46 нитей ДНК достигает 2 м) имеют строго определенную первичную структуру. которая должна поддерживаться в неизменном виде в течение многих поколений. Однако это условие при физиологических температурах по чисто термодинамическим причинам не может быть выполнено. Например, в течение часа в ДНК каждой клетки человека возникает несколько десятков тысяч повреждений, которые, как правило, несовместимы с жизнеспособностью клетки. Частота различных типов повреждений коррелирует с прочностью химических связей, разрыв которых является причиной их возникновения.

При пролете ионизирующей частицы через объем клетки она передает часть своей кинетической энергии электронам, входящим в атомные и молекулярные образования. Это приводит к возбуждению или ионизации электронных оболочек молекул среды. Необходимо отметить, что ионизация молекул в биологических тканях мгновенно нейтрализуется за счет высокой электропроводимости среды. В результате в ионизованной молекуле выделяется энергия, равная максимальной энергии возбуждения ее валентных электронов. Возбуждение валентных электронов является причиной разрыва химических связей и повреждения нативной (исходной) структуры биологических молекул. Однако точно такие же реакции деструкции протекают спонтанно за счет флуктуации тепловой энергии в нормально функционирующих клетках.

Таким образом, спектр первичных повреждений, индуцированных радиацией, практически не отличим от такового, возникающего за счет естественных причин. Однако, в отличие от спонтанных повреждений, которые распределены равномерно по всем молекулам среды, радиационные повреждения распределены неравномерно вдоль трека ионизирующей частицы, что является чрезвычайно важным обстоятельством на биологической стадии развития поражения.

Для поддержания нативного состояния первичной структуры генетического материала клетки всех организмов имеют мощные специализированные системы ремонта (репарации) повреждений своего генетического материала. Эти системы за время, разделяющее два клеточных деления, способны репарировать сотни тысяч повреждений в их ДНК. При этом с небольшой вероятностью репарация может пройти с ошибкой, причиной чего может быть наследуемое изменение первичной структуры ДНК, т.е. мутация.

Таким образом, радиация не вносит в спектр естественных повреждений ДНК существенных изменений, но изменяет количество последних. В связи с этим биологические последствия радиационного воздействия можно зафиксировать только в том случае, когда количество созданных радиацией повреждений будет сравнимо с количеством естественно возникающих повреждений ДНК. Этот паритет для человека наступает при дозах порядка десятков рентген.

В настоящее время достигнуты значительные успехи в решении проблемы использования атомной энергии в народном хозяйстве. Основным энергопроизводящим узлом атомных устройств, использующих внутриядерную энергию, является реактор. В активной зоне реактора созданы необходимые условия для возникновения и поддержания на определенном уровне цепной реакции деления тяжелых ядер. Высвобождающаяся при этом тепловая энергия аккумулируется теплоносителем и выносится за пределы активной зоны.

Одной из важнейших задач обеспечения радиационной безопасности на ядерных реакторах является надежное удержание образуемых при их работе огромных количеств радиоактивных веществ. Удержание продуктов деления внутри реактора осуществляется применением системы трех барьеров (оболочка твэла, первый контур, внешняя защита реактора).

До настоящего времени произошли три серьезные аварии на ядерных реакторах. Эти аварии произошли в Уиндскейле (Англия) в 1957 г., в США на станции Три Майл и в СССР на Чернобыльской станции.

В результате аварии в Уиндскейле, произошедшей из-за пожара на реакторе, в окружающую среду было выброшено значительное количество радионуклидов. Никаких мер по оповещению людей и их эвакуации из зоны загрязнения не производилось.

Авария на станции Три Майл возникла за счет слабой выучки персонала, обслуживающего реактор. Из-за резкого перегрева реакторной зоны в помещение реакторного зала было выброшено большое количество радионуклидов. В окружающую среду вынос радиоактивности был относительно небольшим. Однако была объявлена эвакуация населения из восьмимильной зоны вокруг станции. Это мероприятие привело к 52 смертельным случаям среди населения в результате сердечных приступов и автомобильных катастроф во время панического бегства населения.

Авария на Чернобыльской станции не имеет аналогов по своим последствиям для населения и окружающей среды. Она возникла, как и авария на американской станции, по вине обслуживающего персонала.

В результате этой аварии в окружающую среду было выброшено несколько миллионов кюри радиоактивных веществ (в десятки раз больше, чем в аварии на английском реакторе).

Результатом аварии чернобыльского реактора стало глобальное загрязнение среды радиоактивными веществами. В первые дни после аварии особую опасность представлял радиоактивный йод-131. Этот легколетучий радиоактивный изотоп в больших количествах поступал в природную среду и, будучи биологически активным, быстро включился в биологический кругооборот. Так как этот радионуклид представлял наибольшую опасность, в начальный период после аварии были предприняты меры борьбы с поступлением его в организм человека. Для этих целей использовался хорошо апробированный метод защиты с использованием нерадиоактивного йода. Однако из-за неподготовленности населения к сложившейся ситуации были нередки случаи отравления большими дозами нерадиоактивного йода вследствие его неумеренного потребления.

Дозиметрический контроль населения, эвакуированного из 30 км зоны, выявил большой процент людей (особенно детей) с высоким содержанием радиоактивного йода в щитовидной железе. Загрязнение другими радионуклидами было значительно меньше значимым и опасным для людей.

Как среагировала биосфера на мощное радиоактивное заражение вокруг аварийного реактора? Наиболее сильно пострадала сосновая роща, на которую в первые дни аварии выпало основное количество выброшенной радиоактивности. На площади нескольких десятков гектаров сосновый лес к осени погиб (рыжий лес). На расстоянии порядка км от реактора лес сохранился, хотя много деревьев погибло и наблюдались частые соматические изменения на ветвях сосен (удлиненные или укороченные иглы, измененная кустистость веток и т.д.). В значительно меньшей степени пострадали лиственные и травянистые растения. Среди животных удалось провести исследование динамики численности популяции грызунов. В течение летнего периода даже в максимально зараженной зоне наблюдалась хотя и уменьшенная по численности, но достаточно большая популяция мышей. В средних по загрязненности районах численность мышей на единицу площади не отличалась от контрольных участков. После зимней спячки на сильно загрязненной территории все мыши погибли.

На участках со средней загрязненностью выжил заметный процент зимовавших животных, и, наконец, на участках с низким загрязнением изменения численности популяции мышей по сравнению с контролем не отмечено. В течение летнего периода вся территория, включая максимально зараженные территории, была заселена животными.

Крупные животные (лисы, зайцы, одичавшие собаки) начали быстро размножаться на зараженной территории из-за отсутствия человека и благодаря большому количеству кормов в виде мелкого домашнего скота и птицы и неубранным сельхозугодьям. Культурные растения в течение первых трех лет после аварии были практически полностью вытеснены с полей сорняками. При этом наблюдалось чередование различных видов сорняков в течение этого периода.

Аннотация научной статьи по прочим технологиям, автор научной работы — Дияковская Анастасия Владимировна, Телекова Линара Растямовна

Статья посвящена воздействию радиации на человека и окружающую среду . В ней описывается, путь влияния радиоактивных веществ, их распространение в организме, депонирование, влияние на органы.

Похожие темы научных работ по прочим технологиям , автор научной работы — Дияковская Анастасия Владимировна, Телекова Линара Растямовна

ВЛИЯНИЕ РАДИАЦИИ НА ЧЕЛОВЕКА И ОКРУЖАЮЩУЮ

Дияковская А.В.1, Телекова Л.Р.2

'Дияковская Анастасия Владимировна - студент;

2Телекова Линара Растямовна - студент, кафедра химической технологии, Астраханский государственный технический университет, г. Астрахань

Аннотация: статья посвящена воздействию радиации на человека и окружающую среду. В ней описывается, путь влияния радиоактивных веществ, их распространение в организме, депонирование, влияние на органы. Ключевые слова: радиация, окружающая среда, загрязнение.

В современном мире человек имеет большое влияние на окружающую среду. Данное влияние многообразно, но его следствия остаются неизменными: истощение недр, уменьшение биологического разнообразия, загрязнение среды, и вследствие этого падает качество жизни человека. И как это ни странно, радиоактивное загрязнение занимает особую роль в этом вопросе. В двадцать первом веке особенно активно развивается атомная энергетика, поэтому важно знать, как воздействует радиация на человека и окружающую среду, как от нее защититься и для кого радиация наиболее опасна? Это только некоторые важные вопросы, которые интересуют людей в это время.

Естественная радиоактивность была всегда, от нее нельзя никуда деться. Люди, как и все на Земле, подвергался влиянию природной радиоактивности, через космические лучи, радиоактивные вещества, находящиеся в земле, пище и воздухе. Человек тоже немного радиоактивен - в состав тканей организма входят радионуклиды К-40 и ЯЪ-87(основные источники радиации), и от них нельзя избавиться[2].

Существует и искусственная радиоактивность. Она образовывается радионуклидами, синтезированными человеком, и распространяется исключительно силами людей. Естественная радиация не так опасна как искусственная. Связано это с тем, что естественная радиация составляет небольшую часть, максимальную дозу радиации человек приобретает от техногенных источников.

Мы поставили перед собой задачу изучить материалы по воздействию радиации на окружающую среду, в том числе, и на живые организмы, так как в последнее время окружающая среда довольно интенсивно загрязнена радиоактивными веществами, при этом усиливается радиационный фон, создаваемый Солнцем.

Актуальность выбранной темы обусловлена тем, что Астраханская область, как и весь Прикаспийский регион, относится к зоне, подверженной радиационному загрязнению природного и антропогенного характера. Вот самые существенные причины загрязнения: естественный радиационный фон, радиоактивные осадки, образующихся после проведения ядерных испытаний, радиационная нагрузка от промышленных предприятий и военных объектов, в которых используется ионизирующее излучение в практической деятельности. В Астраханской области находится более 50 объектов, применяющих ионизирующее излучение; реализовывается немалый объём буровых работ, соединенных с разведкой и добычей нефти и газа.

Ионизирующее излучение неодинаково разрушают ткани, и у каждого излучения свой метод разрушения. Поэтому, каждой дозе полученного облучения отвечает

различная биологическая эффективность излучения. По этой причине вводят понятие сравнительной биологической эффективности излучения, которая измеряется с помощью коэффициента качества, с целью отображения влияния излучения на живые организмы [2]. Для рентгеновского, гамма- и бета-излучений коэффициент качества равен 1. Для альфа-излучения и обломков ядер коэффициент качества 10-20, нейтроны — 3-20, в зависимости от энергии. Для заряженных частиц биологическая эффективность прямо связана с линейной передачей энергииданного типа частиц (средняя потеря энергии частицей на единицу длины пробега частицы в ткани).

Интересные результаты получили научные работники, изучая воздействие радиации на растения и животных. Итоги пробного облучения демонстрируют, что наиболее восприимчивы к воздействию радиации млекопитающие, за ними идут птицы, рыбы, пресмыкающиеся и насекомые. У растений чувствительность к излучению меняется в достаточно больших пределах, иногда совпадая с показателями животных. Достаточно устойчивы к влиянию больших доз радиации такие организмы, как бактерии, вирусы, мхи, лишайники, водоросли. Влияние дозы радиации на организм называют облучением. В результате этого энергия радиации передается клеткам организма, после чего могут образоваться свободноплавающие радикалы, мешающие работе клетки. Сильное облучение вызывает нарушения обмена веществ, инфекционные осложнения, лейкоз и злокачественные опухоли, лучевое бесплодие, лучевую катаракту, лучевой ожог, лучевую болезнь.

Для того чтобы понять, как радиация воздействует на организм человека, необходимо знать путь влияния радиоактивных веществ, их распространение в организме, депонирование, влияние на органы. Радиоактивные вещества по-разному попадают в организм человека. Как правило, это зависит от химических свойств элемента.

Радиоактивные изотопы могут попадать в организм вместе с пищей или водой, через воздух [1]. Через органы пищеварения они распространяются по всему организму. Во время дыхания радиоактивные частицы могут попасть в легкие. Они и облучают легкие, и начинают также распространяться по организму. Изотопы, находящиеся на поверхности земли и внутри нее, также облучают организм. Такие изотопы переносятся атмосферными осадками. Но внутреннее облучение значительно опаснее внешнего, и связано это с тем, что верхняя часть кожи, одежда являются препятствиями для проникновения радиации внутрь организма [3].

У каждой ткани и органа имеется своя чувствительность к облучению. Например, при одинаковой дозе облучения возникновение заболевания легких наиболее допустимо, чем щитовидной железы, а облучение гланд опасно из-за вероятности генетических повреждений. Поэтому дозы облучения органов и тканей также следует учитывать с разными коэффициентами, так называемыми коэффициентами радиационного риска для различных органов и тканей. Умножив эквивалентные дозы на соответствующие коэффициенты и просуммировав их по всем органам и тканям, получим эффективную эквивалентную дозу, отображающую суммарный эффект облучения для организма; она также измеряется в Зивертах или бэрах. Эти понятия описывают индивидуальные дозы облучения.

Радиация оказывает значительное влияние на детей. Это связано с тем, что в процессе взросления клетки энергично делятся, а ионизирующее излучение приумножает шанс появления мутаций, которые не исполнять роль угрозы для организма или наоборот — усугубляет его жизнедеятельность. Собственно поэтому беременным женщинам нужно опасаться радиации во что бы то ни стало, так как на стадии внутриутробного развития клетки подрастающего организма особенно восприимчивы к облучению, поэтому даже небольшое и кратковременное воздействие радиации может крайне негативно сказаться на развитии эмбриона. Облучение гораздо слабее действует на организмы взрослых людей, и связано это с тем, что деление клеток у них замедляется или приостанавливается. Напомним, что наибольший ущерб причиняют выбросы химической и сталелитейной

промышленностей, не говоря уже о том, что науке пока неизвестен механизм злокачественного перерождения тканей от внешних воздействий.

Как предохраниться от радиации? Сегодня есть много вариантов защиты от радиации. Но в первую очередь это время, расстояние и вещество. Надо знать что, чем меньше вы провели времени рядом с источником радиации, тем меньше полученная доза. Расстоянием из-за того, что активность излучения уменьшается с удалением от источника (пропорционально квадрату расстояния). Если на расстоянии 1 метр от источника радиации дозиметр фиксирует 1000 мкР/час, то уже на расстоянии 5 метров - около 40 мкР/час. И веществом — нужно расположиться так, чтобы между источником и вами оказалось как можно больше плотного вещества. Именно поэтому часто в качестве защиты от радиации используются материалы из свинца (свинцовые стены, свинцовые листы). В помещении может накапливаться радиоактивый радон, поэтому вентиляция позволяет снизить дозу получаемого облучения. Также, при постройке жилья можно применять радиационно безвредные стройматериалы, которые сейчас на рынке чрезвычайно популярны.

1. Бабаев Н. и др. Ядерная энергетика, человек и окружающая среда; под ред. акад. А. Александрова / Н. Бабаев. 2-е изд., перераб. и доп. М.: Энергоатомиздат, 1998. 235 с.

3. Кузин А.М. Природный радиоактивный фон и его значение для биосферы Земли. / А.М. Кузин. М.: Наука, 1991. 116 с.


Неправда.

Радиация имеет естественное происхождение. Например, солнечное излучение тоже порождает радиационный фон. В южных странах, где очень яркое и горячее солнце, радиационный естественный фон достаточно высок. Он, конечно, не губителен для человека, но он выше, чем в северных странах.

Помимо этого, есть и космическое излучение, которое от далеких космических объектов доходит до нашей атмосферы.


Ведь что такое радиация? Высокоэнергичные частицы бомбардируют атомы в атмосфере и ионизуют их. В человеческом теле частицы тоже ионизуют атомы, выбивают электроны с оболочек, могут разрушать молекулы и так далее. Ядро какого-то атома нестабильно, оно может излучать те или иные частицы и переходить в стабильное состояние. Может излучать альфа-излучение, может излучать бета-излучение, может излучать гамма-излучение. Альфа — это заряженные ядра гелия, бета — это электроны, гамма — это электромагнитное излучение. Это и есть радиация.

Частицы летают везде и всегда. То есть существует естественный радиационный фон. Когда-то он становится жестче за счет более яркого солнца или приходящих излучений от звезд, когда-то меньше. Бывает, что человек повышает радиационный фон, построив реактор или ускоритель.


доктор физико-математических наук, ведущий научный сотрудник и профессор МФТИ и ИТЭФ

Правда лишь отчасти.

При объяснении этого убеждения нужно разобрать два момента. Первый — то, что есть несколько видов радиации, связанных с разными типами испускающихся частиц.

Есть альфа-излучение — это ядра атомов гелия-4 (He-4). Они очень эффективно ионизируют все вокруг. Но их останавливает и просто ваша одежда. То есть если перед вами источник альфа-излучения и вы в одежде, в очках, то ничего плохого вам не будет.

Есть бета-излучение — это электроны. У электронов ионизирующая способность ниже, но зато это более глубоко проникающее излучение. Однако его можно остановить, например, небольшим слоем алюминиевой фольги.


И наконец, есть гамма-излучение, которое обладает, если сравнить при одинаковой интенсивности, наименьшей ионизирующей способностью, но оно обладает лучшими проникающими способностями и поэтому представляет наибольшую опасность. То есть в какой бы вы защитный костюм ни закутались перед гамма-источником, вы все равно получите дозу радиации. Именно защита от гамма-излучения ассоциируется со свинцовыми погребами, бункерами и так далее.

При одинаковой толщине слой свинца будет немного эффективнее, чем такой же слой, например, бетона или спрессованной почвы. Свинец не волшебный материал. Важный параметр — это плотность, а у свинца она высокая. Именно из-за плотности свинец действительно часто использовался в защитных целях в середине XX века, в начале ядерной эпохи. Но свинец обладает определенной токсичностью, поэтому сегодня для тех же целей предпочитают, например, просто более толстые слои бетона.


кандидат химических наук, младший научный сотрудник химического факультета МГУ

Неправда.


кандидат медицинских наук, кардиолог, Советник Генерального директора Фонда Международного Медицинского Кластера

Правда лишь отчасти.

Совершенно очевидно, откуда взялось это представление. В 1920–1930-е годы, когда был пик публичного интереса к радиоактивным материалам в различных бытовых приборах, лекарствах и прочем, краску, в которую включался радий, использовали для стрелок часов и окраски цифр. Чаще всего эта краска была на основе сульфида цинка в смеси с медью. Примеси радия, которые испускали радиоактивное излучение, взаимодействовали с краской, так что она начинала светиться зеленым.


Существенное число тех часов и декоративных предметов, которые дошли до нас, продолжали светиться зеленым, потому что оставались радиоактивными. Они были достаточно широко распространены, особенно в США и Европе.

В целом феномен радиолюминесценции, во-первых, не настолько распространен, во-вторых, люминесценция бывает и совершенно другой природы. Биолюминесценция — это частный случай люминесценции, как и радиолюминесценция. Светящиеся в темноте растения или светлячки — это люминесценция, которая никак не связана с радиацией.


кандидат химических наук, младший научный сотрудник химического факультета МГУ

Правда.


кандидат медицинских наук, кардиолог, Советник Генерального директора Фонда Международного Медицинского Кластера

Поскольку радиочувствительность разных видов растений и животных существенно различна, то облучение природных биоценозов приводит к значительным сдвигам в структуре сообществ: одни виды заменяются другими, меняются межвидовые и внутривидовые отношения. Меняется также устойчивость сообщества организмов по отношению к внешним условиям (тепло, свет, влага).

Биоценозисторически сложившаяся совокупность животных, растений, грибов и микроорганизмов, населяющих относительно однородное жизненное пространство (определённый участок суши или акватории), и связанных между собой окружающей их средой.

В ряде регионов живые организмы обитают в условиях увеличенного природного радиационного фона. В таких регионах наблюдается большее число генетических нарушений, но такие популяции более устойчивы к радиационной нагрузке. Диапазон устойчивости к радиации в живой природе необычайно широк. Так, у насекомых доза облучения, вызывающая юо% -ный летательный исход находится в пределах сотен Зв. Наиболее чувствительны к радиационному излучению эмбрионы, затем идут личинки и куколки. Облучение насекомых вызывает снижение способности самок откладывать яйца, приводит к замедлению развития и роста, нарушению процессов линьки. Доза 10*40 Зв вызовет нарушения поведения насекомых, препятствует их нормальному размножению и жизни. Радиочувствительность большинства бактерий *1000+3000 Гр, а бактерий Micrococcus radiodurens, обитающих в каналах ядерных реакторов, ю 6 Гр.

Доза (Зв), при которой погибает 50% особей на 30 день (Г>50), для вирусов составляет 4500+7000, для бактерий типа кишечной палочки 50+100, для водорослей 180, для высших растений 10+1500, для беспозвоночных (амебы) юоо, для гидр 50, моллюсков 120+200, для личинок насекомых 100+250, для позвоночных: змеи 80+200, лягушки 5+10, голуби 25+30, кролики - 6, куры 10+15, рыбы 5+20, грызуны 5+9, собаки 2+4, обезьяны 2+5,5, человек -5. Наиболее устойчивы к действию ионизирующих излучений микроорганизмы — дозы, способные вызвать их гибель, составляют сотни и тысячи Гр. Для беспозвоночных животных летальные доз на порядок ниже; для позвоночных они составляют десятки Гр, а наиболее радиочувствительны млекопитающие: по мере усложнения биологической организации объектов их устойчивость к радиации снижается. Амфибии, рептилии, птицы более устойчивы к ионизирующим излучениям, чем млекопитающие. К счастью, у млекопитающих хорошо развиты восстановительные процессы. Степень устойчивости к ионизирующей радиации сильно колеблется в пределах одного вида. Эффект зависит от режима облучения (одноразовое, многоразовое, хроническое), возраста и физиологического состояния животных. Обычно млекопитающие, облучённые в дозе 5+ю Зв, в среднем живут от нескольких дней до нескольких недель.

Наиболее чувствительны к облучению быстро делящиеся клетки (этим объясняется снижение чувствительности с возрастом). Поэтому любой компонент системы (будь то часть организма, одна особь или популяция), претерпевающий быстрый рост оказывается восприимчивым к облучению независимо от своего систематического положения.

У высших растений чувствительность к ионизирующему излучению пропорциональна размеру клеточного ядра, т.е. объёму хромосом и содержанию ДНК. При изменении объёма хромосом их чувствительность к облучению изменяется на три порядка. Растения с большим объёмом хромосом гибнут при дозе лучения, вызывающим 50%-ю смертность.__

Доза внешнего облучения на организм животных формируется за счёт воздействия у-излучения; а- и p-излучения не вносят существенного вклада в общее внешнее облучение животных, так как они поглощаются воздухом или эпидермисом кожи. Радиационное поражение кожных покровов р-частицами возможно при содержании скота на открытой местности в момент выпадения радиоактивных осадков. Возможно однократное, фракционное и непрерывное длительное воздействие ионизирующего излучения на организм животных. Общее облучение, при котором радиациониому воздействию подвергается всё тело, имеет место при обитании животных на территории, загрязнённой радиоактивными веществами.

Влияние низких доз радиации на численность популяции птиц изучено на примере размножения воробьёв в Калифорнии, где после аварии ЧАЭС было обнаружено снижение численности большинства видов. При этом снижение численности птиц коснулось только тех районов, где во время прохождения над США чернобыльских облаков выпадали дожди. Снижение численности затронуло только те виды птиц, которые питались листогрызущими насекомыми и семенами травянистых растений, и не затронуло дятлов и ласточек. У птиц, питающихся исключительно листогрызущими гусеницами, отмечена юо% гибель потомства, а у птиц, питающихся как листогрызущими, так и другими насекомыми, погибло -65% потомства, у зерноядных птиц погибло -50% молодняка. На близрасполо- женных горных территориях, где радиоактивных дождей не было, численность птиц в 1996 г. не отличалась от средних многолетних величин.

Накопление радионуклидов в водных экосистемах выше, чем в наземных, т.к. потоки питательных веществ в водной среде более интенсивны. Ионизирующие излучения оказывают разрушающее действие на рыб. Такое действие проявляется на всех стадиях развития: на оплодотворенной и развивающейся икре, на личинках, мальках и взрослых рыбах, на производителях и на их половых продуктах - икре и спермиях. В зависимости от дозы облучения наблюдаются тяжёлые поражения половых желез, кроветворных органов, дефекты в развитии и уродства, отставание в росте и т. д. Ещё более чем рыбы, чувствительны к радиации кормовые объекты рыб - планктонные и бентосные беспозвоночные животные. Смертельные дозы для рыб значительно выше, чем для млекопитающих, и только развивающаяся икра чрезвычайно чувствительна.

Ионизирующие излучения оказывают угнетающее и разрушающее действие на рыб. Такое разрушающее действие проявляется на всех стадиях развития: на оплодотворённой и развивающейся икре, на личинках, мальках и взрослых рыбах, на производителях и на их половых продуктах - икре и спермиях. В потомстве облучённых производителей возможны генетические поражения. В зависимости от дозы облучения наблюдаются тяжёлые поражения половых желёз, крови, кроветворных органов, дефекты в развитии и уродства у эмбрионов и личинок, отставание в росте и т. д. Под действием облучения у рыб отмечаются аноксия, резко выраженная лейкопения, депрессия роста, общая мышечная слабость, снижение реакции на внешнее раздражение и в конечном итоге - высокая смертность.

Смертельной для рыб является доза 35-^40 Зв. Первые изменения в организме появляются при действии дозы в 6 Зв. Повышение дозы до 14 Зв ведёт к развитию лейкопении и соматическим нарушениям. Личинки рыб мог>т жить некоторое время после действия на них 20^-40 Зв. Характерной особенностью действия облучения является наличие скрытого периода, в течение которого в организме нельзя обнаружить каких-либо изменений. Он длится у рыб 1-7-3 недели, а затем появляются поражения. В дальнейшем наступает период, когда рыбы гибнут или выздоравливают.

Под действием 9°Sr проявляются морфологические, a 137 Cs - генетико-биохимические аномалии. Наиболее чувствительны к его действию 9°Sr планктонные организмы, затем рыбы и менее всего - водные растения.

Безвредная концентрация 9°Sr в воде для наиболее чувствительных организмов *5*10‘5 Ки/л. Короткоживущие радиоизотопы менее опасны при загрязнении ими рыб, чем долгоживущие, которые являются высоко орга- нотропными, так что рыбы, загрязнённые ими, могут стать опасными источниками заражения других животных, в том числе человека.

Радиорезистентность растений на 1*2 порядка выше по сравнению с млекопитающими. Степень поражения тканей растения зависит от генетических, физиологических факторов и условий внешней среды. К генетическим факторам относятся видовые и сортовые особенности растения, которые определяются цитогенетическими показателями. Цитогенетические характеристики — размеры ядер, число и строение хромосом — определяют радиоустойчивость растений, зависящей от объёма клеточных ядер. Радио- чувствительность сельскохозяйственных культур определяется по снижению урожайности на 50% при облучении от всходов до цветения. Физиологические факторы — фазы и стадии развития растений в момент начала облучения, скорость роста и обмен веществ растительного организма; факторы внешней среды — погодно-климатические условия в период облучения, условия минерального питания растений и др.

Табл. 6. Радиочувствительность различных растений при хрониче- ск ом облучении.__

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции