Вирус что такое капсомеры

тбъдем VII . пуопчщ чйтхупмпзйй

нПТЖПМПЗЙС Й НЕФПДЩ ЙУУМЕДПЧБОЙС ЧЙТХУПЧ

чЙТХУ - ОЕЛМЕФПЮОБС ЖПТНБ ЦЙЪОЙ, ПВМБДБАЭБС ЗЕОПНПН (тол ЙМЙ дол), ОП МЙЫЕООБС УПВУФЧЕООПЗП УЙОФЕЪЙТХАЭЕЗП БРРБТБФБ Й, РПЬФПНХ, УРПУПВОБС Л ЧПУРТПЙЪЧЕДЕОЙА МЙЫШ Ч ЛМЕФЛБИ ВПМЕЕ ЧЩУПЛППТЗБОЙЪПЧБООЩИ УХЭЕУФЧ.
рП ИЙНЙЮЕУЛПНХ УПУФБЧХ Й РПФЕОГЙБМШОПК РБФПЗЕООПУФЙ ЧЙТХУЩ ОБЪЩЧБАФ ЙОЖЕЛГЙПООЩНЙ ОХЛМЕПРТПФЕЙДБНЙ. дМС ЧЙТХУПЧ ИБТБЛФЕТОЩ ДЧЕ ЖПТНЩ УХЭЕУФЧПЧБОЙС: ЧОЕЛМЕФПЮОБС (РПЛПСЭБСУС) Й ЧОХФТЙЛМЕФПЮОБС (ТЕРТПДХГЙТХАЭБСУС, ЧЕЗЕФБФЙЧОБС). чОЕЛМЕФПЮОБС ЖПТНБ ОБЪЩЧБЕФУС ЧЙТХУОПК ЮБУФЙГЕК ЙМЙ ЧЙТЙПОПН. чЙТЙПОЩ УПУФПСФ ЙЪ ОХЛМЕЙОПЧПК ЛЙУМПФЩ, ПЛТХЦЕООПК УОБТХЦЙ ВЕМЛПЧПК ПВПМПЮЛПК - ЛБРУЙДПН (ПФ МБФ. У apsa - ЖХФМСТ). лБРУЙД ЧНЕУФЕ У ЪБЛМАЮЕООПК Ч ОЕН ОХЛМЕЙОПЧПК ЛЙУМПФПК ОБЪЩЧБАФ ОХЛМЕПЛБРУЙДПН. нПТЖПМПЗЙЮЕУЛЙНЙ УХВЯЕДЙОЙГБНЙ ЛБРУЙДБ, ЧЙДЙНЩНЙ Ч ЬМЕЛФТПООЩК НЙЛТПУЛПР, СЧМСАФУС ЛБРУПНЕТЩ - ВЕМЛПЧЩЕ УХВЯЕДЙОЙГЩ, УПУФПСЭЙЕ ЙЪ ПДОПК ЙМЙ ОЕУЛПМШЛЙИ НПМЕЛХМ ВЕМЛБ. уХЭЕУФЧХАФ ФТЙ ФЙРБ УФТПЕОЙС ЛБРУЙДПЧ, ПУОПЧБООЩИ ОБ ТБУРПМПЦЕОЙЙ НПТЖПМПЗЙЮЕУЛЙИ УХВЯЕДЙОЙГ (ТЙУ. 1):

  • ЧЙТЙПОЩ УП УРЙТБМШОПК УЙННЕФТЙЕК;
  • ЧЙТЙПОЩ У ЛХВЙЮЕУЛПК (ЙЛПУБЬДТЙЮЕУЛПК) УЙННЕФТЙЕК;
  • ЧЙТЙПОЩ, ЙНЕАЭЙЕ УНЕЫБООЩК ФЙР УЙННЕФТЙЙ.

х РЕТЧПЗП ФЙРБ ЛБРУПНЕТЩ ТБУРПМПЦЕОЩ Ч ЧЙДЕ УРЙТБМЙ, ОХЛМЕЙОПЧБС ЛЙУМПФБ (РТЕЙНХЭЕУФЧЕООП тол) ФБЛЦЕ УЛТХЮЕОБ Ч ЧЙДЕ РТХЦЙОЩ, ТБУРПМБЗБСУШ НЕЦДХ ЧЙФЛБНЙ ВЕМЛПЧЩИ НПМЕЛХМ. х ЧЙТХУПЧ У ЛХВЙЮЕУЛПК УЙННЕФТЙЕК ЛБРУПНЕТЩ ТБУРПМПЦЕОЩ Ч ЧЙДЕ РТБЧЙМШОПЗП ЙЛПУБЬДТБ УП УЛТХЮЕООПК Ч ЛМХВПЛ ОЙФША дол ЙМЙ тол. йЛПУБЬДТ ЙНЕЕФ 20 ЗТБОЕК (ЛБЦДБС РТЕДУФБЧМСЕФ ТБЧОПУФПТПООЙК ФТЕХЗПМШОЙЛ), 12 ЧЕТЫЙО. пВЭЕЕ ЛПМЙЮЕУФЧП ЛБРУПНЕТПЧ (N) НПЦОП ПРТЕДЕМЙФШ РП ЖПТНХМЕ:

n - ЮЙУМП ЛБРУПНЕТПЧ ОБ ПДОПК УФПТПОЕ ЛБЦДПЗП ТБЧОПУФПТПООЕЗП ФТЕХЗПМШОЙЛБ, ЛПФПТПЕ Х ТБЪМЙЮОЩИ ЧЙТХУПЧ ЧБТШЙТХЕФ ПФ 2 ДП 6. фБЛ, БДЕОПЧЙТХУ УПДЕТЦЙФ 252, ЧЙТХУ ЗЕТРЕУБ - 162 ЛБРУПНЕТБ.
л ФТЕФШЕНХ ФЙРХ ПФОПУЙФУС ЧЙТХУ ПУРПЧБЛГЙОЩ. чЙТХУ ЙНЕЕФ ЧОЕЫОАА ПВПМПЮЛХ, УПУФПСЭХА ЙЪ ФТЕИ УМПЕЧ, РПД ПВПМПЮЛПК ТБУРПМПЦЕОЩ ДЧБ ВЕМЛПЧЩИ ФЕМБ, Ч ГЕОФТЕ ЧЙТЙПОБ ОБИПДЙФУС ОХЛМЕПЙД, Ч УПУФБЧ ЛПФПТПЗП ЧИПДЙФ дол Й ЧОХФТЕООЙК ВЕМПЛ.
рТПУФП ХУФТПЕООЩЕ ЧЙТХУЩ, ФБЛЙЕ ЛБЛ РЙЛПТОБ-, РБТЧПЧЙТХУЩ УПУФПСФ ЙЪ ОХЛМЕПЛБРУЙДБ, УМПЦОПХУФТПЕООЩЕ ЧЙТХУЩ ЙНЕАФ ЕЭЕ ДПРПМОЙФЕМШОХА ЧОЕЫОАА ПВПМПЮЛХ - УХРЕТЛБРУЙД ЙМЙ РЕРМПУ (РТПЙЪЧПДОПЕ НЕНВТБООЩИ УФТХЛФХТ ЛМЕФЛЙ-ИПЪСЙОБ). жПТНБ ФБЛЙИ ЧЙТЙПОПЧ РТЙВМЙЦБЕФУС Л УЖЕТЙЮЕУЛПК. уХРЕТЛБРУЙДОЩЕ ВЕМЛЙ ЖПТНЙТХАФ НПТЖПМПЗЙЮЕУЛЙЕ УХВЯЕДЙОЙГЩ (РЕРМПНЕТЩ), ЛПФПТЩЕ Ч ЬМЕЛФТПООПН НЙЛТПУЛПРЕ ЧЩЗМСДСФ Ч ЧЙДЕ ЫЙРПЧ (ФПЗБЧЙТХУ, ЛПТПОБЧЙТХУ, ПТФПНЙЛУПЧЙТХУ Й ДТ.). лБРУЙД Й УХРЕТЛБРУЙД ЪБЭЙЭБАФ ЧЙТЙПОЩ ПФ ЧПЪДЕКУФЧЙК ПЛТХЦБАЭЕК УТЕДЩ, ПВХУМПЧМЙЧБАФ ЙЪВЙТБФЕМШОПЕ ЧЪБЙНПДЕКУФЧЙЕ (БДУПТВГЙА) У ПРТЕДЕМЕООЩНЙ ЛМЕФЛБНЙ, Б ФБЛЦЕ БОФЙЗЕООЩЕ Й ЙННХОПЗЕООЩЕ УЧПКУФЧБ ЧЙТЙПОПЧ (ТЙУ. 1). тБЪНЕТЩ ЧЙТЙПОБ ЛПМЕВМАФУС ПФ 20-30 ОН (РЙЛПТОБ-, РБТЧПЧЙТХУЩ) ДП 150-250 ОН (ЗЕТРЕУ-, ТБВДПЧЙТХУЩ) Й ДБЦЕ 350-400 ОН (РПЛУЧЙТХУЩ).
лТПНЕ ПВЩЮОЩИ ЧЙТХУПЧ, ЙЪЧЕУФОЩ Й, ФБЛ ОБЪЩЧБЕНЩЕ, ОЕЛБОПОЙЮЕУЛЙЕ ЧЙТХУЩ: РТЙПОЩ Й ЧЙТПЙДЩ. рТЙПОЩ - ЬФП ВЕМЛПЧЩЕ ЙОЖЕЛГЙПООЩЕ ЮБУФЙГЩ, ЙНЕАЭЙЕ ЧЙД ЖЙВТЙММ ТБЪНЕТПН 10-20 И 200 ОН, ПОЙ ЧЩЪЩЧБАФ Х ЦЙЧПФОЩИ Й ЮЕМПЧЕЛБ ЬОГЕЖБМПРБФЙЙ Ч ХУМПЧЙСИ НЕДМЕООПК ЧЙТХУОПК ЙОЖЕЛГЙЙ (ВПМЕЪОШ лТЕКФГЖЕМШДБ -сЛПВЩ, ЛХТХ Й ДТ.). чЙТПЙДЩ - ЬФП ОЕВПМШЫЙЕ НПМЕЛХМЩ ЛПМШГЕЧПК, УХРЕТУРЙТБМЙЪПЧБООПК тол, ОЕ УПДЕТЦБЭЙЕ ВЕМЛБ Й ЧЩЪЩЧБАЭЙЕ ЪБВПМЕЧБОЙЕ ТБУФЕОЙК.

нЕФПДЩ ЙУУМЕДПЧБОЙС ЧЙТХУПЧ .

дМС ИБТБЛФЕТЙУФЙЛЙ ЧЙТХУОЩИ ЮБУФЙГ ЫЙТПЛП РТЙНЕОСАФ ЖЙЪЙЮЕУЛЙЕ Й ЖЙЪЙЛП-ИЙНЙЮЕУЛЙЕ НЕФПДЩ. рПМШЪХСУШ ЙНЙ, НПЦОП ПРТЕДЕМЙФШ ТБЪНЕТ, ЖПТНХ, ЛПЬЖЖЙГЙЕОФ УЕДЙНЕОФБГЙЙ, ЛПЬЖЖЙГЙЕОФ ДЙЖЖХЪЙЙ, РМПФОПУФШ Й НПМЕЛХМСТОЩК ЧЕУ ЛБЛ УБНПК ЧЙТХУОПК ЮБУФЙГЩ, ФБЛ Й ЕЕ ЛПНРПОЕОФПЧ.

тЙУ. 1. уФТПЕОЙЕ Й ПУОПЧОЩЕ ФЙРЩ УЙННЕФТЙЙ ЧЙТХУПЧ. б - ВЕЪПВПМПЮЕЮОЩК ЧЙТХУ У ЙЛБУБЬДТЙЮЕУЛЙН ФЙРПН УЙННЕФТЙЙ; в - ПВПМПЮЕЮОЩК ЧЙТХУ У ЙЛБУБЬДТЙЮЕУЛЙН ФЙРПН УЙННЕФТЙЙ; ч - ВЕЪПВПМПЮЕЮОЩК ЧЙТХУ УП УРЙТБМШОЩН ФЙРПН УЙННЕФТЙЙ; з - ПВПМПЮЕЮОЩК ЧЙТХУ УП УРЙТБМШОЩН ФЙРПН УЙННЕФТЙЙ. (нЕДЙГЙОУЛБС НЙЛТПВЙПМПЗЙС рПД ТЕДБЛГЙЕК рПЛТПЧУЛПЗП ч.й. Й рПЪДЕЕЧБ п.л., н., 1998.)

← Предыдущая глава Глава 1.6 Следующая глава →
Вирусы — неклеточные формы жизни


Ви́рус (от лат. virus — яд) — микроскопическая частица, состоящая из белков и нуклеиновых кислот и способная инфицировать клетки живых организмов. Вирусы являются облигатными паразитами — они не способны размножаться вне клетки. В настоящее время известны вирусы, размножающиеся в клетках растений, животных, грибов и бактерий (последних обычно называют бактериофагами). Обнаружен также вирус, поражающий другие вирусы (Вирусы тоже болеют вирусными заболеваниями).

Вирусы представляют собой молекулы нуклеиновых кислот (ДНК или РНК), заключённые в защитную белковую оболочку (капсид). Наличие капсида отличает вирусы от других инфекционных агентов, вироидов. Вирусы содержат только один тип нуклеиновой кислоты: либо ДНК, либо РНК. Ранее к вирусам также ошибочно относили прионы, однако впоследствии оказалось, что эти возбудители представляют собой особые белки и не содержат нуклеиновых кислот.




Роль вирусов в биосфере

Вирусы являются одной из самых распространённых форм существования органической материи на планете по численности: воды мирового океана содержат колоссальное количество бактериофагов (около 10 11 частиц на миллилитр воды), их общая численность в океане — около 4 х 10 30 , а численность вирусов (бактериофагов) в донных отложениях океана практически не зависит от глубины и всюду очень высока [1]. В океане обитают сотни тысяч видов (штаммов) вирусов, подавляющее большинство которых не описаны и тем более не изучены [2][3]. Вирусы играют важную роль в регуляции численности популяций животных.

Вирусные частицы (вирио́ны) представляют собой белковую капсулу — капсид, содержащую геном вируса, представленный одной или несколькими молекулами ДНК или РНК. Капсид построен из капсомеров — белковых комплексов, состоящих в свою очередь из протомеров. Нуклеиновая кислота в комплексе с белками обозначается термином нуклеокапсид. Некоторые вирусы имеют также внешнюю липидную оболочку. Размеры различных вирусов колеблются от 20 нм (пикорнавирусы) до 500 нм (мимивирусы). Вирионы часто имеют правильную геометрическую форму (икосаэдр, цилиндр). Такая структура капсида предусматривает идентичность связей между составляющими её белками, и, следовательно, может быть построена из стандартных белков одного или нескольких видов, что позволяет вирусу экономить место в геноме.

Фазы вирусной инфекции [ править ]

Условно процесс вирусного инфицирования в масштабах одной клетки можно разбить на несколько взаимоперекрывающихся этапов:

Классификация Балтимора и жизненные циклы вирусов [ править ]

Нобелевский лауреат, биолог Дэвид Балтимор, предложил свою схему классификации вирусов, основываясь на различиях в механизме продукции мРНК и связанных с этим особенностях жизненного цикла вирусов. .Эта система включает в себя семь основных групп:

  • (I) Вирусы, содержащие двуцепочечную ДНК и не имеющие РНК-стадии (например, герпесвирусы, поксвирусы, паповавирусы, мимивирус).
  • (II) Вирусы, содержащие двуцепочечную РНК (например, ротавирусы).
  • (III) Вирусы, содержащие одноцепочечную молекулу ДНК (например, парвовирусы).
  • (IV) Вирусы, содержащие одноцепочечную молекулу РНК положительной полярности (например, пикорнавирусы, флавивирусы).
  • (V) Вирусы, содержащие одноцепочечную молекулу РНК негативной или двойной полярности (например, ортомиксовирусы, филовирусы).
  • (VI) Вирусы, содержащие одноцепочечную молекулу РНК и имеющие в своем жизненном цикле стадию синтеза ДНК на матрице РНК, ретровирусы (например, ВИЧ).
  • (VII) Вирусы, содержащие двуцепочечную ДНК и имеющие в своем жизненном цикле стадию синтеза ДНК на матрице РНК, ретроидные вирусы (например, вирус гепатита B).

История изучения вирусов [ править ]

В 1901 г. было обнаружено первое вирусное заболевание человека — жёлтая лихорадка. Это открытие было сделано американским военным хирургом У. Ридом и его коллегами.

В 1911 г. Фрэнсис Раус доказал вирусную природу рака — саркомы Рауса (лишь в 1966 г, спустя 55 лет, ему была вручена за это открытие Нобелевская премия по физиологии и медицине).

В последующие годы изучение вирусов сыграло важнейшую роль в развитии эпидемиологии, иммунологии, молекулярной генетики и других разделов биологии. Так, эксперимент Херши-Чейз стал решающих доказательством роли ДНК в передаче наследственных свойств. В разные годы еще как минимум шесть Нобелевских премий по физиологии и медицине и три Нобелевских премии по химии были вручены за исследования, непосредственно связанные с изучением вирусов.

В 2002 году, в университете Нью-Йорка был создан первый синтетический вирус (вирус полиомиелита).


ВИРУСЫ (от лат. virus — яд), облигатные внутриклеточные паразиты, вызывающие инфекц. заболевания человека, позвоночных животных, членистоногих, гельминтов, бактерий, простейших, плесневых грибов, растений. В., поражающие бактерии, наз. бактериофагами . В. являются неклеточными формами жизни, обладающими собственным геномом и способными к воспроизведению лишь в клетках более высокоорганизованных организмов. Для В. характерны две формы существования; внеклеточная, или покоящаяся (вирионы, вироспоры, вирусная частица), и внутриклеточная, или размножающаяся, репродуцирующаяся (комплекс вирус — клетка”). Связь между этими формами существования В. осуществляется через нуклеиновую к-ту вириона (носитель генетич. информации), к-рая индуцирует в заражённой [зараженной] клетке вирусоспецифич. синтезы и образование дочерних вирионов. В.— паразиты на генетич. уровне, т. к. их взаимодействие с клеткой — это прежде всего взаимодействие вирусного и клеточного геномов, результатом чего может быть либо острая вирусная инфекция, иногда с цитоцидным эффектом, либо хронич. инфекция, к-рая в ряде случаев может приводить к клеточной трансформации. Внутриклеточный паразитизм В. обусловлен отсутствием у них собственных белоксинтезирующих систем. Для своего воспроизведения В. используют синтетич. аппарат клетки.

Различные виды В. на внеклеточной стадии существования характеризуются размерами от 15—18 до 300—350 нм. Наиболее крупные В. (возбудители оспы, осповакцины) различимы в световом микроскопе, но в основном В. можно увидеть лишь в электронном микроскопе.

Химический состав и структура вирусных частиц. Простые В. состоят только из белка и нуклеиновых к-т. У сложных, более крупных В., поражающих высших животных, наряду с этими компонентами содержатся липиды (в форме гликопротеидов) и белки-ферменты. В отличие от клеточных форм жизни, В. содержат в вирионе один из двух типов нуклеиновых к-т: РНК или ДНК. Нуклеиновые к-ты у В. представлены двухспиральной ДНК (В. оспы, герпеса) или односпиральной РНК (В. полиомиелита, ящура), однако существуют В. с односпиральной ДНК (парвовирусы) и В. двухспиралыюй РНК (реовирусы). Структура генома у многих В. изучена недостаточно. Установлено, что гены (определённое [определенное] число нуклеотидов) расположены в нуклеиновой к-те в определённой [определенной] линейной последовательности, осн. их функция — программирование синтеза вирусоспецифических (функциональных и структурных) белков. Нуклеиновая к-та в вирусной частице окружена защитной белковой оболочкой (капсидом). Нуклеиновая к-та с капсидом наз. нуклеокапсидом. У просто организованных В. термины “нуклеокапсид” и “вирусная частица” (вирион) тождественны. У сложно устроенных В. наряду с капсидом имеется ещё [еще] одна или неск. внешних (белковых или липидных) оболочек (суперкапсид). Белковая оболочка В. построена из идентичных полипептидных цепей, уложенных в определённом [определенном] порядке, обусловливающем тип симметрии (спиральный или кубический). Капсид предохраняет нуклеиновую к-ту В. от неблагоприятных воздействий внешней среды; обеспечивает адсорбцию В. на клетке хозяина благодаря сродству рецепторов, расположенных на поверхности капсида и клетки. С капсидом связаны также антигенные и иммуногенные свойства В. С помощью электронного микроскопа в капсиде выявляют комплексные группы его структурных единиц — капсомеры. Их число у различных В. колеблется от 12 до неск. сотен и более (рис.).

Размножение (репродукция) В. происходит в клетках хозяина и включает неск.стадий: адсорбцию и проникновение В. в клетку; синтез вирусоспецифич.ферментов — “ранних” белков, необходимых для воспроизведения (репликации) вирусной нуклеиновой к-ты; репликацию вирусной нуклеиновой к-ты; синтез информационных РНК (при репродукции ДНК-содержащих В.), кодирующих поздние белки, входящие в состав вирионов, а также формирование вирионов; освобождение дочерних вирусных частиц во внешнюю среду.

В. имеют или собственные вирусоспецифич. ферменты репликации, заключённые [заключенные] в структуре вириона, или ферменты, закодированные в вирусном геноме и появляющиеся в инфицированной клетке перед началом репликации вирусной ДНК или РНК. Напр., у В. оспы в составе вирионов имеются собств. высокоснецифич. транскриптазы; в составе онкорнавирусов содержится обратная транскриптаза. У аденовирусов репликация ДНК обеспечивается клеточными ферментами. В. могут репродуцироваться в организме естественно восприимчивых животных, куриных эмбрионах, культурах клеток и переживающих эксплантатах органов и тканей (В. не удаётся [удается] культивировать на искусств. питательных средах). Как в естеств., так и экспериментальных условиях спектр патогенности В. различен. Имеются В. полипатогенные, поражающие широкий круг животных (В. бешенства, болезни Ауески), и монопатогенные (В. чумы свиней, инфекц. ларинготрахеита кур и др.). Между этими представителями имеется обширная группа В. различных классов и семейств, обладающих разным спектром патогенности.


По типу строения вирионов выделяют: спиральный тип симметрии (рабдовирусы, вирусы гриппа, парагриппа, коронавирусы); квазисферический – кубический, или икосаэдральный, тип симметрии; cмешанный – у Т-четных бактериофагов (головка в виде многогранника, а хвост в виде спирали).

У вируса табачной мозаики – спиральный тип симметрии вириона. Белковый чехол состоит из отдельных субъединиц в виде шестигранников. Капсомеры – белковые субъединицы, на внутренней поверхности которых расположен желобок, где находится спиралевидная РНК. Капсомеры идентичны друг другу: один и тот же белок, повторяющиеся белковые молекулы (экономится генетический материал). Диаметр капсида 15 – 18 нм, длина вириона до 300 нм (вид палочки). Капсид имеет жесткую структуру.

Тип симметрии определяется только нуклеокапсидом, суперкапсид при этом не учитывается. Например, вирус гриппа снаружи выглядит как сфера, нуклеокапсид имеет спиральный тип симметрии.

Икосаэдр – многогранник, состоящий из 12 вершин и 20 ребер. К данному типу симметрии относятся аденовирусы человека и животных. Капсомеры могут иметь разное строение и содержать разные белки. У аденовирусов боковые капсомеры в виде гексонов, а вершинные – пентонов (соседствуют с пятью капсомерами). От пентамеров отходят выросты (фибры). Это прикрепительные белки. Икосаэдр обеспечивает прочность капсида (защиту от внешних факторов), а прочная связь между капсомерами – минимум свободной энергии.

Многие вирусы имеют суперкапсид – дополнительную оболочку сложно устроенных вирусов, или пеплос. Структурные элементы суперкапсида – шипики, или пепломеры. У вируса гриппа их два типа: гемагглютинины и нейраминидаза; у парагриппа два комплекса – гемагглютинин и нейраминидаза вместе и второй так называемый белок слияния; у вирусов иммунодефицита человека они представлены гликопротеидами. Большинство вирусов, патогенных для человека, являются сложно устроенными. Если у вируса отсутствует суперкапсид, то это просто устроенный вирус.

У большинства сложно устроенных вирусов суперкапсид – это модифицированная (путем встраивания белков вируса) цитоплазматическая мембрана клеток хозяина. Модификация идет путем встраивания шипиков вируса в участки цитоплазматической мембраны (ЦПМ). Исключение составляют поксвирусы, у которых суперкапсид вирусоспецифический, так как имеются собственные гены, ответственные за синтез суперкапсида. Если культивировать один и тот же вирус в разных клетках, получим разные по биохимическому составу суперкапсиды. Шипы выполняют роль прикрепительных белков на поверхности чувствительных клеток. Если их удалить жирорастворителем или детергентом, вирус полностью теряет инфекционную активность.

Биохимия вирусов также хорошо изучена. В состав вириона входят: белки – 70 – 80 %; нуклеиновые кислоты – 4 – 6 % (РНК), 20 – 30 % (ДНК-вирусы); липиды и углеводы в незначительных количествах.

Вирусные белки – полипептиды, которые состоят из обычных левовращающих аминокислот, отличающихся лишь последовательностью построения. Принцип субъединичности построения капсида – повторяющиеся полипептиды небольшой величины – позволяет экономить генетический материал. Если бы капсид был построен из разных белков, требовался бы огромный геном. Так, у вируса табачной мозаики масса капсида 37,2$10 6 дальтон, а для кодирования этого капсида вирусом используется всего 600 нуклеотидов. Весь геном вируса составляет около 6000 нуклеотидов. Некоторые гены вирусов способны кодировать несколько белков со сдвигом рамки. Например, у вируса гриппа 8 генов, а кодируют они 10 вирусных белков.

Капсид за счет упорядоченности капсомеров по сравнению с простой пептидной цепью обладает меньшей свободной энергией. На уровне вирусов действует принцип саморегуляции – самосборки капсида. Принцип самосборки вирусных белков заключается в том, что при определенных условиях (рН, t°) наблюдается спонтанная сборка вирусных белков близких капсидов. При добавлении вирусных нуклеиновых кислот этот процесс упорядочивается.

Вирусные белки подразделяются на структурные и неструктурные. Структурные белки составляют суперкапсид, в составе сердцевины – геномные белки. Неструктурные белки не входят в состав вирусных частиц и обнаруживаются только в зараженной клетке в процессе репродукции. Это ферменты, осуществляющие функции регуляторов, и белки-регуляторы. Аминокислотная последовательность белков вирусов иная, чем у человека, поэтому их можно определять внутри клетки.

Синтез вирусных белков на рибосомах клеток идет по общим законам и регулируется информационной РНК (иРНК), которая образуется на матричных вирусных нуклеиновых кислотах. Белки вирусов выполняют защитную, адресную и регулирующие функции.

Защитная функция – это экранирование нуклеиновой кислоты вируса от химических факторов, нуклеаз и т. д., благодаря чему вирусы существуют тысячи лет.

Адресная функция состоит в проникновении только в нужную чувствительную клетку, а не в любую. Регулирующие функции выполняют внутриклеточные белки вирусов, ферменты, ферментные комплексы.

Вирусные нуклеиновые кислоты имеют существенные отличия от нуклеиновых кислот всех других существ. Обычно генетическая информация закодирована в двуспиральной ДНК и имеется однонитевая РНК (информационная, транспортная, рибосомальная). У вирусов в качестве геномной может быть как ДНК, так и РНК. У некоторых вирусов (РНК-геномных) вирионная РНК одновременно может выполнять роль информационной. Такие вирусы называют нитевыми. Если выделить в чистом виде такую РНК и поместить в клетку, то инфекция будет протекать так же, как если бы туда проник целый вирус. У других вирусов (нитевых) РНК не может выполнять функцию информационной.

Вирусы отличает многообразная структура нуклеиновых кислот. Их можно получить, разрушив вирус химическими (фенолом) или физическими (ультразвуком) факторами. Выделяют ДНК-содержащие вирусы, у которых она может присутствовать в виде: классической двунитевой (аденовирусы, герпесвирусы); двунитевой линейной с замкнутыми концами (оспа); двунитевой линейной с разрывами одной цепи (Т-фаги); с несколькими разрывами одной нити (каждый фрагмент – уникальный ген); двунитевой, замкнутой в кольцо со сверхвитками, (суперспирализация) или без них (тогавирусы); двунитевой, у которой внешняя нить замкнута в кольцо (L-нить), а у внутренней 1 /3 отсутствует (S – нить, шорт) – гепаднавирусы; уникальной линейной однонитевой ДНК (парвовирусы); однонитевой замкнутой в кольцо (фаги).

РНК-содержащие вирусы также делятся на несколько типов: классический однонитевой линейный (пикорновирусы, тогавирусы, парамиксовирусы, рабдовирусы); линейный однонитевой фрагментированный (ортомиксовирусы); однонитевой фрагментированный, где каждый фрагмент замкнут в кольцо (буньявирусы); двунитевой с идентичными нитями (ретровирусы); двунитевой фрагментированный (реовирусы).

По химическому составу вирусные РНК и ДНК аналогичны клеточным, но в отличие от них содержат метилированный урацил.

Липиды имеют сложно устроенные вирусы, их наличие характерно для патогенных вирусов. Содержание липидов в вирусах различно: от 1,5 до 54 % (тогавирусы). Липидный состав вирусов непостоянен, у большинства это липиды клеточного происхождения. Липиды содержатся в суперкапсиде и зависят от клетки хозяина. Липидный состав различных чувствительных клеток при включении в них одного и того же вируса будет разным, тогда как одинаковые клетки при включении в них разных вирусов сохранят идентичность. Липиды выполняют важную защитную функцию, укрепляя белковый скелет суперкапсида. Они имеют вид липопротеидного или гликопротеидного комплекса. У поксвирусов синтезируются собственные липиды под контролем самого вируса, и поэтому состав липидов у них постоянен.

Углеводы входят в суперкапсид сложно устроенных вирусов преимущественно в составе различных шипов в виде моносахаридов, аминосахаридов (2 – 3 цепочки в комплексе с белковым или липидным компонентом – гликопротеидом, гликолипопротеидом). У вируса гриппа это гемагглютинин и нейраминидаза, у парагриппа – комбинированный шип гемагглютинина и нейраминидазы, у ВИЧ – поверхностные структуры gp 41- и gp 120-гликопротеиды, у вируса клещевого энцефалита – шипы гемагглютинина.

Углеводный компонент вируса определяется клеткой хозяина, укрепляет суперкапсидную структуру, придавая ей жесткость. Удаление гликопротеидных комплексов у сложно устроенных вирусов ведет к потере способности к адсорбции на чувствительных клетках. У просто устроенных вирусов углеводный компонент отсутствует.

В составе вирусов могут быть и другие компоненты. В состав полипептидов, например, часто включаются фосфаты (аденовирусы, ретровирусы, герпесвирусы, поксвирусы, ортомиксовирусы), их конкретная функция пока точно не установлена. Некоторые вирусы содержат микроэлементы: медь, молибден, а отдельные вирусы – целый набор ферментов: поксвирусы – 10, ВИЧ – 4, вирус гриппа – 3 фермента. Ферменты обеспечивают вирусную репродукцию: реакцию полимеризации (образования иРНК), репликацию (образование новых нитей нуклеиновых кислот) по принципу комплементарности. В ряде случаев ферменты синтезируются за счет генома вируса.

Вирусы также активно используют клеточные ферменты, например, у гриппа гемагглютинин находится в составе шипов в неактивном состоянии и для адсорбции на клеточном эпителии необходима протеолитическая активация гемагглютинина за счет ферментов клеточного секрета. Только после этого достигается соответствие прикрепительного белка структурам чувствительной клетки.


В 1901 американский военный хирург У.Рид и его коллеги установили, что возбудитель желтой лихорадки также является фильтрующимся вирусом. Желтая лихорадка была первым заболеванием человека, опознанным как вирусное, однако потребовалось еще 26 лет, чтобы ее вирусное происхождение было окончательно доказано.

Свойства и происхождение вирусов.

Наиболее просто устроенные вирусы состоят из нуклеиновой кислоты, являющейся генетическим материалом (геномом) вируса, и покрывающего нуклеиновую кислоту белкового чехла. В состав некоторых вирусов входят также углеводы и жиры (липиды). Таким образом, вирусы можно рассматривать просто как мобильные наборы генетической информации. Вирусы лишены некоторых ферментов, необходимых для репродукции, и могут размножаться только внутри живой клетки, метаболизм которой после заражения перестраивается на воспроизводство вирусных, а не клеточных компонентов. Это свойство вирусов позволяет отнести их к облигатным (обязательным) клеточным паразитам. После синтеза отдельных компонентов формируются новые вирусные частицы. Симптомы вирусного заболевания развиваются как следствие повреждения вирусами отдельных клеток.


Принято считать, что вирусы произошли в результате обособления (автономизации) отдельных генетических элементов клетки, получивших, кроме того, способность передаваться от организма к организму. В нормальной клетке происходят перемещения нескольких типов генетических структур, например матричной, или информационной, РНК (мРНК), транспозонов, интронов, плазмид. Такие мобильные элементы, возможно, были предшественниками, или прародителями, вирусов.

Являются ли вирусы живыми организмами?

В 1935 американский биохимик У.Стэнли выделил в кристаллической форме вирус табачной мозаики, доказав тем самым его молекулярную природу. Полученные результаты вызвали бурные дискуссии о природе вирусов: являются ли они живыми организмами или просто активированными молекулами? Действительно, внутри зараженной клетки вирусы проявляют себя как интегральные компоненты более сложных живых систем, но вне клетки представляют собой метаболически инертные нуклеопротеины. Вирусы содержат генетическую информацию, но не могут самостоятельно реализовать ее, не обладая собственным механизмом синтеза белка. Когда особенности строения и репродукции вирусов оказались выясненными, вопрос о том, являются ли они живыми, постепенно утратил свое значение.

Размеры вирусов.

Величина вирусов варьирует от 20 до 300 нм (1 нм = 10 -9 м). Практически все вирусы по своим размерам мельче, чем бактерии (см. БАКТЕРИИ). Однако наиболее крупные вирусы, например вирус коровьей оспы, имеют такие же размеры, как и наиболее мелкие бактерии (хламидии и риккетсии), которые тоже являются облигатными паразитами и размножаются только в живых клетках. Поэтому отличительными чертами вирусов по сравнению с другими микроскопическими возбудителями инфекций служат не размеры или обязательный паразитизм, а особенности строения и уникальные механизмы репликации (воспроизведения самих себя).

СТРОЕНИЕ ВИРУСОВ

Вирионы со спиральным типом симметрии, как у вируса табачной мозаики, имеют форму удлиненного цилиндра; внутри белкового чехла, состоящего из отдельных субъединиц – капсомеров, находится свернутая спираль нуклеиновой кислоты (РНК). Вирионы с икосаэдрическим типом симметрии (от греч. eikosi – двадцать, hedra – поверхность), как у полиовируса, имеют сферическую, а точнее, многогранную форму; их капсиды построены из 20 правильных треугольных фасеток (поверхностей) и похожи на геодезический купол.

Встречаются вирусы с еще более сложным строением. Вирионы поксвирусов (вирусы группы оспы) не имеют правильного, типичного капсида: между сердцевиной и наружной оболочкой у них располагаются трубчатые и мембранные структуры.

РЕПЛИКАЦИЯ ВИРУСОВ

ДНК обычно существует в виде двухцепочечных структур: две полинуклеотидные цепочки соединены водородными связями и закручены таким образом, что образуется двойная спираль. РНК, напротив, обычно существует в виде одноцепочечных структур. Однако геном отдельных вирусов представляет собой одноцепочечную ДНК или двухцепочечную РНК. Нити (цепочки) вирусной нуклеиновой кислоты, двойные или одинарные, могут иметь линейную форму или замыкаться в кольцо.

У некоторых ДНК-содержащих вирусов сам цикл репродукции в клетке не связан с немедленной репликацией вирусной ДНК; вместо этого вирусная ДНК встраивается (интегрируется) в ДНК клетки-хозяина. На этой стадии вирус как единое структурное образование исчезает: его геном становится частью генетического аппарата клетки и даже реплицируется в составе клеточной ДНК во время деления клетки. Однако впоследствии, иногда через много лет, вирус может появиться вновь – запускается механизм синтеза вирусных белков, которые, объединяясь с вирусной ДНК, формируют новые вирионы.

Так называемые ретровирусы содержат в качестве генома РНК и имеют необычный способ транскрипции генетического материала: вместо транскрипции ДНК в РНК, как это происходит в клетке и характерно для ДНК-содержащих вирусов, их РНК транскрибируется в ДНК. Двухцепочечная ДНК вируса затем встраивается в хромосомную ДНК клетки. На матрице такой вирусной ДНК синтезируется новая вирусная РНК, которая, как и другие, определяет синтез вирусных белков. См. также РЕТРОВИРУСЫ.

КЛАССИФИКАЦИЯ ВИРУСОВ

Тем не менее система классификации вирусов необходима в практической работе, и попытки ее создания предпринимались неоднократно. Наиболее продуктивным оказался подход, основанный на структурно-функциональной характеристике вирусов: чтобы отличить разные группы вирусов друг от друга, описывают тип их нуклеиновой кислоты (ДНК или РНК, каждая из которых может быть одноцепочечной или двухцепочечной), ее размеры (число нуклеотидов в цепочке нуклеиновой кислоты), число молекул нуклеиновой кислоты в одном вирионе, геометрию вириона и особенности строения капсида и наружной оболочки вириона, тип хозяина (растения, бактерии, насекомые, млекопитающие и т.д.), особенности вызываемой вирусами патологии (симптомы и характер заболевания), антигенные свойства вирусных белков и особенности реакции иммунной системы организма на внедрение вируса.

В систему классификации вирусов не вполне укладывается группа микроскопических возбудителей болезней, называемая вироидами (т.е. вирусоподобными частицами). Вироиды вызывают многие распространенные среди растений болезни. Это мельчайшие инфекционные агенты, лишенные даже простейшего белкового чехла (имеющегося у всех вирусов); они состоят только из замкнутой в кольцо одноцепочечной РНК.

ВИРУСНЫЕ ЗАБОЛЕВАНИЯ

Хотя вирусы не являются полноценными живыми организмами, их эволюционное развитие имеет много общего с эволюцией других патогенных организмов. Для того чтобы сохраниться как вид, ни один паразит не может быть слишком опасным для своего основного хозяина, в котором размножается. В противном случае это привело бы к полному исчезновению хозяина как биологического вида, а вместе с ним и самого возбудителя. В то же время любой патогенный организм не сможет существовать как биологический вид, если у его основного хозяина слишком быстро и эффективно развивается иммунитет, позволяющий подавлять репродукцию возбудителя. Поэтому вирус, вызывающий острое и тяжелое заболевание у какого-либо вида животных, обычно имеет еще и другого хозяина. Размножаясь в последнем, вирус не наносит ему (как виду) существенного вреда, однако такое относительно безвредное сосуществование поддерживает циркуляцию вируса в природе. Так, например, вирус бешенства в природе сохраняется среди грызунов, для которых заражение этим вирусом не является смертельным.


Природным резервуаром для вирусов лошадиных энцефалитов, особо опасных для лошадей и в несколько меньшей степени для человека, являются птицы. Эти вирусы переносятся кровососущими комарами, в которых вирус размножается без существенного вреда для комара. Иногда вирусы могут передаваться насекомыми пассивно (без размножения в них), однако чаще всего они репродуцируются в переносчиках.

Для многих вирусов, например кори, герпеса и отчасти гриппа, основным природным резервуаром является человек. Передача этих вирусов происходит воздушно-капельным или контактным путем.

Распространение некоторых вирусных заболеваний, как и других инфекций, полно неожиданностей. Например, в группах людей, проживающих в антисанитарных условиях, практически все дети в раннем возрасте переносят полиомиелит, обычно протекающий в легкой форме, и приобретают иммунитет. Если же условия жизни в этих группах улучшаются, дети младшего возраста обычно полиомиелитом не болеют, но заболевание может возникнуть в более старшем возрасте, и тогда оно часто протекает в тяжелой форме.

Возбудители некоторых болезней, в том числе очень тяжелых, не укладываются ни в одну из вышеперечисленных категорий. К особой группе медленных вирусных инфекций еще недавно относили, например, болезнь Крейтцфельда – Якоба и куру – дегенеративные заболевания головного мозга, имеющие очень продолжительный инкубационный период. Однако оказалось, что они вызываются не вирусами, а мельчайшими инфекционными агентами белковой природы – прионами (см. ПРИОН).

Репродукция вирусов тесно переплетается с механизмами синтеза белка и нуклеиновых кислот клетки в зараженном организме. Поэтому создать лекарства, избирательно подавляющие вирус, но не наносящие вреда организму, – задача чрезвычайно трудная. Все же оказалось, что у наиболее крупных вирусов герпеса и оспы геномные ДНК кодируют большое число ферментов, отличающихся по свойствам от сходных клеточных ферментов, и это послужило основой для разработки противовирусных препаратов. Действительно, создано несколько препаратов, механизм действия которых основан на подавлении синтеза вирусных ДНК. Некоторые соединения, слишком токсичные для общего применения (внутривенно или через рот), годятся для местного использования, например при поражении глаз вирусом герпеса.

Известно, что в организме человека вырабатываются особые белки – интерфероны. Они подавляют трансляцию вирусных нуклеиновых кислот и таким образом угнетают размножение вируса. Благодаря генной инженерии стали доступны и проходят проверку в медицинской практике интерфероны, производимые бактериями (см. ГЕННАЯ ИНЖЕНЕРИЯ).

К самым действенным элементам естественной защиты организма относятся специфические антитела (специальные белки, вырабатываемые иммунной системой), которые взаимодействуют с соответствующим вирусом и тем самым эффективно препятствуют развитию болезни; однако они не могут нейтрализовать вирус, уже проникший в клетку. Примером может служить герпетическая инфекция: вирус герпеса сохраняется в клетках нервных узлов (ганглиев), где антитела не могут его достичь. Время от времени вирус активируется и вызывает рецидивы заболевания.

Обычно специфические антитела образуются в организме в результате проникновения в него возбудителя инфекции. Организму можно помочь, усиливая выработку антител искусственно, в том числе создавая иммунитет заранее, с помощью вакцинации. Именно таким способом, путем массовой вакцинации, заболевание натуральной оспой было практически ликвидировано во всем мире. См. также ВАКЦИНАЦИЯ И ИММУНИЗАЦИЯ.

Для приготовления вакцинных препаратов необходимо накопить вирус. С этой целью часто используют развивающиеся куриные эмбрионы, которых заражают данным вирусом. После инкубирования зараженных эмбрионов в течение определенного времени накопившийся в них вследствие размножения вирус собирают, очищают (центрифугированием или другим способом) и, если нужно, инактивируют. Очень важно удалить из препаратов вируса все балластные примеси, которые могут вызывать серьезные осложнения при вакцинации. Конечно, не менее важно убедиться, что в препаратах не осталось неинактивированного патогенного вируса. В последние годы для накопления вирусов широко используют различные типы клеточных культур.

МЕТОДЫ ИЗУЧЕНИЯ ВИРУСОВ

Работы с бактериофагами способствовали расширению методического арсенала в изучении вирусов животных. До этого исследования вирусов позвоночных выполнялись в основном на лабораторных животных; такие опыты были очень трудоемки, дороги и не очень информативны. Впоследствии появились новые методы, основанные на применении тканевых культур; бактериальные клетки, использовавшиеся в экспериментах с фагами, были заменены на клетки позвоночных. Однако для изучения механизмов развития вирусных заболеваний эксперименты на лабораторных животных очень важны и продолжают проводиться в настоящее время.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции