В чем особенности физиологии вирусов

Сайт СТУДОПЕДИЯ проводит ОПРОС! Прими участие :) - нам важно ваше мнение.

Вирусы образуют самостоятельное царство (Vira) и имеют следующие особенности:

1. Геном представлен одной нуклеиновой кислотой - ДНК или РНК (соответственно выделе­ны 2 подцарства - рибовирусы и дезоксирибовирусы).

2. Неклеточное строение. Нуклеиновая кислота покрыта белковой оболочкой - капсидом, ко­торый состоит из отдельных субъединиц - капсомеров (обычно состоит из 5-6 полипептидов). Капсид вместе с нуклеиновой кислотой образует нуклеокапсид. Такое строение имеют простые ви­русы (вирусы полиомиелита, аденовирусы и др.). У сложных вирусов имеется наружная оболочка - суперкапсид, который содержит липиды, гликолипиды. Суперкапсид частично формируется за счет клетки-хозяина.

3. Отсутствие белоксинтезирующих систем (при наличии ферментов адсорбции, распростра­нения, ДНК - и РНК - зависимых полимераз).

4. Абсолютный внутриклеточный паразитизм на генетическом уровне (в том числе возмож­ность интеграции ДНК вируса в клеточный геном и синхронная репликация с ним).

5. Особый (дизъюнктивный) способ размножения: белки вируса синтезируются на рибосомах пораженной клетки, в других участках - нуклеиновая кислота вируса, затем происходит сборка ви­русных частиц.

6. Малые размеры; мелкие вирусы (подиовирус и др.) - 25-30 нм (нанометров); средние (вирус гриппа и др.) - 50-125 нм; крупные (вирус натуральной оспы) - 150-200 нм.

7. Фильтруемость (проходят через бактериальные фильтры).

8. Кристаллизабельность (очищенные от балластных веществ внеклеточные вирусы, вирионы, способны образовывать кристаллы).

9. Форма вириоиов (различают палочковидные - у вируса бешенства и др., в виде многогран­ника, икосаэдр - у аденовирусов, кубоидальной формы - у вируса натуральной оспы, шаровидной - у вирусов гриппа, головчатые (сперматозоидоподобные) - бактериофаги).

Культивирование вирусов также имеет особенности. Их культивируют на активно раз­множающихся клетках с повышенной активностью метаболизма. Использую следующие живые системы. В организме лабораторных животных: обычно заражают мышей (взрослых и сосунков), кроликов, обезьян (внутримышечно, интраназально, внутрибрюшинно, интрацеребрально, на роговицу). На 9-12-дневных куриных эмбрионах: чаше культивируют на эмбрион-аллантоисной оболочке, реже - в аллантоисной или амниотической подсети. На культуре клеток: чаще исполь­зуют однослойные культуры ткани из активно размножающихся клеток. Клетки выращивают на естественных питательных средах (эмбриональных экстрактах, лошадиной, человеческой сыворот­ке), ферментативных гидролизатах белков (триптический гидролизат лактальбумина), на синтети­ческих средах (например, на среде 199, состоящей из 63 компонентов, в том числе аминокислот, витаминов, глюкозы, солей, человеческой сыворотки, индикатора фенолового красного). Исполь­зуют следующие типы культур клеток: первично- трипсинизированные (обычно фибробласты куриного эмбриона; они не перевиваются и их надо всегда готовить ех tempore; недостатком явля­ется такаю их нестандартность); перевиваемые (одинаковы во всех лабораториях, так как являются определенным клоном клеток, например, клетки из портальных тканей - амниона человека, почек эмбриона свиньи; клетки из опухолевых тканей - HeLa (клетки рака шейки матки), НЕр-2 и др. ; недостатком этой группы является то, что клетки часто спонтанно перерождаются, становятся атипичными, полиплоидными, а также бывают спонтанно заражены латентными вирусами и ми-коплазмами); полуперевиваемые диплоидные (например, диплоидные клетки легких человека; они стабильны, спонтанно не перерождаются, не загрязнены вирусами и микоплазмами).

Различают следующие формы вирусных инфекций. Абортивная инфекция (происходит в невосприимчивом иммунном организме): вирус либо не проникает в клетку, либо после проникнове­ния погибает и выталкивается из клетки. Продуктивная инфекция: вирус адсорбируется на чувст­вительных клетках и проникает в клетку путем погружения её мембраны с вирусом внутрь, в цитоплазму клетки (виро-рексис); в образовавшейся фагосоме нуклеиновая кислота вируса осво­бождается от белковых оболочек ("раздевание вируса"); после окончательного раздевания проникшая в клетку нуклеиновая кислота вируса переключает функционирование клеточного генома и соответствующих метаболических систем клетки на репродукцию вируса; образованные вирусные частицы выходят из клетки и внедряются в соседние клетки. Часто такое взаимодействие заканчи­вается гибелью клетки, этот процесс обозначают как цитопатическое действие (ЦПД). Ранним признаком ЦПД является прекращение митозов; клетка временно набухает, затем деформируется, сморщивается, становится более интенсивно окрашиваемой, отслаивается от стекла (в культурах) и погибает. Иногда перед гибелью клетки образуют симпласты (слившиеся многоядерные клетки). Вирогения: проникшая в клетку нуклеиновая кислота вируса встраивается (интегрирует) в ДНК клетки-хозяина (как в случае умеренного фага) и в форме провируса существует в клетке и переда­ется её потомству. Явление вирогении характерно как для ДНКовых,так и для РНКовых вирусов, так как последние обладают ферментом обратной транскриптазой (например, ретровирусы).

В основу современной классификации вирусов положен ряд признаков, в том числе: тип нук­леиновой кислоты, число капсомеров, наличие суперкапсида, чувствительность к эфиру, круг вос­приимчивых хозяев, патогенность, географическое распространение и др.

Особенности противовирусного иммунитета. Невосприимчивость к вирусным инфекциям может быть обусловлена следующими факторами. Факторы естественной резистентности: клеточ­ная ареактивность (как результат филогенеза человек невосприимчив ко многим вирусным болез­ням животных и растений); ингибиторы - вещества мукопротеидной или липопротеидной приро­ды, структурно идентичные рецепторам чувствительных клеток (они свободно циркулируют в крови, других жидкостях и блокируют взаимодействие вируса с клеткой); комплемент участвует в формировании специфического (иммунного) противовирусного ответа (лизоцим и другие гумо­ральные факторы защитной роли не играют); фагоцитоз носит незавершенный характер, однако лейкоциты, в которые проник вирус, продуцируют интерферон; интерферон синтезируется клеткой после проникновения вируса,он неспецифически ингибирует репродукцию любых вирусов, нару­шая синтез вирусных белков на рибосомах (в организме человека активен лишь человеческий ин­терферон, который продуцируют человеческие лейкоциты, иди генно-инженерный интерферон - реаферон, продуцируемый кишечной палочкой, в геном которой введен ген человеческого интер­ферона; интерферон широко применяют для лечения и экстренной профилактики вирусных ин­фекций); лихорадка (повышенная температура нарушает репродукцию вирусов); возрастной фак­тор (имеет значение, например, при ротавирусной инфекции, которой чаще болеют дети); эндокринные факторы (гипофункция многих желез внутренней секреции отягощает течение ви­русных инфекций); факторы выделительной системы (способствуют освобождению организма от вирусов); формирование внутриклеточных включений, возможно, оказывает защитное влияние (тельца Гварниери при натуральной оспе, тельца Бабеша-Негри при бешенстве).

Особенности приобретенною противовирусного иммунитета в одних случаях обусловлива­ют стойкую невосприимчивость (например, после кори), в других - кратковременную (после риновирусной инфекции). Антитела действуют только на внеклеточно расположенные вирусы (поэтому лечение противовирусными иммуноглобулинами проводят в ранние сроки, пока основная часть вирусов не проникла в клетки). Клетки, в которые проникли вирусы, синтезируют вирус-зависимые антигены и становятся чужеродными для организма, что ведет к их уничтожению Т-киллерами. В защитных реакциях имеет значение также местная резистентность клеток (например, у человека, невосприимчивого к полиомиелиту, клетки нервной ткани и желудочно-кишечного тракта, к кото­рым полиовирус обладает тропизмом, становятся резистентными к вирусу). Секреторные имму­ноглобулины (slgA) - основное звено местного иммунитета на слизистых оболочках. Вакцинация (вирусными вакцинами) создаёт не только специфический иммунитет в отношении отдельного ви­руса, но и формирует резистентность к другим вирусам (стимулируется не только выработка анти­тел и образование Т-киллеров, но и выработка интерферона).

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

← Предыдущая глава Глава 1.6 Следующая глава →
Вирусы — неклеточные формы жизни


Ви́рус (от лат. virus — яд) — микроскопическая частица, состоящая из белков и нуклеиновых кислот и способная инфицировать клетки живых организмов. Вирусы являются облигатными паразитами — они не способны размножаться вне клетки. В настоящее время известны вирусы, размножающиеся в клетках растений, животных, грибов и бактерий (последних обычно называют бактериофагами). Обнаружен также вирус, поражающий другие вирусы (Вирусы тоже болеют вирусными заболеваниями).

Вирусы представляют собой молекулы нуклеиновых кислот (ДНК или РНК), заключённые в защитную белковую оболочку (капсид). Наличие капсида отличает вирусы от других инфекционных агентов, вироидов. Вирусы содержат только один тип нуклеиновой кислоты: либо ДНК, либо РНК. Ранее к вирусам также ошибочно относили прионы, однако впоследствии оказалось, что эти возбудители представляют собой особые белки и не содержат нуклеиновых кислот.




Роль вирусов в биосфере

Вирусы являются одной из самых распространённых форм существования органической материи на планете по численности: воды мирового океана содержат колоссальное количество бактериофагов (около 10 11 частиц на миллилитр воды), их общая численность в океане — около 4 х 10 30 , а численность вирусов (бактериофагов) в донных отложениях океана практически не зависит от глубины и всюду очень высока [1]. В океане обитают сотни тысяч видов (штаммов) вирусов, подавляющее большинство которых не описаны и тем более не изучены [2][3]. Вирусы играют важную роль в регуляции численности популяций животных.

Вирусные частицы (вирио́ны) представляют собой белковую капсулу — капсид, содержащую геном вируса, представленный одной или несколькими молекулами ДНК или РНК. Капсид построен из капсомеров — белковых комплексов, состоящих в свою очередь из протомеров. Нуклеиновая кислота в комплексе с белками обозначается термином нуклеокапсид. Некоторые вирусы имеют также внешнюю липидную оболочку. Размеры различных вирусов колеблются от 20 нм (пикорнавирусы) до 500 нм (мимивирусы). Вирионы часто имеют правильную геометрическую форму (икосаэдр, цилиндр). Такая структура капсида предусматривает идентичность связей между составляющими её белками, и, следовательно, может быть построена из стандартных белков одного или нескольких видов, что позволяет вирусу экономить место в геноме.

Фазы вирусной инфекции [ править ]

Условно процесс вирусного инфицирования в масштабах одной клетки можно разбить на несколько взаимоперекрывающихся этапов:

Классификация Балтимора и жизненные циклы вирусов [ править ]

Нобелевский лауреат, биолог Дэвид Балтимор, предложил свою схему классификации вирусов, основываясь на различиях в механизме продукции мРНК и связанных с этим особенностях жизненного цикла вирусов. .Эта система включает в себя семь основных групп:

  • (I) Вирусы, содержащие двуцепочечную ДНК и не имеющие РНК-стадии (например, герпесвирусы, поксвирусы, паповавирусы, мимивирус).
  • (II) Вирусы, содержащие двуцепочечную РНК (например, ротавирусы).
  • (III) Вирусы, содержащие одноцепочечную молекулу ДНК (например, парвовирусы).
  • (IV) Вирусы, содержащие одноцепочечную молекулу РНК положительной полярности (например, пикорнавирусы, флавивирусы).
  • (V) Вирусы, содержащие одноцепочечную молекулу РНК негативной или двойной полярности (например, ортомиксовирусы, филовирусы).
  • (VI) Вирусы, содержащие одноцепочечную молекулу РНК и имеющие в своем жизненном цикле стадию синтеза ДНК на матрице РНК, ретровирусы (например, ВИЧ).
  • (VII) Вирусы, содержащие двуцепочечную ДНК и имеющие в своем жизненном цикле стадию синтеза ДНК на матрице РНК, ретроидные вирусы (например, вирус гепатита B).

История изучения вирусов [ править ]

В 1901 г. было обнаружено первое вирусное заболевание человека — жёлтая лихорадка. Это открытие было сделано американским военным хирургом У. Ридом и его коллегами.

В 1911 г. Фрэнсис Раус доказал вирусную природу рака — саркомы Рауса (лишь в 1966 г, спустя 55 лет, ему была вручена за это открытие Нобелевская премия по физиологии и медицине).

В последующие годы изучение вирусов сыграло важнейшую роль в развитии эпидемиологии, иммунологии, молекулярной генетики и других разделов биологии. Так, эксперимент Херши-Чейз стал решающих доказательством роли ДНК в передаче наследственных свойств. В разные годы еще как минимум шесть Нобелевских премий по физиологии и медицине и три Нобелевских премии по химии были вручены за исследования, непосредственно связанные с изучением вирусов.

В 2002 году, в университете Нью-Йорка был создан первый синтетический вирус (вирус полиомиелита).

Вирусы — облигатные внутриклеточные па­разиты, способные только к внутриклеточно­му размножению. В вирусинфицированной клетке возможно пребывание вирусов в раз­личных состояниях:

воспроизводство многочисленных новых вирионов;

пребывание нуклеиновой кислоты вируса в интегрированном состоянии с хромосомой клетки (в виде провируса);

существование в цитоплазме клетки в ви­де кольцевых нуклеиновых кислот, напоми­нающих плазмиды бактерий.

Поэтому диапазон нарушений, вызывае­мых вирусом, весьма широк: от выраженной продуктивной инфекции, завершающейся ги­белью клетки, до продолжительного взаимо­действия вируса с клеткой в виде латентной инфекции или злокачественной трансформа­ции клетки.

Различают три типа взаимодействия вируса с клеткой: продуктивный, абортивный и интегративный.

1. Продуктивный тип завершается обра­зованием нового поколения вирионов и ги­белью (лизисом) зараженных клеток (цитоли-тическая форма). Некоторые вирусы выходят из клеток, не разрушая их (нецитолитическая форма).

Абортивный тип не завершается обра­зованием новых вирионов, поскольку инфек­ционный процесс в клетке прерывается на одном из этапов.

Интегративный тип, или вирогения —характеризуется встраиванием (интеграцией) вирусной ДНК в виде провируса в хромосому клетки и их совместным сосуществованием (совместная репликация).

Репродукция вирусов (продуктивный)

1) адсорбция вирионов на клетке;

2) проникновение вируса в клетку;

4) синтез вирусных компонентов;

5) формирование ви­рионов;

6) выход вирионов из клетки.

У раз­личных вирусов эти стадии отличаются

Специфические рецепторы клеток имеют различную природу, являясь белками, липидами, углеводными компонентами белков, липидов и др. Так, рецепторами для вируса грип­па является сиаловая кислота в составе гли-копротеинов и гликолипидов (ганглиозидов) клеток дыхательных путей. Вирусы бешенства адсорбируются на ацетилхолиновых рецепто­рах нервной ткани, а вирусы иммунодефицита человека — на СО4-рецепторах Т-хелперов, моноцитов и дендритных клеток. На одной клетке находится от десяти до ста тысяч спе­цифических рецепторов, поэтому на ней могут адсорбироваться десятки и сотни вирионов.

Наличие специфических рецепторов лежит в основе избирательности поражения вируса­ми определенных клеток, тканей и органов. Это так называемый тропизм (греч. tropos поворот, направление). Например, вирусы, репродуцирующиеся преимущественно в клетках печени, называются гепатотропными, в нервных клетках — нейротропными, в иммунокомпетентных клетках — иммунотропными и т. д.

Проникновение вирусов в клетку. Вирусы проникают в клетку путем рецептор-зависи­мого эндоцитоза (виропексиса), или слияния оболочки вируса с клеточной мембраной, или же в результате сочетания этих механизмов.

2. Слияние обточки вириона с клеточной мемб­раной характерно только для некоторых оболочечных вирусов (парамиксовирусов, ретровиру-сов, герпесвирусов), в составе которых имеются белки слияния. Происходит точечное взаимо­действие вирусного белка слияния с липидами клеточной мембраны, в результате чего вирус­ная липопротеиновая оболочка интегрирует с клеточной мембраной, а внутренний компонент вируса попадает в цитозоль.

В) Синтез вирусных компонентов. Синтез белков и нуклеиновых кислот вируса, который разобщен во времени и пространстве. Синтез осущест­вляется в разных частях клетки, поэтому такой способ размножения вирусов называется дизъ­юнктивным (от лат. disjunctus — разобщенный).

С)Синтез вирусных белков. В зараженной клет­ке вирусный геном кодирует синтез двух групп белков:

1. неструктурных белков, обслуживаю­щих внутриклеточную репродукцию вируса на разных его этапах;

2. структурных белков, которые входят в состав вириона (геномные, связанные с геномом вируса, капсидные и су-перкапсидные белки).

К неструктурным бел­кам относятся: 1) ферменты синтеза РНК или ДНК (РНК- или ДНК-полимеразы), обеспе­чивающие транскрипцию и репликацию ви­русного генома; 2) белки-регуляторы; 3) пред­шественники вирусных белков, отличающиеся своей нестабильностью в результате быстрого нарезания на структурные белки; 4) фермен­ты, модифицирующие вирусные белки, на­пример, протеиназы и протеинкиназы.

I. ДНК-содержашие вирусы реализуют ге­нетическую информацию так же, как и кле­точный геном, по схеме:

Причем ДНК-содержашие вирусы исполь­зуют для этого процесса клеточную полимеразу (вирусы, геномы которых транскри­бируются в ядре клетки — аденовирусы, па-повавирусы, герпесвирусы) или собственную РНК-полимеразу (вирусы, геномы которых транскрибируются в цитоплазме, например поксвирусы).

II. Плюс-нитевые РНК-содержашие вирусы (например, пикорнавирусы, флавивирусы, тогавирусы) имеют геном, выполняющий функ­цию иРНК; он распознается и транслируется рибосомами. Синтез белков у этих вирусов осу­ществляется без акта транскрипции по схеме:

геномная РНК вируса -> трансляция белка вируса.

III. Геном минус-однонитевых РНК-содержаших вирусов (ортомиксовирусов, парамиксовирусов, рабдовирусов) и двунитевых (реовирусов) служит матрицей, с которой транскрибируется иРНК, при участии РНК-полимеразы, связанной с нуклеино­вой кислотой вируса. Синтез белка у них происхо­дит по схеме:

IV. Ретровирусы (вирусы иммунодефицита человека, онкогенные ретровирусы) имеют уникальный путь передачи генетической ин­формации. Геном ретровирусов состоит из двух идентичных молекул РНК, т. е. является диплоидным. В составе ретровирусов есть осо­бый вирусоспецифический фермент — обрат­ная транскриптаза, или ревертаза, с помощью которой осуществляется процесс обратной транскрипции, т. е. на матрице геномной РНК синтезируется комплементарная однонитевая ДНК (кДНК). Комплементарная нить ДНК копируется с образованием двунитевой ком­плементарной ДНК, которая интегрирует в клеточный геном и в его составе транскриби­руется в иРНК с помощью клеточной ДНК-зависимой РНК-полимеразы. Синтез белков для этих вирусов осуществляется по схеме:

Репликация вирусных геномов, т. е. синтез ви­русных нуклеиновых кислот, приводит к на­коплению в клетке копий исходных вирусных геномов, которые используются при сборке вирионов. Способ репликации генома зависит от типа нуклеиновой кислоты вируса, наличия вирусоспецифических или клеточных полимераз, а также от способности вирусов индуцировать образование полимераз в клетке.

Механизм репликации отличается у вирусов, имеющих:

1) двунитевую ДНК;

2) однонитевую ДНК;

3) плюс-однонитевую РНК;

4) минус-одноните-вую РНК;

5) двунитевую РНК;

6) идентичные плюс-нитевые РНК (ретровирусы).

1. Двунитевые ЛНК-вирусы. Репликация двунитевых вирусных ДНК происходит обычным полуконсервативным механизмом: после рас- плетения нитей ДНК к ним комплементарно достраиваются новые нити. Каждая вновь син­тезированная молекула ДНК состоит из одной родительской и одной вновь синтезирован­ной нити. К этим вирусам относится большая группа вирусов, которые содержат двунитевую ДНК в линейной (например, герпесвирусы, аденовирусы и поксвирусы) или в кольцевой форме, как папилломавирусы. У всех вирусов, кроме поксвирусов, транскрипция вирусного генома происходит в ядре.

Уникальный механизм репликации харак­терен для гепаднавирусов (вируса гепатита В). Геном гепаднавирусов представлен дву-нитевой кольцевой ДНК, одна нить которой короче (неполная плюс-нить) другой нити. Первоначально достраивается (рис. 3.7). Затем полная двунитевая ДНК с помощью клеточ­ной ДНК-зависимой РНК-полимеразы транс­крибируется с образованием небольших моле­кул иРНК и полной однонитевой плюс-РНК. Последняя называется прегеномной РНК; она является матрицей для репликации генома ви­руса. Синтезированные иРНК участвуют в про­цессе трансляции белков, в том числе вирусной РНК-зависимой ДНК-полимеразы (обратной транскриптазы). С помощью этого фермента мигрирующая в цитоплазму прегеномная РНК обратно транскрибируется в минус-нить ДНК, которая, в свою очередь, служит матрицей для синтеза плюс-нити ДНК. Этот процесс за­канчивается образованием двунитевой ДНК, содержащей неполную плюс-нить ДНК.

Однонитевые ДНК-вирусы. Единствен­ными представителями однонитевых ДНК-вирусов являются парвовирусы. Парвовирусы используют клеточные ДНК-полимеразы для создания двунитевого вирусного генома, так называемой репликативной формы послед­ него. При этом на исходной вирусной ДНК (плюс-нить) комплементарно синтезируется минус-нить ДНК, служащая матрицей для синтеза плюс-нити ДНК нового вириона. Параллельно синтезируется иРНК, происхо­дит трансляция вирусных пептидов.

Плюс-однонитевые РНК-вирусы. Эти виру­сы включают большую группу вирусов — пикорнавирусы, флавивирусы, тогавирусы (рис.3.8), у которых геномная плюс-нить РНК вы­полняет функцию иРНК. Например, РНК полиовирусов после проникновения в клетку связывается с рибосомами, работая как иРНК, и на ее основе синтезируется большой поли­пептид, который расщепляется на фрагменты: РНК-зависимую РНК-полимеразу, вирусные протеазы и капсидные белки. Полимераза на основе геномной плюс-нити РНК синтези­рует минус-нить РНК; формируется времен­но двойная РНК, названная промежуточным репликативным звеном. Это промежуточное репликативное звено состоит из полной плюс-нити РНК и многочисленных частично завер­шенных минус-нитей. Когда образованы все минус-нити, они используются как шаблоны для синтеза новых плюс-нитей РНК. Этот механизм используется как для размножения геномной РНК вируса, так и для синтеза боль­шого количества вирусных белков.

Минус-однонитевые РНК-вирусы. Минус -однонитевые РНК-вирусы (рабдовирусы, парамиксовирусы, ортомиксовирусы) имеют в своем составе РНК-зависимую РНК-полиме­разу. Проникшая в клетку геномная минус- нить РНК трансформируется вирусной РНК-зависимой РНК-полимеразой в неполные и полные плюс-нити РНК. Неполные копии выполняют роль иРНК для синтеза вирусных белков. Полные копии являются матрицей (промежуточная стадия) для синтеза минус-нитей геномной РНК потомства

Двунитевые РНК-вирусы. Механизм реп­ликации этих вирусов (реовирусов и ротави-русов) сходен с репликацией минус-однонитевых РНК-вирусов. Отличие состоит в том, что образовавшиеся в процессе транскрипции плюс-нити функционируют не только как иРНК, но и участвуют в репликации: они яв­ляются матрицами для синтеза минус-нитей РНК. Последние в комплексе с плюс-нитями РНК образуют геномные двунитевые РНК вирионов. Репликация вирусных нуклеиновых кислот этих вирусов происходит в цитоп­лазме клеток.

6. Ретровирусы (плюс-нитевые диплоидные РНК-содержащие вирусы). Обратная транс-криптаза ретровирусов синтезирует (на матри­це РНК-вируса) минус-нить ДНК, с которой копируется плюс-нить ДНК с образованием двойной нити ДНК, замкнутой в кольцо (рис. 3.10). Далее двойная нить ДНК интегриру­ет с хромосомой клетки, образуя провирус. Многочисленные вирионные РНК образуются в результате транскрипции одной из нитей интегрированной ДНК при участии клеточной ДНК-зависимой РНК-полимеразы.

Формирование вирусов. Вирионы формиру­ются путем самосборки: составные части вириона транспортируются в места сборки ви­руса — участки ядра или цитоплазмы клетки. Соединение компонентов вириона обуслов­лено наличием гидрофобных, ионных, водо­родных связей и стерического соответствия.

Существуют следующие общие принципы сборки вирусов:

Формирование вирусов — многоступенча­тый процесс с образованием промежуточных форм, отличающихся от зрелых вирионов по составу полипептидов.

Сборка просто устроенных вирусов за­ключается во взаимодействии вирусных нук­леиновых кислот с капсидными белками и в образовании нуклеокапсидов.

У сложноустроенных вирусов сначала фор­мируются нуклеокапсиды, которые взаимо­действуют с модифицированными мембранами клеток (будущей липопротеиновой оболочкой вируса).

Причем сборка вирусов, реплициру­ющихся в ядре клетки, происходит с участием мембраны ядра, а сборка вирусов, репликация которых идет в цитоплазме, осуществляется с участием мембран эндоплазматической сети или плазматической мембраны, куда встраиваются гликопротеины и другие белки оболочки вируса.

У ряда сложноустроенных вирусов минус-нитевых РНК-вирусов (ортомиксовирусов, парамиксовирусов) в сборку вовлекается так назы­ваемый матриксный белок (М-белок), который расположен под модифицированной клеточной ембраной. Обладая гидрофобными свойствами, он выполняет роль посредника между нуклеокапсидом и вирусной липопротеиновой оболочкой.

□ Сложноустроенные вирусы в процессе формирования включают в свой состав неко­торые компоненты клетки хозяина, например липиды и углеводы.

Выход вирусов из клетки. Полный цикл реп­родукции вирусов завершается через 5—6 ч (вирус гриппа и др.) или через несколько су­ток (гепатовирусы, вирус кори и др.). Процесс репродукции вирусов заканчивается выходом их из клетки, который происходит взрывным путем или почкованием, экзоцитозом.

Взрывной путь: из погибающей клетки одновременно выходит большое количество вирионов. По взрывному пути выходят из клетки просто устроенные вирусы, не имею­щие липопротеиновой оболочки.

Почкование, экзоцшпт присущи вирусам, имеющим липопротеиновую оболочку, которая является производной от клеточных мембран. Сначала образовавшийся нуклеокапсид или сердцевина вириона транспортируется к кле­точным мембранам, в которые уже встроены вирусоспецифические белки. Затем в области контакта нуклеокапсида или сердцевины ви­риона с клеточной мембраной начинается вы­пячивание этих участков. Сформировавшаяся почка отделяется от клетки в виде сложно устроенного вируса. При этом клетка способна длительно сохранять жизнеспособность и про­дуцировать вирусное потомство.

Почкование вирусов, формирующихся в цитоплазме, может происходить либо через плазматическую мембрану (например, парамиксовирусы, тогавирусы), либо через мембраны эндоплазматической сети с последующим их выходом на поверх­ность клетки (например, буньявирусы).

Вирусы, формирующиеся в ядре клетки (например, герпесвирусы), почкуются в перинуклеарное пространство через модифициро­ванную ядерную мембрану, приобретая таким образом липопротеиновую оболочку. Затем они транспортируются в составе цитоплазма-тических везикул на поверхность клетки.

Стенли из сока табака, пораженного мозаичной болезнью, выделил в кристалическом виде ВТМ вирус табачной мозайки. На зараженной оболочке обнаруживаются беловатые непрозрачные пятна разной формы бляшки. Добавил: TakMak Опубликованный материал нарушает ваши авторские права? Ультрацентрифугирование — крупные вирусы осаждаются быстрее 3. Фотографирование вирусов в электронном микроскопе Химический состав вирусов. Выход вирионов из клетки реализуется двумя основными путями. Физиология вирусов 6.

Через поврежденные эпителиальные барьеры вирус проникает в кровоток. Вирусемия сопровождается множественными поражениями эндотелия капилляров с повышением их проницаемости. В тяжелых случаях наблюдают обширные геморрагии в легких, миокарде и различных паренхиматозных органах.

Основные симптомы включают в себя быстрое повышение температуры тела с сопутствующими миалгиями, насморком, реферат морфология и физиология вирусов, головными болями.

Возбудитель распространен повсеместно, увеличение заболеваемости наблюдают в холодные месяцы. Основной путь передачи возбудителя — воздушно-капельный. Наиболее восприимчивы дети и лица преклонного возраста. Это вирусы сферической формы со спиральным типом симметрии. Средний размер вириона — нм. Имеют суперкапсидную оболочку с шиповидными отростками. Геном представлен линейной. РС-вирусы Реовирусы относятся к семейству Reoviridae. Органотропность вирусов.


К примеру, вирус бешенства поражает нервную систему. Основные пути передачи вирусов. Воздушно-капельный, пищевой, контактно-бытовой, трансмиссивный. Противовирусный иммунитет. Организм человека обладает врожденной устойчивостью к некоторым вирусам. Противовирусный иммунитет обусловливается как клеточными, так и гуморальными факторами защиты, неспецифическими и специфическими.

Неспецифические факторы. Мощным ингибитором репродукции вирусов является белковое вещество — интерферон. В здоровом организме он содержится в незначительном количестве, а вирусы способствуют продукции интерферона и количество его значительно увеличивается.

Он неспецифичен, так как блокирует репродукцию разных вирусов. Считают, что механизм действия его состоит по сути в том, что он препятствует синтезу белка в клетке хозяина и этим прекращает репродукция вируса. К специфическим факторам противирусного иммунитета относятся вируснейтрализующие антитела, гемагглютинирующие и преципитирующие.

Способы снижения кредитного риска реферат 83 %
Возбудитель эмфизематозного карбункула реферат 9 %
Доклад на тему витилиго 35 %
Отзыв на контрольную работу по математике 98 %
Доклад по химии жидкие кристаллы 26 %

Реакция гемагглютинации, реакция задержки гемагглютинации, реакция непрямой гемагглютинации. Реакция связывание комплемента. Морфология и физиология вирусов - понятие и виды. Классификация и особенности категории "Вирусы.

Морфология и физиология вирусов" Фонетико-фонематическое недоразвитие речи у детей. Внешнеторговые расчёты. Формы безналичных расчётов. Платежный оборот и безналичные расчёты. Организация денежного обращения. Возникновение денежного обращения. Субъективная социология Лаврова. Социальные проблемы рынка труда.

Дискриминация на рынке труда. Эволюционизм и первобытная культура. Источники предпринимательского права. Фотореклама в России в начале 20 века. Понятие и виды хозяйственных товариществ. Генетика Вирусы.

Ультравирусы — мельчайшие возбудители многочисленных заболеваний человека, животных и растений. Несколько слов о вирусах и вирусе гриппа Вирусологи уже хорошо видели многие вирусы, не только видели, но и научились управлять ими, а тайн становилось все больше и больше.

Морфология и физиология вирусов Количество просмотров публикации Вирусы. Хроническая форма репродукции вируса не вызывает быструю гибель клеток, они долгое время остаются жизнеспособными и внешне могут не отличаться от зараженных. Цитопатическое действие ЦПД - видимые под микроскопом морфологические изменения клеток, вплоть до их отторжения от стекла, которые возникают в результате внутриклеточной репродукции вирусов рис.

Характер ЦПД при различных вирусных инфекциях неодинаков. При репродукции одних вирусов парамиксовирусы, герпесвирусы наблюдается слияние клеток с образованием синцития, других энтеровирусы, реовирусы реферат морфология и физиология вирусов сморщивание и деструкция клеток, третьих аденовирусы - агрегация клеток и т.

Вирусные включения - скопление вирусных частиц или отдельных компонентов вирусов в цитоплазме или ядре клеток, выявляемые под микроскопом при специальном окрашивании. Включения различаются по величине, форме, численности.

Вирусы и бактериофаг. Морфология и физиология

Характерные ядерные включения формируются в клетках, зараженных вирусами герпеса, аденовирусами, гриппа, бешенства, оспы и др. Бляшки, или негативные колонии - ограниченные участки, состоящие из дегенеративных клеток, которые вирусы способны образовывать в монослое клеток под агаровым покрытием. Они видны невооруженным глазом как светлые пятна на фоне прижизненно окрашенных нейтральным красным клеток. Одна бляшка соответствует потомству одного вириона. Негативные колонии разных вирусов отличаются по размеру, форме.

Бляшкообразование используют для дифференциации, селекции вирусов, а также для определения их концентрации в исследуемом материале. Титр вируса, установленный реферат морфология и физиология вирусов методом, выражают числом бляшкообразующих единиц БОЕ в 1 мл.

Если вирусы не размножаются в культуре клеток, то живые клетки в процессе своего метаболизма выделяют кислые продукты, что ведет к изменению рН среды и цвета индикатора фенолового красного на желтый.

При продукции вирусов нормальный метаболизм клеток нарушается, клетки гибнут, и среда сохраняет свой первоначальный красный цвет.

Вирусы

Таким образом, красный цвет среды указывает на наличие вируса и прекращение жизнедеятельности клеток. Гемадсорбция - способность культур клеток, инфицированных вирусами, адсорбировать на своей поверхности эритроциты определенных видов животных и птиц.

Гемадсорбция проявляется скоплением в виде гроздей эритроцитов, адсорбированных на инфицированных вирусом клетках. Интерференция - некоторые вирусы можно обнаружить в культуре ткани только по наличию экономия в быту. Испытуемый вирус вводится в культуру клеток первым, через несколько дней туда же вносят стандартную дозу вируса, обладающего выраженной цитопатической активностью или способностью реферат морфология и физиология вирусов гемадсорбцию.

Природа нашей планеты многообразна. Наряду с растениями, животными, насекомыми и бактериями ее давно населяют вирусы - самые мелкие представители живой природы. Эти малютки способны вызвать различные заболевания у человека, животных, растений и даже у бактерий. Причем их строение настолько своеобразно, что ученые до сих пор не пришли к единой точке зрения, относить вирусы к живым существам или.

Да потому, что природа вируса радикально отличается от других живых существ. С одной стороны, как и все живые существа, вирус рождается, размножается и погибает. Но вот делает он это весьма специфично, так, как больше никто в живой природе. Типичный вирус состоит из нуклеиновой кислоты дезоксирибонуклеиновой или рибонуклеиновой и белкового скелета.

Причем белковый скелет нужен для предохранения молекулы нуклеиновой кислоты от повреждений, а также для атаки на клетку, которую вирус избирает в качестве жертвы.

А молекула кислоты предназначена для сохранения наследственной информации. Самое главное отличие вируса от других живых организмов в том, что никаких веществ для своего размножения вирусы синтезировать не в состоянии. Вирус проникает внутрь живой клетки. При этом молекула нуклеиновой кислоты, опираясь на наследственные данные, которые она несет, запускает внутри клетки синтез молекул нуклеиновой кислоты и белков, необходимых для построения вируса из органической материи клетки.

После того, как синтез завершается, происходит сборка новых вирусов. Готовые вирусы покидают клетку и отправляются на поиски новых жертв. А что же клетка? А клетка, породившая вирусы, гибнет, причем это может происходить с разной скоростью.

Если скорость гибели клеток и возникновения новых вирусов невысока, то этот процесс может проходить практически без каких-либо проявлений, с тем чтобы потом помчаться вперед, как курьерский поезд, причем остановить его становится достаточно тяжело.

Именно поэтому эпидемии испанки так в свое время назывался грипп в начале двадцатого века служили реферат морфология и физиология вирусов гибели тысяч людей. Именно потому, что процесс размножения вирусов реферат морфология и физиология вирусов напоминает процесс жизнедеятельности паразитов в природе, вирусы и стали называть внутриклеточными паразитами.

Несмотря на многолетнюю борьбу, человечество пока не умеет эффективно бороться с вирусными инфекциями. Какие-то вирусы мы научились уничтожать, тот же вирус гриппа, в то время, как другие вирусы, например, вирус СПИДа, пока не поддаются эффективному уничтожению. Но такую разрушительную природу вирусов человек поставил себе на службу. Есть целый класс медицинских препаратов, которые называются бактериофаги.

1. Вирусы гриппа

По своей сути бактериофаг - не что иное, как культура вирусов, которая предназначена для уничтожения определенных бактерий. Бактерии сами являются источниками заболеваний человека, поэтому вирус, направленный на их уничтожение, показал себя с лучшей стороны.

Не говоря уже о том, что лечение при помощи бактериофагов заметно эффективнее, а, и это самое главное, также дает существенно меньше побочных эффектов, чем более привычная борьба с бактериями и другими болезнетворными микроорганизмами при помощи антибиотиков.

Бактериофамги -- вирусы, избирательно поражающие бактериальные клетки. Чаще всего бактериофаги размножаются реферат морфология и физиология вирусов бактерий и вызывают их лизис. Как правило, бактериофаг состоит из белковой оболочки и генетического материала одноцепочечной или двуцепочечной нуклеиновой кислоты ДНК или, реже, РНК.

Бактериофаги различаются по химической структуре, типу нуклеиновой кислоты, морфологии и характеру взаимодействия с бактериями. По размеру бактериальные вирусы в сотни и тысячи раз меньше микробных клеток. Типичная фаговая частица вирион состоит из головки и хвоста.

  • С этой целью используют эмбрионы дневного возраста.
  • Круг восприимчивых животных для некоторых вирусов очень широк, к примеру, к вирусам бешенства чувствительны сногие животные.
  • Одни учение предполагают, что вирусы являются потомками неклеточных форм живых паразитических микроорганизмов.
  • Вопрос о происхождении вирусов является предметом многих исследований и дискуссий.
  • Хроническая форма репродукции вируса не вызывает быструю гибель клеток, они долгое время остаются жизнеспособными и внешне могут не отличаться от зараженных.
  • Хотя они переносят всю информацию для запуска собственной репродукции в соответствующем хозяине, у них отсутствуют механизмы для выработки энергии и рибосомы для синтеза белка.
  • В году Гордон и Смит установили, что некоторые растения заражаются свободной нуклеиновой кислотой ВТМ, а не целой частицей нуклеотида.

Длина хвоста обычно в раза больше диаметра головки. В головке содержится генетический материал -- одноцепочечная или двуцепочечная РНК или ДНК с ферментом транскриптазой в неактивном состоянии, окружённая белковой или липопротеиновой оболочкой -- капсидом, сохраняющим геном вне клетки.

Нуклеиновая кислота и капсид вместе составляют нуклеокапсид.

1.Введение.

Бактериофаги могут иметь икосаэдральный капсид, собранный из множества копий одного или двух специфичных белков. Обычно углы состоят из пентамеров белка, а опора каждой стороны из гексамеров того же или сходного белка.

Более того, фаги по форме могут быть сферические, лимоновидные или плеоморфные. Хвост, или отросток, представляет собой белковую трубку -- продолжение белковой оболочки головки, в основании хвоста имеется АТФаза, которая регенерирует энергию для инъекции генетического материала.


Существуют также бактериофаги с коротким отростком, не имеющие отростка и нитевидные. Головка округлой, гексагональной или палочковидной формы диаметром нм. Отросток толщиной и длиной нм. Одни из реферат морфология и физиология вирусов округлы, разработка бизнес плана предприятия нитевидны, размером 8x нм.

Длина нити нуклеиновой кислоты во много раз превышает размер головки, в которой находится в скрученном состоянии, и достигает мкм. Отросток имеет вид полой трубки, окружённой чехлом, содержащим сократительные белки, подобные мышечным. У ряда вирусов чехол способен сокращаться, обнажая часть стержня. На конце отростка у многих бактериофагов имеется базальная пластинка, от которой отходят тонкие длинные нити, способствующие прикреплению фага к бактерии.

Фаги, как и все вирусы, являются абсолютными внутриклеточными паразитами. Хотя они переносят всю информацию для запуска собственной репродукции в соответствующем хозяине, у них отсутствуют механизмы для выработки энергии и рибосомы для синтеза белка. У некоторых фагов в геноме содержится несколько тысяч оснований, тогда как фаг G, самый крупный из секвенированных фагов, содержит пар оснований -- вдвое больше среднего значения для бактерий, хотя всё же недостаточного количества генов для такого важнейшего бактериального органоида, как рибосомы.

Бактериофаги представляют собой наиболее многочисленную, широко распространённую в биосфере и, предположительно, наиболее эволюционно древнюю группу вирусов.

Приблизительный размер популяции фагов составляет более фаговых частиц. В природных условиях фаги встречаются в тех местах, где есть чувствительные к ним бактерии. Чем богаче тот или иной субстрат почва, выделения человека и животных, вода и т. Так, фаги, лизирующие клетки всех видов почвенных микроорганизмов, находятся в почвах. Нуклеокапсид сложноорганизованных вирионов покрыт внешней оболочкой — суперкапсидом, которая может включать в себя множество функционально различных липидных, белковых, углеводных структур.

У некоторых вирусов в ДНК встречается урацил. Обеспечивают репликацию вирусных нуклеиновых кислот и процессы репродукции вируса. Это ферменты, за счет которых происходит увеличение количества копий материнской молекулы, или белки, с помощью которых на матрице нуклеиновой кислоты синтезируются молекулы, обеспечивающие реализацию генетической информации. Они складываются в геометрически правильные структуры, в которых различают несколько типов симметрии: спиральный, кубический образуют правильные многоугольники, число граней строго постоянно или смешанный.

За счет них происходит взаимодействие вирусов с реферат морфология и физиология вирусов клеткой. Выполняют защитную и рецепторную функции. После адсорбции вирионы проникают внутрь путем эндоцитоза виропексиса или в результате слияния вирусной и клеточной мембран.

Образующиеся вакуоли, содержащие целые вирионы или их внутренние компоненты, попадают в лизосомы, в которых осуществляется депротеинизация, т. Освобожденные от белков нуклеиновые кислоты вирусов проникают по клеточным каналам в ядро клетки или остаются в реферат морфология и физиология вирусов.

Если вирусы не размножаются в культуре клеток, то живые клетки в процессе своего метаболизма выделяют кислые продукты, что ведет к изменению рН среды и цвета индикатора фенолового красного на желтый. Сообщите нам.

Нуклеиновые кислоты вирусов реализуют генетическую программу по созданию вирусного потомства и определяют наследственные свойства вирусов. С помощью специальных ферментов полимераз снимаются копии с родительской нуклеиновой кислоты происходит репликацияа также синтезируются информационные РНК, которые соединяются с рибосомами и осуществляют синтез дочерних вирусных белков трансляцию.

После того как в зараженной клетке накопится достаточное количество компонентов вируса, начинается сборка вирионов потомства. Цейтлин и О.


Зегал эксперементально получили вариант ВТМ, необладающий белковой оболочкой, выяснили, что у деффектных ВТМ частиц белки распологаются беспорядочнно, и нуклеиновая кислота ведет себя, как полноценный вирус.

Одним из крупнейших открытий в вирусологии является открытие американских ученых Д. Балтимора и Н. Темина, которые нашли в структуре ретровируса ген, кодирующий фермент - обратную транскриптазу.


За это открытие они получили Нобелевскую премию. В знак признания выдающихся заслуг Д.

Ивановского, присуждаемая один раз в три года. По мере изучения природы вирусов в первом полустолетии после их открытия Д. Ивановским формировались представления о вирусах как о мельчайших организмах.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции