Не могу найти вакцину от х вируса

Пандемический грипп (H1N1) - 2009 Краткое сообщение № 7

6 АВГУСТА 2009 г. | ЖЕНЕВА - После выявления и изоляции нового штамма вируса гриппа с пандемическим потенциалом требуется примерно 5-6 месяцев для получения первых партий одобренной вакцины. Такие сроки необходимы в связи с тем, что процесс производства новой вакцины включает множество последовательных этапов, каждый из которых требует определенного времени. Ниже приводится краткое описание процесса разработки вакцины - от самого начала (получение образца вируса) до конца (наличие вакцины для использования).

1. Выявление нового вируса: В рамках сети, созданной для проведения эпиднадзора, лаборатории во всем мире осуществляют плановый сбор образцов циркулирующих вирусов гриппа и направляют их в Сотрудничающие центры ВОЗ по справочным материалам и научным исследованиям в области гриппа для проведения анализа. Первый этап в процессе производства пандемической вакцины начинается, когда какой-либо из центров выявляет ранее неизвестный вирус гриппа, который значительно отличается от циркулирующих штаммов, и информирует об этом факте ВОЗ.

Вакцинный вирус выращивается в яйцах, так как вирус гриппа хорошо в них размножается и яйца легкодоступны.

2. Подготовка вакцинного штамма (называемого вакцинным вирусом): Данный вирус должен быть сначала адаптирован к использованию для производства вакцины. Чтобы сделать вакцинный вирус менее опасным и более способным к выращиванию в куриных яйцах (технология, используемая большинством производителей), он смешивается со стандартным лабораторным штаммом вируса, и создаются условия для их совместного роста. Через некоторое время образуется гибридный вирус, содержащий внутренние компоненты лабораторного штамма и внешние компоненты пандемического штамма. Для получения гибридного вируса требуется примерно три недели.

3. Верификация вакцинного штамма: После получения гибридного вируса следует провести его тестирование, чтобы убедиться в том, что он действительно производит внешние белки пандемического штамма, является безопасным и может выращиваться в яйцах. По завершении этого процесса, который занимает примерно три недели, вакцинный штамм передается производителям вакцины.

4. Приготовление реагентов для тестирования вакцины (с референс-реагентами): Одновременно с этим Сотрудничающие центры ВОЗ изготавливают стандартизированные вещества (называемые реагентами), которые предоставляются всем производителям вакцины. Они позволяют измерять, какое количество вируса они производят, и обеспечивают наличие надлежащей дозы вакцины во всех упаковках. Этот этап требует, как минимум, три месяца и часто создает серьезные трудности для производителей.

1. Оптимизация условий для роста вируса: Производители вакцины берут гибридный вакцинный вирус, который они получают из лабораторий ВОЗ, и исследуют различные условия его роста в яйцах для нахождения оптимальных условий. Этот процесс занимает примерно три недели.

2. Производство нефасованной вакцины: Для производства большинства противогриппозных вакцин используются 9-12-дневные оплодотворенные куриные яйца. Вакцинный вирус вводится в тысячи яиц, которые затем инкубируются в течение 2-3 дней для размножения вируса. После этого собирается яичный белок, который к этому времени уже содержит миллионы вакцинных вирусов, и из яичного белка выделяется вирус. Частично очищенный вирус убивают с помощью химических веществ. Затем внешние белки вируса очищаются, в результате чего получают несколько сотен или тысяч литров очищенных вирусных белков, которые называются антигенами и являются активными ингредиентами вакцины. Для производства каждой партии антигенов требуется примерно две недели, при этом приготовление новой партии можно начинать через каждые несколько дней. Размер партии зависит от того, сколько яиц производитель может получить, инокулировать и инкубировать. Другим фактором является урожай вируса с каждого яйца. После получения одной партии процесс повторяется так часто, как это необходимо для производства требуемого количества вакцины.

3. Контроль качества: Его можно начинать только после поставки лабораториями ВОЗ реагентов для тестирования вакцины, как описано выше. Каждая партия тестируется и проверяется на стерильность антигена в нефасованной форме. Этот процесс занимает две недели.

4. Расфасовка и выпуск вакцины: Партия вакцины разводится до желаемой концентрации антигена, расфасовывается в ампулы или шприцы и снабжается этикетками. Некоторые из них тестируются на предмет:

  • стерильности
  • подтверждения концентрации белков
  • безопасности путем тестирования на животных.

Этот процесс занимает две недели.

5. Клинические испытания: В некоторых странах каждая новая противогриппозная вакцина должна апробироваться на нескольких испытуемых для подтверждения того, что она действует желаемым образом. Это требует, как минимум, четыре недели. В некоторых странах такое требование может отсутствовать, поскольку проводилось множество клинических испытаний с использованием аналогичной ежегодной вакцины, и это позволяет допустить, что новая пандемическая вакцина будет действовать аналогичным образом.

Прежде чем вакцина может поступить в продажу или вводиться людям, необходимо получить соответствующее разрешение регулирующих ведомств. Каждая страна имеет собственный регулирующий орган и свои правила. Если вакцина производится с использованием тех же процессов, что и вакцина против сезонного гриппа, и изготавливается на том же производственном предприятии, разрешение может быть получено очень быстро (в течение 1-2 дней). Регулирующие ведомства в ряде стран могут требовать проведения клинических испытаний, прежде чем разрешить выпуск вакцины, что требует дополнительного времени.

Весь процесс, при самом оптимистичном сценарии, может быть завершен через 5-6 месяцев. После этого первая партия пандемической вакцины может быть окончательно готова к распределению и использованию.

Обозначения: Пунктирные стрелки с предшествующими сплошными стрелками показывают, сколько времени требуется в первый раз для завершения каждого этапа работы (сплошные стрелки), который затем повторяется (пунктирные стрелки). Сплошные линии показывают, что данный этап работы занимает ограниченный период времени.

Вирусы постоянно эволюционируют, меняя старые или приобретая новые последовательности в РНК или ДНК. Крупные мутации так сильно меняют строение вируса — а значит, его поведение и устойчивость к имеющимся лекарствам и вакцинам, — что могут вызывать серьезные вспышки заболеваний.

Например, вирус гриппа мутирует каждый год, и за последние сто лет мутации привели к нескольким таким вспышкам:

испанский грипп в 1918—1920 годах (вызван штаммом вируса H1N1);
азиатский грипп в 1957—1958-м (H2N2);
гонконгский грипп в 1968—1969 годах (H3N2);
птичий грипп в 2003—2008 годах (H5N1);
свиной в 2009—2010-м (А/H1N1).

Сегодняшние вакцины от гриппа содержат вирусы, которыми заражаются чаще всего, — А/H1N1 и А/H3N2 и либо один, либо два штамма вируса гриппа B. ВОЗ уделяет много внимания вакцинам от гриппа и дважды в год обновляет рекомендации по их составу, чтобы учесть новые распространившиеся мутации.


Семейство коронавирусов известно с 1960-х. Его классические штаммы ежегодно вызывают у людей ОРВИ и часто не диагностируются. Лечат такие заболевания как все неосложненные ОРВИ — симптоматически. При этом новые виды коронавируса спровоцировали несколько недавних вспышек тяжелых заболеваний: атипичную пневмонию (она же SARS, тяжелый острый респираторный синдром) в 2002-м, MERS (ближневосточный респираторный синдром) в 2012-м и теперь — COVID-19.

Вызывающий COVID-19 вирус SARS-CoV-2, как видно из названия, сильно похож на SARS-CoV, который является причиной атипичной пневмонии. По некоторым данным, их генетический материал схож на 79%. И хотя для SARS характерно большее количество летальных случаев, способность заражать выше у SARS-CoV-2. Вакцину от SARS-CoV пока не создали.

Иммунный ответ на инфекцию выглядит примерно так. Сначала с микробом взаимодействуют первичные иммунные клетки. Они формируют сигнальные молекулы опасности, которые призывают лейкоциты, — а те, в свою очередь, уничтожают чужеродные тела и поврежденные клетки.

В результате у человека на какой-то срок остается иммунитет к этому вирусу.


Для одного штамма гриппа или коронавируса иммунитет действует около сезона. Но поскольку вирусов много, даже за сезон можно переболеть ОРВИ несколько раз.

Вспышки тяжелых заболеваний останавливаются благодаря тому, что с ходом эпидемии образуется широкая прослойка людей, контактировавших с опасным штаммом, но не заболевших. Вместе с выздоровевшими они постепенно формируют коллективный иммунитет — через них вирус не передается, и течение эпидемии останавливается.

Вакцина позволяет выработать иммунитет еще до контакта организма с вирусом. Таким образом она помогает ускорить появление коллективного иммунитета и поддерживает его — предотвращая ситуацию, когда уже побежденная эпидемия возвращается. Поэтому так важно делать прививки от кори, полиомиелита, гепатита В.

Создание вакцины начинается с поиска антигена — того маркера, по которому антитела найдут микроб. Затем разработчики ищут такую форму введения антигена, которая с наибольшей вероятностью обеспечит иммунный ответ. Часть вакцин делают это за счет ослабленного или убитого патогена, другие содержат фрагменты ДНК возбудителя.

Как правило, основная сложность состоит в том, чтобы подобрать нужный антиген (который, как и остальная часть вируса, постоянно мутирует). При некоторых инфекциях вроде ВИЧ и гепатита С затруднение связано с особенностями иммунного ответа: нужно найти стабильную и постоянную часть вируса, которая позволит сформировать защитные свойства.

После разработки вакцины должны пройти ее клинические испытания и оценка безопасности и эффективности. Это может занимать 12-18 месяцев, а то и больше: нужно выяснить, как усваивается и выводится новый препарат, какая дозировка эффективна, насколько он безопасен, как ведет себя при разной степени тяжести заболевания и в сочетании с другими препаратами; результаты сравнивают с контрольной группой, которой дают плацебо. После внедрения вакцины за ней продолжают наблюдать.

Клинические испытания занимают 12-18 месяцев, а то и больше.


Иногда вакцины разрабатывают десятилетиями. Среди недавних прорывов — прошлогодний старт пилотной программы вакцины RTS,S против малярии. Проект начали реализовывать в Гане и Кении, третьей страной станет Малави. Разработка и внедрение пилотной программы заняли более 30 лет. Только в прошлом году ВОЗ признала безопасной и эффективной вакцину против вируса Эбола, которую широко испытывали несколько лет назад.

Поэтому предугадать, когда появится вакцина от COVID-19, невозможно. Разработкой занимается несколько десятков компаний, но все либо только приступили, либо готовятся к клиническим испытаниям — а значит, в этом году вакцину мы точно не увидим.

При вспышках острых инфекционных заболеваний важна не только работа над созданием вакцины — многое зависит от медицинских и эпидемиологических служб. Важно отследить цепочку заражения и изолировать тех, кто находится в зоне риска. Государства должны позаботиться о том, чтобы снизить поток туристов, особенно в страны и из стран с повышенным уровнем заболеваемости.

Каждая новая вспышка ОРВИ напоминает нам о том, что важно придерживаться простых правил: заболевшие остаются дома и вызывают врача; они и ухаживающие за ними надевают маску; все моют руки больше 20 секунд с мылом или используют спиртосодержащий антисептик, своевременно вакцинируются и стараются вести здоровый образ жизни. Так можно минимизировать риски для себя и посильно помочь в борьбе с эпидемией.

Теорию нобелевского лауреата Монтанье подтвердил профессор Чумаков

два дня назад в 17:38, просмотров: 78915


Вспомним, о чем говорили Люк Монтанье и Жан-Франсуа Лемуан.

Нобелевский лауреат заявил, что коронавирус, ответственный за пандемию, был, скорее всего, искусственно создан в поисках вакцины против СПИДа, но случайно выпущен из китайской лаборатории в Ухане. По мнению Монтанье, это могло произойти в течение последней трети 2019 года.

Нобелевского лауреата, который когда-то преуспел в расшифровке генома ВИЧ, очень заинтересовал коронавирус, вызвавший пандемию. Он решил познакомиться с ним поближе, пригласив в помощники математика Жана-Клода Переза – специалиста в вычислительной биологии.

Природа сама рано или поздно убьет COVID-19, но можно ей помочь

По мнению ученого, даже если мы ничего не будем делать, в итоге все придет в норму. Но эта нормализация обернется многочисленными смертями "Мы можем ускорить процесс возвращения к норме, используя принцип РНК-интерференции, уничтожая последовательность РНК этого вируса, даже если человек уже заражен", - сказал Монтанье.

Высказать свое мнение по поводу выступления Люка Монтанье, мы попросили профессора, члена-корреспондента РАН, главного научного сотрудника Института молекулярной биологии им. В.А. Энгельгардта РАН, сотрудника ФНЦ исследований и разработки иммунобиологических препаратов им. М. П. Чумакова. Петра Чумакова.

– В Китае ученые Уханьской лаборатории на протяжении более 10 лет активно занимались разработкой различных вариантов коронавируса. Причем они это делали, якобы не с целью создания болезнетворных вариантов, а для изучения их патогенности. Они делали совершенно безумные, на мой взгляд, вещи: к примеру, вставки в геном, которые придавали вирусу способность заражать клетки человека. Сейчас это все было проанализировано. Картина возможного создания нынешнего коронавируса потихоньку вырисовывается.


– Вы изучали последовательность генома SARS-CoV-2? Там действительно есть искусственные вставки?

– Там есть несколько вставок, то есть подмены естественной последовательности генома, которые и придали ему особые свойства. Интересно, что все свои работы китайцы и американцы, которые с ними работали, публиковали в открытой прессе. Я даже удивляюсь, почему эта предыстория очень медленно доходит до людей! Думаю, что все-таки будет инициировано расследование, по результатам которого выработают новые правила, регулирующие работу с геномами таких опасных вирусов.

Так что выводы Монтанье не беспочвенны, за ними стоят очень серьезные подозрения. Сейчас рано кого-то осуждать. Наверняка, варианты вируса создавались без злого умысла, возможно, как говорит Монтанье, в Ухане хотели создать вакцину от ВИЧ. Хотя никто не исключает, что за спиной ученых стояли кураторы, которые направляли действия в другом, нужном им направлении. Ведь известно, что лаборатория частично финансировалась небезызвестным фондом Джорджа Сороса, имеющим неоднозначную репутацию в мире.

– Так как же мог вирус вырваться наружу?

– Кто знает? Может, им инфицировали мышь, а она вырвалась из вивария и улетела. Тут можно сколько угодно сценариев строить.

– Как вы считаете, Китай допустит комиссию по расследованию в Ухань, если такая будет создана?

– Они вынуждены будут допустить. На фоне того, что уже сейчас раздаются голоса со стороны президента США о возможной денежной компенсации за содеянное, в интересах Китая будет доказывать свою непричастность к заражению всего мира коронавирусом. Возможно, во всем обвинят лишь отдельных людей, но не исключено, что среди виновных могут оказаться и американские консультанты.

– Там нет собственно вставок ВИЧ, это похожие на них элементы, которые делают вирус опасным для человека. Когда вирус начинает мутировать, эти вставки становятся не нужны, и вирус их теряет, избавляется от них.

– Почему вирусу не нужны опасные вставки?

– Потому что он не должен убивать. Убийство организма своего хозяина противоречит его природе.

– Как мило. А что же ему нравится?

– Самое лучшее для вируса — это вызывать бессимптомную инфекцию, когда он спокойно может размножаться, переходя от человека к человеку. Поэтому болезнетворный вариант вируса среди людей постепенно утрачивает свою патогенность и превращается в безвредный вариант.

– Нобелевский лауреат вспомнил про такой способ борьбы с опасными вирусами, как РНК-интерференция. Можете пояснить, что это?

– Живую вакцину против полиомиелита?

- Да, как показала практика, она может противостоять короткое время против любых болезнетворных вирусов. Когда мы сталкиваемся с новыми инфекциями, для которых не создано ни лекарств, ни вакцин, это средство можно использовать для защиты определённых групп населения. К примеру, тех, кто стоит на переднем фланге борьбы с вирусом, тех же медиков в больницах.

– А если человек уже заражен, только пока не знает об этом?

– Наши исследования показали, что если симптомы отсутствуют, то полиомиелитная вакцина поможет побороть попавший, но не развившийся новый вирус, и человек не заболеет.

- Почему же тогда этот метод сейчас на применяют?

– Мы боремся за это, пишем письма в Минздрав. Дело в том, что исследования эти проходили так давно, что сегодня и специалистов-то, участвовавших в них, по-видимому кроме меня уже никого не осталось. Сейчас я активно рассылаю нашим чиновникам свои прежние статьи на этот счет.

Заголовок в газете: Кто выпустил вирус из бутылки?
Опубликован в газете "Московский комсомолец" №28248 от 24 апреля 2020 Тэги: Нобелевская премия, Наука, Коронавирус, Грипп, Лекарства, Анализы Организации: Министерство здравоохранения Места: Китай, США, Индия

  • 1716
  • 0,0
  • 2
  • 0

Есть шанс, что вакцина от коронавируса будет доступна уже в начале 2021 года

Итак, давайте поговорим о разработке вакцин, ведь для реализации таких планов все должно сработать идеально. Вот ссылка на хороший обзор вакцин против коронавируса, опубликованный в Nature Reviews Drug Discovery [1]. На сайте ВОЗ размещен официальный список вакцин, а BioCentury постоянно обновляет в открытом доступе сводки о вакцинах и других методах лечения, которые находятся в клинических или доклинических исследованиях. Только что они опубликовали превосходный обзор о вакцинах, который я рекомендую прочитать после моего поста.

Обзор в Nature Reviews Drug Discovery упоминает 115 (!) программ вакцинации, из которых по 37 нет никакой дополнительной информации, а 78, безусловно, реальны. Из этих 78 пять уже вошли в клинические исследования, и число их будет быстро расти. Это вакцина mRNA1273 от компании Moderna, которая, как следует из названия, является мРНК-вакциной, и INO4800 от компании Inovio, представляющая собой ДНК-плазмиду. Также есть две клеточные вакцины из Шэньчжэньского геноиммунного медицинского института: LV-SMENP-DC, вакцина из дендритных клеток, модифицированных лентивирусными векторами для экспрессии вирусных белков, и вакцина из искусственных антигенпрезентирующих клеток (aАРС). И, наконец, есть более традиционная рекомбинантная белковая вакцина Ad5-nCoV от компании CanSino.

Давайте рассмотрим, что всё это значит. Как видно из приведенного перечня, подходы к созданию вакцины весьма разнообразны, и это еще не весь спектр. Если обратиться к доклиническим кандидатам, мы увидим также вирусоподобные частицы, вирусные векторы (как реплицирующиеся, так и не реплицирующиеся), живые аттенуированные вирусы, инактивированные вирусы и многое другое. Мы видим, что существует множество способов вызвать иммунный ответ. Каковы же различия между ними?

Типы вакцин

Следующий класс — вакцины на основе инактивированных вирусов. В этом случае вирусы, даже если вы считаете их живыми существами (я — нет), мертвы. Раньше вирусный препарат для этого нагревали, теперь же это чаще всего делается при помощи дезинфицирующих средств, вызывающих денатурацию вируса, таких как формалин или бета-пропиолактон. Эти вещества изменяют белки вируса так, что вирус уже не может заражать клетки, но не настолько сильно, чтобы они не вызывали иммунный ответ. Это сродни искусству; такую инактивацию необходимо провести и испытать несколько раз, чтобы получить воспроизводимый иммунный ответ и воспроизводимый способ производства неактивного вируса. Как вы понимаете, введение такого инактивированного вируса часто не столь эффективно, как описанный выше подход с живыми ослабленными вирусами, которые заставляют клетки человека самостоятельно производить вирусные белки. Приходится прибегать к старой доброй схеме повторной вакцинации (праймирование и дальнейшее бустирование). К этому типу относятся, например, вакцины против гепатита А и сезонного гриппа.

Еще один распространенный вид вакцины — субъединичная — это отдельный белок, фрагмент белка или субъединицы патогена (при некоторых бактериальных заболеваниях это может быть также токсин, вырабатываемый бактерией). Идея заключается в том, чтобы выбрать белок, который вызывает сильный иммунный ответ. Таким образом, существует множество потенциальных кандидатов на эту роль, и проработка каждого — самостоятельный процесс. Плюсом такого подхода является то, что выбранный белок можно производить рекомбинантно в больших количествах. Конечно, вместо белка можно взять гликопротеин или даже кусочек полисахарида из наружной оболочки патогена, поскольку они могут быть весьма характерными для конкретной бактерии. Самое сложное здесь — получить достаточный иммунный ответ, ведь такие фрагменты могут быть не столь эффективны для запуска выработки антител, как полноценный патоген. Поэтому, как правило, для успешной работы таких вакцин необходимы адъюванты (о них — ниже). Вакцины такого типа применяются против опоясывающего лишая, гепатита В, вируса папилломы человека, менингококка, сезонного гриппа и многих других патогенов.

Более новый подход — ДНК-вакцина. Это кольцевая ДНК-плазмида, кодирующая определенный белок-антиген, ген которого скомбинирован с сильными промоторными сигналами и стоп-сигналами на концах нуклеотидной последовательности. Идея в том, что такая плазмида может быть поглощена клетками, в которых она далее начинает транскрибироваться в РНК, а затем транслироваться в белок, запускающий иммунный ответ. Как и в случае с аттенуированным вирусом, антигенные белки производятся клеткой, поэтому они правильно свернуты и обладают необходимыми посттрансляционными модификациями, которые могут быть критичны для формирования против них иммунного ответа. Можно также взять известный вирус (далекий от патогена, против которого проводится вакцинация) и реорганизовать его ДНК, вставив в нее ген для производства нужного белка-антигена. В этом случае мы как бы возвращаемся к методике живого ослабленного вируса, но путем составления этого вируса из разных частей. Это очень похоже на генную терапию, которая также обычно использует вирусные векторы. На сегодняшний момент не существует человеческой вакцины, в которой используется какой-либо из вышеописанных методов получения ДНК-вакцины, однако для лошадей, например, такая вакцина против вируса Зика уже зарегистрирована. Некоторые препараты исследовались, однако получить достаточный иммунный ответ на них не удалось. Другой сложный момент в разработке такого типа вакцин — стабильность ДНК-плазмиды как при хранении, так и после инъекции. На решение этой проблемы были потрачены значительные деньги при разработке методов генной терапии, и с годами ситуация улучшилась. В целом, однако, я бы сказал, что ДНК-вакцина против SARS-CoV-2 стала бы настоящим прорывом в этой области.

Аналогично дела обстоят и с мРНК-вакцинами [7]. Концептуально они похожи на ДНК-вакцины, однако вы сразу перескакиваете к этапу мРНК. Я немного писал об этом в посте про CureVac — иммуногенность такого рода препаратов была отмечена как неожиданный побочный эффект в экспериментах, где животным вводили мРНК, и исследователям пришло в голову использовать это свойство для создания вакцин. Как и в случае ДНК-вакцин, на мРНК-вакцину можно получить два вида иммунного ответа: клетки врожденного иммунитета могут распознать последовательность чужеродных нуклеиновых кислот, плавающих вокруг, как признак инфекции, а клетки адаптивного иммунитета выработать к полученным после трансляции мРНК белкам антитела. Одна из задач при таком подходе — ослабить врожденный иммунный ответ и усилить адаптивный, обеспечивающий длительную защиту, которую мы хотим получить при вакцинации. На днях появилась информация о выздоравливающем от COVID-19 молодом пациенте, который в ходе болезни, по-видимому, не выработал антитела против вируса. Это пример подобного рода проблемы: сильный врожденный иммунный ответ может победить вирус, но не дать пациенту выработать долговременный иммунитет против него.

мРНК-вакцины имеют несколько потенциальных преимуществ перед ДНК-вакцинами, а, возможно, и перед всеми описанными типами вакцин. мРНК — это самая простая конструкция из тех, которую можно себе представить, так что при ее использовании нет проблем с иммунным ответом на вектор, который часто препятствует повторному введению других вакцин. Кроме того, мРНК не может интегрироваться в геном клетки организма. На протяжении многих лет большой проблемой с мРНК-вакцинами была стабильность мРНК: ей нужно не деградировать после введения, а эффективно проникать в клетки и транслироваться в белок. На данный момент многие из этих вопросов практически решены путем внесения изменений в саму последовательность РНК и в формуляцию (рецептуру) раствора, в виде которого она находится перед введением. Правда, ДНК-вакцины существуют дольше мРНК-вакцин, но, как уже говорилось, всё еще не дошли до применения у человека. Превзойдут ли их мРНК-вакцины или нас ждет разочарование? В условиях пандемии коронавируса мы выясним это быстрее, чем планировали.

Адъюванты

Есть еще одна ключевая методика вакцинации, которая применима ко всем вышеописанным методам, — использование адъювантов [8]. Очевидно, что основная вещь, которую мы хотим получить при вакцинации, — это устойчивый длительный иммунный ответ, и оказалось, что различные добавки могут способствовать его появлению, играя на равновесии между врожденным и адаптивным иммунными ответами, упомянутыми выше. Идея состоит в том, чтобы получить оптимальный переход от врожденных механизмов иммунитета к адаптивным, а именно к выработке антител. Для быстрого ознакомления с принципами работы иммунной системы можно прочитать этот пост, хотя, конечно, существует много материалов по этому вопросу . Ключевой процесс в данном случае — взаимодействие антигенпрезентирующих клеток и хелперных Т-клеток.

Изучение адъювантов началось с того, что в 20-х годах прошлого века французский ветеринар Гастон Рамон заметил, что при инъекциях лошадям и дальнейшем заборе от них плазмы крови выход антител был выше у животных с развившейся сильной воспалительной реакцией в месте инъекции. Он начал экспериментировать с добавками, вызывающими местную реакцию, включая такое вещество, как тапиока (крахмал из клубней маниока). В то же время британский иммунолог Александр Гленни разрабатывал вакцины против дифтерии и заметил, что те, которые содержали соли алюминия, были гораздо более эффективными. Никто не знал подробностей этих процессов, но и почти столетие спустя соли алюминия всё еще чрезвычайно распространены в производстве вакцин. Чуть больше мы узнали в 90-х годах XX века, когда впервые за многие десятилетия появились новые адъюванты. Так, вакцина GSK против опоясывающего лишая содержит липопротеины, выделенные из бактерий сальмонелл, а также терпеновые гликозиды из чилийского мыльного дерева — такое сочетание оказалось наиболее мощным. Я могу вам сказать, что реакция на них в месте инъекции, особенно после второго введения, выглядит впечатляюще! Опыт GSK в этой области — это то, что они привносят в сотрудничество с Sanofi, упомянутое в начале статьи.

Разработка вакцин против COVID-19: эффективность

Теперь вернемся к общей картине разработки вакцины против коронавируса. Основной вопрос в том, какой из возможных методов наиболее эффективен и безопасен. Это мы узнаем только после тестирования каждого из вариантов на людях. На множестве людей. С терапиями, нацеленными на иммунную систему, нет другого способа это узнать из-за сложности иммунного ответа человека и его широкой вариации в человеческой популяции. Чтобы ускорить процесс, потребуется огромное количество усилий, и некоторые из шагов должны быть выполнены в таком масштабе, который никогда прежде не предпринимался. Еще один момент, который нельзя игнорировать: если мы хотим, чтобы это было сделано так быстро, как хотелось бы, то должны быть предприняты попытки сокращения пути разработки и тестирования.

В связи с этим, одна из причин такого быстрого старта вакцины Moderna заключается не только в том, что разработка мРНК-вакцины может быть по своей природе более быстрой, но и в том, что шаг тестирования ее на животных был полностью пропущен. Отчасти это сделали из-за того, что до сих пор неясно, какая модель животного была бы наиболее информативной. В более раннем посте мы говорили о том, что вирусы SARS и nCoV-19 действительно показывают различия в лабораторных тестах, и мы можем ожидать, что эти различия распространятся и на животные модели. Один из подходов в тестировании на животных заключается в том, чтобы разводить линию лабораторных животных (например, мышей или хомяков) с человеческой формой белка ACE2, который, по-видимому, имеет решающее значение для проникновения вируса. Это может быть полезно, однако будет ли такая животная модель создана действительно вовремя, чтобы помочь при разработке вакцин? Я думаю, некоторые другие кандидатные вакцины пойдут тем же путем, что и Moderna, и полностью пропустят стадию тестирования эффективности на животных. Поверьте мне, это (и не только это) существенно сократит путь тестирования.

К счастью, тестирование эффективности вакцины может быть довольно простым, и оно включает в себя многие вопросы, возникающие и при тестировании антител, такие как:

  • Развивается ли у вакцинированного пациента антительный иммунный ответ?
  • Насколько много антител образуется?
  • Правильного ли они типа, чтобы нейтрализовать вирус?
  • Как долго продолжается этот иммунный ответ?

Ответы на первые три вопроса требуют проведения огромной работы прямо сейчас, но я не сомневаюсь, что они будут найдены. Необходимо понять, по каким конечным точкам мы будем измерять эффективность, чтобы быть уверенными, что они удовлетворят регулирующие органы.

Существует обзор 2016 года о процессе разработки стандартной новой профилактической вакцины [10]. Взгляните на длинную, детальную, перекрывающуюся и взаимосвязанную систему клинических испытаний , которые такие вакцины проходили в прошлом, и подумайте, что мы не сможем сделать всё это, если хотим получить вакцину в сроки, указанные в начале поста. В идеале, хотелось бы изучить вопросы эффективности в исследованиях второй фазы у разных групп (возраст, пол, сопутствующее состояние здоровья и набор принимаемых лекарств) с различными графиками дозирования, и тщательно подобрать эти параметры для запуска третьей фазы испытаний. Запустив множество одновременных испытаний вместо последовательных, мы сможем охватить какую-то часть этих проблем, но отнюдь не все. Сейчас разрабатывают по меньшей мере 78 таких препаратов; с каждым шагом их будет все меньше (до поздних стадий доберутся единицы), но организовать подобные исследования будет все еще очень непросто.

Некоторые же вещи не могут быть ускорены никакими способами, известными человечеству. Вопрос о длительности иммунитета является важным как для людей, естественно инфицированных SARS-CoV-2, так и для тех, кто получит вакцину. К сожалению, нет другого способа ответить на этот вопрос, кроме времени, которого в эти дни так не хватает. Существует множество примеров вакцин, защита после которых не держалась так долго, как ожидалось. Я предполагаю, что для начала мы можем получить вакцину первого раунда, защита которой будет длиться не так долго, как хотелось бы, но обеспечит достаточный иммунитет и, соответственно, время для сбора дополнительных данных об оптимизированной версии вакцины.

Разработка вакцин против COVID-19: безопасность

Все вышеописанное подводит нас ко второму вопросу, возникающему для любой новой терапии: безопасность и ее баланс с эффективностью. Это особенно сложный вопрос для любой терапии, нацеленной на иммунный ответ, поскольку сильная иммунная реакция может стоить пациенту жизни. Так, описан синдром Гийена—Барре: организм реагирует на антиген, появляющийся при вирусной инфекции или вакцинации, принимая миелиновые оболочки вокруг нервов также за враждебные белки и начиная их разрушать. При этом большинство людей выздоравливают, однако некоторые умирают. По приблизительным оценкам, даже вакцина против сезонного гриппа может убить примерно 1 на 10 миллионов человек, хотя понятно, что в случае отсутствия вакцинации умрет гораздо больше людей. Эпидемия свиного гриппа 1976 года показывает, что может произойти, если баланс будет рассчитан неправильно. Данной проблемы нельзя избежать полностью: огромные индивидуальные особенности иммунной системы каждого человека означают, что подобные серьезные события никогда не могут быть исключены, если вакцинировать много людей.

Разработка вакцин нацелена на то, чтобы ввести их миллионам, даже миллиардам людей, которые в настоящее время не больны, чтобы защитить их от болезней, не причиняя при этом больше вреда, чем сама болезнь. Я не сомневаюсь, что вовлеченные компании и регулирующие органы будут делать все возможное для решения вопросов безопасности, но вакцина, получающая EUA в начале следующего года, хм.

Разработка вакцин против COVID-19: логистика

Еще одна большая проблема — производство и распространение вакцины. Многие читатели слышали о трудностях, которые иногда возникают в процессе производства вакцины против гриппа, что приводит к ее дефициту. В зависимости от того, какая технология получения вакцин выходит на первое место, производство достаточного количества доз воспроизводимым способом может быть довольно сложной задачей. Кроме того, многие вакцины нуждаются в перевозке и хранении в холодных условиях, что также бывает трудно обеспечить. А что делать, если возможная вакцина требует более одной инъекции, что справедливо, например, для многих вакцин с адъювантами? Отслеживать это — еще одна проблема.

Я думаю, что масштабирование и производство вполне могут стать ахиллесовой пятой для срыва упомянутых ранее сроков обеспечения готовности вакцин, поэтому будут предприняты огромные усилия, чтобы сразу начать работу над этими проблемами. Вот почему, например, Билл Гейтс уже заранее заявил о готовности финансировать фабрики для производства до семи типов вакцин. Производство вакцин с живым, аттенуированным вирусом, рекомбинантным белком и нуклеиновыми кислотами обеспечивается совершенно разными методиками и формуляциями и, поскольку мы не знаем, какой вариант в итоге будет выбран, готовность к реализации производства любого из них может оказаться единственным способом решения этой проблемы. Компания Pfizer и другие уже заявили, что будут работать над налаживанием производства еще до того, как появятся данные об эффективности, что, разумеется, не является обычной практикой. Я думаю, что мы так или иначе получим эффективную вакцину против коронавируса, хотя она, конечно, не будет охарактеризована так тщательно, как обычно. Думаю также, что мы уже согласны пойти на компромисс в вопросах безопасности. Однако масштабирование производства вакцины может стать еще более серьезной проблемой, и по мере развития событий мы будем следить за неприятными сюрпризами в этом процессе.

То, чему мы сейчас свидетели — это беспрецедентный вызов, и, будем надеяться, мы никогда больше не увидим ничего подобного.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции