Что такое составные вирусы

Увеличивается во всем мире и число сторонников вирусной теории рака. Исследования сотен лабораторий свидетельствуют, что именно вирусы — наиболее вероятная причина рака, саркомы, лейкемии.

И. Губарев, наш специальный корреспондент, обратился к директору Института вирусологии имени И. Д. Ивановского АМН СССР, академику АМН СССР, профессору Виктору Михайловичу Жданову с просьбой рассказать об истории и сегодняшнем дне Вирусологии, о стратегии борьбы С вирусными болезнями.

Вирусология — наука молодая. 80 лет прошло со времени открытия И. Д. Ивановским первого вируса — возбудителя мозаичной болезни табака. Много позже — в 50-х годах — было получено первое несовершенное изображение этого инфекционного агента. Самые значительные исследования в области вирусологии были выполнены лишь за последние 15—20 лет.

С исследованиями вирусологов сегодня связано уничтожение инфекционных заболеваний на планете, борьба против рака. Вирусологии же, изучающей наиболее простые формы существования, предстоит дать ответ на многие вопросы, связанные с происхождением жизни на Земле.

Итак, что же мы знаем и «его еще не знаем о вирусах?

Пример: до недавнего времени мы почти ничего не знали о специфических обезьяньих вирусах. В 1960-х годах было начато массовое производство вакцины против полиомиелита, изготавливаемой на обезьяньих почках. Необходимо было обеспечить стерильность этой вакцины, то есть полностью исключить проникновение в нее каких-либо микроорганизмов. И вот в ходе исследований, направленных на обеспечение такого рода стерильности, был открыт целый ряд до тех пор неизвестных вирусов, специфичных для обезьян.

К настоящему времени мы располагаем сведениями примерно о тысяче видах вирусов. Безусловно, лучше других нам известны вирусы, поражающие человека. Их выявлено около 500 видов. Весьма обширна группа вирусов, найденных у лабораторных животных — мышей, кроликов, морских свинок.

Сравнительно много мы знаем о вирусах сельскохозяйственных животных и растений, меньше — о вирусах, опасных для птиц и других животных, древесных и кустарниковых пород лесе. И уж вовсе малоизвестны и числом и повадками вирусы папоротников, мхов, лишайников.

Вирусы проявляют себя не всегда одинаково. В одних случаях они нападают лишь на определенные виды живых существ. Скажем, уже выявлены специфические вирусы гриппа свиней, кошек, чаек, поражающие только этих животных и безопасные для других. Подчас специализация становится своеобразно утонченной: мельчайшие вирусы бактерий — фаги Р-17 выбирают в качестве объекта лишь мужские особи только одной разновидности кишечной палочки. А вот в числе объектов онкогенных вирусов — пресмыкающиеся, птицы, млекопитающие. Рекорд побивают, пожалуй, так называемые пулевидные вирусы, названные так благодаря их характерному очертанию на микрофотографии. Внешне вирусы этой разновидности очень схожи. А болезни они вызывают самые разнообразные, поражая при этом весьма далекие друг от друга виды живых существ. Они могут стать причиной бешенства — тяжелейшего поражения нервной системы млекопитающих (в том числе, разумеется, и человека) и таких болезней, как везикулярный стоматит крупного рогатого скота (передаваемый, кстати, через насекомых), желтой карликовости картофеля и полосатой штриховатости пшеницы. Эти же вирусы провоцируют тяжелое заболевание у мухи дрозофилы, приводящее насекомое к гибели в результате повышения чувствительности к углекислому газу.

Человек, животные, насекомые, растения. Болезни общие для многих видов и узко-специфичные. Откуда такой широкий спектр агрессивных возможностей? Под влиянием каких условий сложились эти свойства? Сколько еще существует в природе вирусов специализированных и универсальных?

На все эти вопросы лишь предстоит ответить.

С вирусами связано немало загадочного, неясного, а если быть точным до конца — еще не выясненного.

Признавая существование возбудителей инфекционных болезней, по размерам намного меньших, чем бактерии, ученые долго не могли прийти к единому мнению: какие они? Так, известный голландский микробиолог М. Бейеринк, к примеру, предполагал, что вирусы — необъяснимая загадка. Он дал им название Cоntagium vivum fluidum — живое жидкое заразное начало.

Другие исследователи пытались связать данные о вирусах с привычными для них представлениями о живом организме (клеточное строение, размножение путем деления с последующим ростом до размеров взрослой особи и т. д.). Не будем перечислять здесь другие предположения, высказанные на заре развития вирусологии. Все они — как наивные, так и наделенные долей предвидения — строились на одних лишь догадках, вслепую.

Много неясного и в современных гипотезах о происхождении вирусов. Так, одни исследователи считают, что вирусы — это потомки древних доклеточных форм жизни, застывшие, остановившиеся в своем развитии на определенном этапе. Разнообразие генетического вещества, говорят сторонники гипотезы, отражает ход эволюции этих существ. Природа как бы опробовала на вирусах все возможные варианты наследственного вещества, прежде чем остановиться окончательно на двухспиральной ДНК.

Вирусы — потомки бактерий или других одноклеточных организмов, по неизвестным причинам двинувшиеся в своем развитии вспять, деградировавшие, говорят другие ученые. Возможно, некогда их устройство было сложней, но со временем они многое утратили, и их нынешнее состояние, в том числе и разнообразие носителей генетической информации, лишь отражает разные уровни деградации, которых достигли различные их виды.

Наконец, существует гипотеза, согласно которой вирусы представляют собой составные части клеток живых существ, по неизвестной причине ставшие автономными системами. Процесс возникновения вирусов, согласно этой гипотезе, относится не только к глубокой древности, когда они уже, безусловно, существовали, но и к нашему времени. Иными словами, эта гипотеза признает возможность повсеместного, происходящего непрерывно образования вирусов клеточными элементами. Возможно ли такое, способны ли составные части клеток стать автономными, да еще и саморепродуцирующимися (способными к воспроизведению) системами?

Логика и парадоксы микромира

Устройство вирусов поражает своей чисто математической завершенностью, логикой симметрии. Возьмем, к примеру, наиболее просто организованный вирион (зрелый вирус) табачной мозаики.

Сотни белковых кристаллообразных структур уложены в виде тугой спирали. Сердцевина нити, образующей спираль, представляет собой своеобразную капсулу, где находится молекула нуклеиновой кислоты. В результате общий вид вириона — предельно лаконичный цилиндр, полая трубка.

А вот другая форма: двадцатигранник, икосаэдр, грани которого образованы треугольниками. Основной материал, из которого сложен икосаэдр, — те же белковые структуры. Внутри — полость, где покоится молекула нуклеиновой кислоты. Это вирион полиомиелита.

— Позвольте, — возражали многие ученые еще в недавнем прошлом, — да можно ли вообще после этого называть вирусы живыми существами? Может быть, это кристаллообразные вещества, наделенные болезнетворными свойствами?

— Либо, — говорили другие, — это пограничные формы между живым и неживым мирами.

Кто же прав? Скорей всего наиболее многочисленная группа исследователей, которая считает, что вирусы — представители живой природы, го есть не вещества, а существа. Правда, существа крайне своеобразные, ведущие сугубо паразитический образ жизни.

Вирус проникает в клетку

Вирусы, имеющие иное строение, проникают в клетку не столь затейливым путем. Притянутые к оболочке клетки и воздействующие на нее ферментами, они провоцируют втягивание внутрь того участка мембраны, на котором осели. Образуется своего рода капсула-вакуоль с вирусной частицей внутри. Вакуоль эта затем отрывается, и в ней, путешествующей внутри клетки, продолжают идти одновременно два процесса — вирусная частица с помощью своих ферментов разрушает окутывающие ее стенки капсулы, а ферменты клетки разрушают внешние оболочки вируса, освобождая, как это было и в случае с фагом Т2, нуклеиновую кислоту.

Итак, нуклеиновая кислота покинула белковую оболочку и исчезла, бесследно растворилась в клеточной среде. Что же дальше?

Мы еще не имеем возможности получить полный ответ на этот вопрос. До сих пор удалось установить характер лишь некоторых изменений, происходящих на этом этапе в различных частях клетки. И по этим отдельным штрихам мы воссоздаем, пытаемся представить себе полностью происходящее.

Формирование вирусов начинается, по-видимому, с подавления нормальных процессов обмена веществ в клетке. Установлено, в частности, что рибонуклеиновая кислота (РНК) вируса гриппа способна синтезировать на клеточных элементах — рибосомах, ведающих выработкой белка,— особое вещество, также белковой природы,— гистон, который, в свою очередь, связывается с ДНК клетки и прекращает синтез клеточной РНК. Некоторые другие вирусы, например, вирусы полиомиелита, не нуждаются в окольном пути, так как сами способны вмешаться в деятельность рибосом и прекратить синтез клеточных белков. Выявлены и другие механизмы подавления вирусами клеточного обмена, их вмешательства в жизнедеятельность клетки, но в конечном счете все сводится к одному: клеточные ресурсы перестают расходоваться на нужды самих клеток и поступают в распоряжение вирусной нуклеиновой кислоты.

Беззащитна ли клетка!

Цикл превращений, связанных с размножением вирусов, как правило, краток. В одних случаях проникновение вирусной нуклеиновой кислоты в клетку отделяет от появления вирионов 13—15 минут, в других — 40 минут. Вирусы одной из наиболее распространенных инфекций, гриппа, проходят этот путь примерно за 6—8 часов. И каждый раз около погибшей клетки оказываются десятки, а порой и сотни вирионов. Причем каждый из них, в свою очередь, готов к продолжению процесса размножения. Количество вирусной инфекции нарастает буквально лавинообразно.

Но так как главное действующее лицо — вирус остается за кадром (в обычный микроскоп он не виден), на экране только последствия его агрессии. Картина перед наблюдателем разворачивается впечатляющая. Вначале крайние клетки, первыми подвергшиеся нападению, начинают терять свойственные им округлые очертания. Постепенно истончаются их мембраны, клеточные элементы, клетка как бы взрывается. В этот момент, как мы знаем (но не видим этого), опустошенную оболочку покидают полчища вирионов, направляющихся к очередным своим жертвам. И через самое непродолжительное время точно так же изменяются, а затем лопаются соседние клетки, за ними другие, еще и еще.

. Колония клеточной культуры как бы охвачена пламенем. Вот она рассечена обезжизненными структурами на островки. Вот сжимаются и эти островки, уменьшаются в размерах, и. все кончено. Колония разрушена дотла.

Обладай вирусы такими же возможностями в естественных условиях, и человеку и любому другому живому существу пришлось бы плохо. Однако этого не происходит, ибо на страже — отработанные за миллионы лет защитные приспособления организма, ограничивающие могущество вирусов.

Безграничному расширению вирусной агрессии препятствуют прежде всего сами вирусы. Еще в 30-х годах ученые заметили, что размножение в клетке одного вируса нередко препятствует размножению в этой же клетке другого вируса.

Кстати, если говорить серьезно, одна из многочисленных гипотез, пытавшихся объяснить это явление, так и гласила: всему причиной конкуренция вирусов, борющихся за клеточные компоненты. Без малого три десятилетия понадобилось, чтобы раскрыть существо этого явления, получившего название интерференции. И, как оказалось, в данном случае инициатива принадлежала не вирусам, а самой клетке. На проникновение вируса (чему воспрепятствовать клетка, увы, не может) она отвечает немедленной выработкой особого белкового вещества — интерферона. Правда, интерферон не спасает уже пораженную клетку, но препятствует продвижению вирусной инфекции к другим клеткам организма. Иными словами, за первыми же вирионами, прорвавшимися в организм, возникает барьер интерфероновой защиты.

Антитела, появляющиеся позже, существуют несравненно дольше. Именно они и становятся основой стойкого иммунитета, благодаря которому многие инфекционные болезни не повторяются дважды в жизни одного индивидуума.

Медицина — в наступлении

Среди инфекционных заболеваний 80 процентов вирусных. Эта цифра — свидетельство победы человека над бактериальными инфекциями. Чума, холера, тиф, некогда безоговорочно первенствовавшие в медицинских статистических сводках, с приходом антибиотиков и сульфопрепаратов навсегда сдали свои позиции. Их место заняли болезни, вызываемые вирусами.

Как известно, и с этими недугами ведется успешная борьба. Побежден полиомиелит. Тягостным воспоминанием ушла в прошлое оспа. Широким фронтом идет наступление на корь: лишь за последнее пятилетие число перенесших заболевание корью снизилось в 5 раз; на повестке дня — полное искоренение этой инфекции на территории нашей страны.

Значительные усилия направляются на борьбу с гепатитом, гриппом, паротитом, вирусными респираторными заболеваниями, однако здесь решающие достижения еще впереди.

Наряду с этим ученые работают над созданием других эффективных лекарственных веществ, способных подавить вирусную инфекцию.

Работа эта начата. Во все концы нашей страны и за рубеж отправляются специальные экспедиции вирусологов. Уже получены чрезвычайно ценные данные о перемещениях вирусной гриппозной инфекции из Всемирного противогриппового центра, в деятельность которого вносит существенный вклад региональный противогриппозный центр СССР.


Здесь нужно сказать несколько слов о носителях вирусных генов. У всех организмов, от бактерии до человека, есть два вещества, способных нести генетическую информацию, — ДНК и РНК, причем основным носителем является именно ДНК, а РНК служит только для недолго живущих рабочих копий. У вирусов же полная свобода выбора: у одних гены представлены цепочками ДНК, у других — РНК.

Когда эти цепочки проникают сквозь мембрану, они могут работать прямо в цитоплазме, заставляя клеточный аппарат для синтеза белка (рибосомы) производить вирусные белки. Но у клетки в цитоплазме обычно нет ферментов, удваивающих ДНК или РНК, и пока вирусные гены будут находиться здесь, их количество не прибавится. Наоборот, оно может уменьшиться, ведь в цитоплазме их окружают ферменты-нуклеазы, способные быстро порезать чужака на куски. Поэтому обычно вирусные гены мигрируют в ядро и встраиваются в собственные хромосомы клетки. Неважно, куда именно, в любое случайное место — лишь бы побыстрее.

Если клетку посетил ДНК-вирус, проблем нет: вставка маленького кусочка ДНК в большую молекулу для клеточных ферментов — дело обычное. РНК-вирусам приходится сложнее: их гены вставить напрямую в ДНК невозможно. Поэтому они снимают с себя ДНК-копии, которые уже и внедряются в хромосомы клетки. Для этого у РНК-вирусов есть специальный фермент — ревертаза, или обратная транскриптаза.

Об уязвимости получателя



Приданое в виде вируса

Выжить любым способом

У тех вирусов, которые не отказались от самостоятельного существования, жизнь не столь легка и беззаботна: между ними и заветной клеткой, где они могут ожить, стоит целый ряд барьеров. Прежде всего вирус должен найти организм-хозяин, что само по себе непростая задача для того, у кого нет ни органов чувств, ни средств передвижения. В этом деле вирусы полагаются на случай и огромную численность: если выбрасывать в пространство бесчисленное множество собственных копий, какой-нибудь из них обязательно повезет.

Убийцы и снабженцы

Некоторые вирусы пришивают к краям своих белков какие-нибудь необычные группы атомов, тогда эти белки становятся неузнаваемыми для ферментов, которые должны их расщепить. Но самое радикальное решение нашли возбудители иммунодефицитов, в том числе уже упоминавшийся ВИЧ: лучшая защита — это нападение.

Защита и противостояние

Впрочем, ВИЧ — это все-таки исключение. Прочие вирусы, как уже говорилось, преодолевают иммунный барьер с помощью всякого рода маскировки. Чтобы с неудовольствием обнаружить, что препятствия еще не кончились: атакованная клетка вырабатывает особый белок интерферон. Под его действием и она сама, и соседние клетки вырабатывают специальные белки, подавляющие синтез вирусных белков.

Столь сложная и эшелонированная защита показывает, что многоклеточные организмы и вирусы прошли долгий путь совместной эволюции. Был период, когда вирусы считали самой древней, доклеточной формой жизни. Однако эта теория плохо состыковалась с тем, что вирус, находящийся вне клетки, неспособен к самостоятельной жизнедеятельности.

Некоторые ученые предполагают даже, что вирусы поддерживают генетическое единство жизни: с их помощью разные, часто даже неродственные виды регулярно обмениваются генами, а заодно — и эволюционными новинками. Во всяком случае, для бактерий подобная роль вирусов доказана. Видимо, нам еще предстоит в полной мере оценить роль этих странных образований в функционировании и развитии биосферы.

Что касается борьбы с вирусами как возбудителями заболеваний, то совершенно ясно, что каждый из них требует индивидуального подхода. Их патогенность никак не связана с формой, размером или способом размножения, что осложняет лечение пациентов. Ведь даже вирусы, сходные между собой, могут стать причиной различных заболеваний. Так, пикорновирус является причиной столь непохожих заболеваний, как миокардит, конъюнктивит, гепатит или ящур. И единственно эффективным методом борьбы с ними можно считать лишь профилактические меры — вакцинацию.

Понимая всю серьезность данной проблемы, ЕС приступил к реализации Пятой рамочной программы, значительная часть исследований которой отводится вопросам, связанным с медициной. На разработку усовершенствованных или новых вакцин, в частности против вирусных заболеваний, включая некоторые виды рака, а также на совершенствование методов борьбы с инфекционными заболеваниями выделено 300 миллионов евро.

Разделы: Биология

Класс: 10

Цель урока: сформировать представление о вирусах как о неклеточной форме жизни, их строении, жизнедеятельности, значении.

Задачи урока:

  • Познакомить учащихся с гипотезами происхождения вирусов и историей их открытия;
  • Изучить строение и классификацию вирусов;
  • Изучить жизненный цикл вирусов;
  • Познакомить учащихся с ВИЧ и сформировать знания о мерах предупреждения заболеваний СПИДом.

  • Продолжить формирование умения работать с учебником, дополнительной литературой, интернет-ресурсами, компьютерными средствами;
  • Развивать коммуникативные умения учащихся;
  • Продолжить развитие логического мышления через умения сравнивать, анализировать, делать выводы;

  • Научить учащихся выражать свое собственное мнение и отстаивать его в диспуте;
  • Формировать ответственное отношение к своему здоровью как к ценности через ознакомление с профилактическими мерами борьбы с вирусными заболеваниями;
  • Воспитание культуры речи, уважительного отношения к выступающим.

Тип урока: урок изучения нового материала.

Технология обучения: ИКТ-технология.

Ход урока

(приветствие, проверка готовности к уроку)

Учащимся предлагается ответить на следующие вопросы:

  • Чем живое отличается от неживого?
  • Какими свойствами обладают живые организмы?
  • Что является основой любого живого организма?
  • Какая структура является носителем наследственной информации в клетке?

В ходе фронтальной беседы ученики исправляют и дополняют друг друга.

Цель нашей работы: сформировать представление о вирусах как о неклеточной форме жизни, их строении, жизнедеятельности, значении.

Какие задачи вы перед собой поставите, чтобы достичь этой цели? (учащиеся формируют задачи)

  • Познакомиться с историей появления и открытия вирусов;
  • Изучить особенности строения, жизнедеятельности вирусов, их классификацию и значение;
  • Познакомиться с особенностями строения вируса СПИДа и мерами профилактики этого заболевания.

Ребята, сегодня мы работаем следующим образом: перед вами лежит рабочий лист, где вы и будете вести все записи и выполнять все задания.

Положите рабочий лист перед собой и выполните задание №2, заполнив только 2 столбик.

1) В конце 19 века бактериология достигла больших результатов. В этот период были открыты возбудители чумы, холеры, туберкулеза и других распространенных болезней. Однако причины возникновения других не менее опасных заболеваний (оспа, корь, грипп, др.) обнаружить не удавалось. Как вы думаете, почему? Кто же эти таинственные опасные существа? А может быть это совсем не существа, а вещества? О чем же идет речь? (правильно, о вирусах)

Сегодня ученые много знают об особенностях строения, жизнедеятельности вирусов, но уничтожить их не удается. Люди продолжают болеть гриппом, с огромной скоростью распространяестся по планете вирус СПИДа. Почему это происходит?

Итак, ребята, перед нами – два проблемных вопроса, на которые мы постараемся ответить в течении урока:

  • Вирусы – это вещества или существа?
  • Почему вирусы практически невозможно уничтожить?

2) Откуда же появились вирусы? Когда впервые стало о них известно?

(сообщение + презентация) 1 . В рабочих листах – задание №3.

На сегодняшний день существует три гипотезы появления вирусов:

Вирусы – это потомки древних доклеточных форм жизни. На Земле существуют более 4,5 млрд. лет.

Гипотеза №2

Вирусы – потомки древнейших бактерий, утративших собственный механизм синтеза белка и перешедший к внутриклеточному паразитизму.

Гипотеза №3

В 1892 г. Д.И. Ивановский, занимаясь поисками возбудителя болезни табачной мозаики, установил, что он (возбудитель) невидим в микроскоп даже при самом сильном увеличении и проходит через фильтры, которые задерживают бактериальные клетки; не растет на обычных питательных средах, применяемых в бактериологии. Ученый предположил, что возбудителем болезни табака являются либо мельчайшие бактерии, либо выделенные ими ядовитые вещества-токсины. Шесть лет спустя независимо от Ивановского такие же результаты получил нидерландский ученый М. Бейеринк. Оба ученых были отчасти правы, но отчасти и ошибались. Было установлено, что это по химической природе – это нуклеопротеины (нуклеиновые кислоты + белки), сами частицы все еще оставались неуловимыми и загадочными. Увидеть вирусы удалось в электронный микроскоп лишь спустя 50 лет. Первым был сфотографирован вирус табачной мозаики.

Наука, изучающая вирусы – вирусология.

3) Каковы же особенности строения и жизнедеятельности вирусов? Самостоятельная работа по вариантам с использованием текста учебника, параграф 20. Результаты учащиеся заносят в таблицу, затем проверяем и обсуждаем полученные результаты. В рабочем листе – задание №4

В итоге у учащихся должна быть заполнена следующая таблица:

Сходство с живыми организмами Отличия от живых организмов Специфические черты вирусов
1. Размножение
2. Наследственность
3. Изменчивость
4. Приспособленность к меняющимся условиям среды
1. Не имеют клеточного строения
2. Не питаются
3. Не растут
4. Нет обмена веществ
5. Имеют форму кристалла, нет свойств живого
1. Маленькие размеры
2. РНК (ДНК) + капсид
3. Быстро размножаются
4. Занимают пограничное положение между живой и неживой материей.
5. Внутриклеточные паразиты

Итак, вот основные этапы размножения вирусов:

  1. Вирус прикрепляется к клетке.
  2. Проникновение вируса в клетку. Вирус работает как своеобразный шприц (ДНК или РНК проникают внутрь клетки, а капсид остается снаружи).
  3. Размножение вируса. Вирусная ДНК встраивается в ДНК клетки хозяина.
  4. Синтез вирусных белков, самосборка капсида.
  5. Выход вирусов из клетки.

Вирусы могут различаться

1. ДНК-содержащие (герпес, оспа)
2. РНК-содержащие (корь, бешенство)
1. С высокой специфичностью (грипп свиней)
2. Относительно универсальные (вирусные болезни млекопитающих)
1. Убивающие зараженную клетку (некоторые бактериофаги)
2. Изменяющие генетическую информацию зараженной клетки (онковирусы, ВИЧ)
По химическому составу По специфичности По отношению к хозяину

  1. Вызывают различные заболевания
  2. Используются как метод борьбы с болезнетворными бактериями.
  3. Биологическое оружие.

6) Рассказ учителя о СПИДе.

СПИД – синдром приобретенного иммунного дефицита. Данное заболевание вызывает ВИЧ – вирус иммунного дефицита человека. Вирус относится к ретровирусам, имеет сферическую форму, диаметром от 100 до 150 нм. Наружная оболочки вируса состоит из мембраны, образованной из мембраны клетки-хозяина, в которую встроены рецепторные образования, по внешнему виду напоминающие грибы. Под наружной оболочкой вируса располагается капсид вируса, образованный особыми белками, внутри которого находятся две молекулы вирусной РНК. Каждая молекула РНК содержит 9 генов ВИЧ и фермент, осуществляющий синтез ДНК с молекулы вирусной РНК. Основными клетками-мишенями ВИЧ являются Т-лимфоциты. Кроме того, ВИЧ проникает в ЦНС, поражает нервные клетки и клетки-нейроны, клетки кишечника.

Каковы пути передачи вируса? В рабочих листах у вас перечислены способы действия людей. Какие из них являются А) безопасными, Б) опасными, В) очень опасными?

В рабочем листе – задание №7.

Итак, ребята, давайте вспомним, какие задачи мы перед собой ставили в начале урока. Как вы считаете, все ли задачи нам удалось выполнить?

Давайте вспомним два проблемных вопроса, поставленных в начале урока. Сможете ли вы сейчас на них ответить? (да, учащиеся дают ответы).

  1. Вирусы – это существа или вещества? (существа, т.к. могут размножаться, обладают наследственностью, изменчивостью)
  2. Почему вирусы практически невозможно уничтожить? (быстро размножаются, мутируют, просто устроены, не имеют клеточного строения и т. п. )

В рабочих листах ответьте на вопросы теста.

Ребята, вернитесь к заданию №1 и заполните третий столбик.

Параграф 20, ответить на вопросы

Творческое задание: «Почему то, что поражает компьютер, тоже назвали вирусами?

Урок На уроке я Итог
Интересно Работал Понял материал
Не интересно Отдыхал Узнал много нового
скучно Помогал другим Не понял

Ребята, спасибо за урок! Вы сегодня хорошо поработали.

Сдайте, пожалуйста, рабочие листы.

1 Сообщения и презентации учащиеся готовят самостоятельно на 3-5 минут (консультация учителя желательна)


Американские биологи провели обширное метагеномное исследование с целью выявить функциональный состав геномов гигантских вирусов — как уже открытых, так и неизвестных науке (последние, естественно, изучаются пока только по нуклеотидным последовательностям). Гигантскими вирусами называется открытая в 2003 году группа очень крупных вирусов эукариот: они бывают крупнее некоторых клеток и имеют огромные геномы, в рекордных случаях тоже превосходящие размерами многие клеточные. Самые крупные известные представители гигантских вирусов паразитируют в пресноводных амебах. Анализ геномов показал, что у гигантских вирусов (особенно у семейства мимивирусов) есть аналоги множества клеточных генов, и в том числе генов, кодирующих ферменты метаболизма углерода. Многие гигантские вирусы имеют собственные ферменты гликолиза, глюконеогенеза и даже цикла Кребса. Соответствующие гены, конечно, были заимствованы вирусами от клеточных организмов. Но эти заимствования произошли давно (даже в эволюционном масштабе времени). Исследователей поразил сам факт, что у вирусов могут не только случайно появляться, но и устойчиво сохраняться в разных эволюционных ветвях гены, связанные с такими глубинными механизмами обмена веществ, которые раньше считались исключительной принадлежностью клеток.

Принято считать, что вирусы — это самые мелкие и самые простые живые организмы. Понимание того, что вирусы — отнюдь не бактерии, когда-то возникло под влиянием двух фактов: оказалось, что они, во-первых, невидимы под световым микроскопом, и во-вторых, свободно проходят сквозь фильтры, предназначенные для задержки бактерий. И то, и другое объясняется тем, что вирусы — а точнее, их компактные расселительные формы (вирионы) — как правило, чрезвычайно малы по меркам обычной биологии, изучающей животных, растения или даже микробов.

Для всех выделенных последовательностей авторы построили общее филогенетическое древо, добавив туда и некоторое количество референтных геномов, принадлежащих вирусам, которые уже заведомо известны (рис. 2). На этом древе вновь открытые вирусы распределились по шести семействам: оказалось, что большинство из них относится к мимивирусам и фикоднавирусам, а некоторые — к иридовирусам, асфарвирусам, марсельвирусам или питовирусам. Здесь, между прочим, хорошо видно, какое место занимает в современной биологии эволюционный подход. Раньше биологи сначала изучали живые организмы по отдельности, описывая в деталях их устройство, и только потом отваживались строить гипотезы о филогенетических отношениях между ними. Построенное филогенетическое древо было высшим уровнем исследовательской работы, ее венцом. Теперь же построение такого древа стало рутинной технической процедурой, и исследование (во всяком случае, биоинформатическое) с нее начинается. Авторы сначала выясняют хотя бы в общих чертах, какие места на филогенетическим древе занимают открытые ими существа, а уж потом переходят к подробностям.



Все это, однако, в целом было более или менее известно и раньше. Удивило исследователей другое. Оказалось, что у гигантских вирусов достаточно широко распространены гены, кодирующие ферменты, которые принимают участие в обмене углерода, в частности в таких процессах, как гликолиз (распад молекул глюкозы надвое, протекающий в несколько ступеней с выделением энергии) и глюконеогенез (синтез той же глюкозы из других соединений, например из аминокислот). Обмен углерода — это самая что ни на есть основа метаболизма живых клеток. Это центр, к которому сходятся все цепочки идущих в клетке химических реакций. Теперь выяснилось, что гигантские вирусы вторгаются даже сюда, причем очень основательно. Например, почти для каждого фермента гликолиза можно найти альтернативный ген, входящий в состав генома того или иного гигантского вируса. Особенно богато такими генами семейство мимивирусов, хотя и в других семействах они тоже встречаются. В нескольких вирусных геномах обнаружены блоки как минимум из двух генов, кодирующих ферменты смежных реакций гликолиза: иными словами, там фактически закодирован целый сплошной отрезок этого биохимического пути. У одного гигантского вируса есть гены, кодирующие аж 7 из 10 основных гликолитических ферментов, — то есть две трети реакций гликолиза этот вирус может провести сам, без поддержки клеточного генома. Причем вирусные ферменты гликолиза заметно отличаются от клеточных (в чем функциональный смысл отличий — еще предстоит разобраться, это интересная проблема). Можно ли после этого сомневаться в том, что у вирусов бывает свой метаболизм?

Еще интереснее, что у некоторых гигантских вирусов есть гены, кодирующие ферменты цикла Кребса, он же цикл трикарбоновых кислот (рис. 3). Цикл Кребса — это замкнутая цепочка химических реакций, служащая центром пересечения великого множества метаболических путей и являющаяся у организмов, дышащих кислородом, ключевым этапом клеточного дыхания (впрочем, цикл Кребса важен и в других отношениях). Казалось бы, ну зачем все это вирусам? Однако выяснилось, что не менее восьми ферментов цикла Кребса имеют у гигантских вирусов свои аналоги, причем более или менее широко распространенные. Соответствующих вирусных генов на самом деле еще больше: например, такой фермент, как сукцинатдегидрогеназа, состоит из трех субъединиц, каждая из которых кодируется отдельным геном — и все эти гены у вирусов есть. Пока, правда, не совсем понятно, как именно они их используют, но как-то используют точно: ген, на протяжении эволюционно значимого срока сохраняющийся в геноме в работоспособном состоянии, не может не иметь функции.



Рис. 3. Цикл Кребса, он же цикл трикарбоновых кислот. Ферменты цикла Кребса, гомологи которых есть у гигантских вирусов: цитратсинтаза (CS), аконитаза (ACON), изоцитратдегидрогеназа (ICD), изоцитратлиаза (ICL), сукцинатдегидрогеназа (SDA, SDB, SDC — три ее субъединицы), фумаратгидратаза (FH), малатсинтаза (MS), малатдегидрогеназа (MDH). Числа в цветных квадратиках — это число вирусных геномов, в которых обнаружен ген данного фермента. Они указаны отдельно для каждого семейства вирусов (см. легенду сбоку). Как видим, для некоторых ферментов эти числа измеряются десятками. Фрагмент иллюстрации из обсуждаемой статьи в Nature Communications

Источник: Mohammad Moniruzzaman, Carolina A. Martinez-Gutierrez, Alaina R. Weinheimer, Frank O. Aylward. Dynamic genome evolution and complex virocell metabolism of globally-distributed giant viruses // Nature Communications. 2020. V. 11. № 1. P. 1–11. DOI: 10.1038/s41467-020-15507-2.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции