Гетеротрофные микроорганизмы это стрептококки

Информация

Добавить в ЗАКЛАДКИ
Поделиться:

Гетеротрофные микроорганизм

Гетеротрофные микроорганизмы, которые не могут накапливать полифосфаты, но могут участвовать в конкуренции за субстрат, особенно за глюкозу, если она содержится в сточной воде [43]. В большинстве случаев эти бактерии не участвуют в биологическом удалении фосфора.[ . ]

Гетеротрофные микроорганизмы ассимилируют углерод только из готовых органических соединений, но так как органических соединений в природе бесчисленное множество, то среди гетеротрофов есть виды и даже иногда штаммы или группы бактерий, усваивающие углерод из определенных классов веществ.[ . ]

Гетеротрофные микроорганизмы получают энергию при окислении органических веществ кислородом или при сбраживании (без участия кислорода).[ . ]

Гетеротрофные микроорганизмы питаются готовыми органическими веществами. К ним относятся бактерии шиения и брожения, плесени и дрожжи (питающиеся мертвой пищей) и паразиты (питающиеся живой пи-щей), такие как патогенные бактерии, вирусы и бактериофаги.[ . ]

Многие гетеротрофные микроорганизмы являются автоаминотрофами.[ . ]

Размеры гетеротрофной нитрификации в некоторых случаях бывают довольно большие. Кроме того, при этом образуются некоторые продукты, обладающие токсичным, канцерогенным, мутагенным действием и соединения с химиотерапевтическим эффектом. Поэтому исследованию данного процесса и выяснению его значения для гетеротрофных микроорганизмов сейчас уделяют значительное внимание.[ . ]

Редуценты — это гетеротрофные микроорганизмы, грибы, разрушающие и минерализующие органические остатки. Таким образом, редуценты как бы заканчивают круговорот веществ, образуя неорганические вещества для вступления в новый цикл.[ . ]

Роданидразрушающие микроорганизмы очищают сточную воду после извлечения из нее на первой стадии очистки основной массы фенолов и других органических веществ гетеротрофными микроорганизмами. Остаточное содержание фенолов перед разрушением роданидов воды должно быть не более 10 мг/дм3.[ . ]

Роданидразрушающие микроорганизмы очищают сточную воду после извлечения из нее на первой стадии очистки основной массы фенолов и других органических веществ гетеротрофными микроорганизмами. Остаточное содержание фенолов перед разрушением роданидов воды должно быть не более 10 мг/дм3.[ . ]

В отличие от автотрофных микроорганизмов гетеротрофы нуждаются в готовых органических соединениях. Большинство гетеротрофных микроорганизмов используют органические вещества различных субстратов животного и растительного происхождения. Они называются сапрофитами, или метатрофами. К ним относятся все микроорганизмы, разлагающие различные органические вещества в почве, в воде, участвующие в процессе биологической очистки сточных вод, микроорганизмы, используемые для переработки растительного и животного сырья. Некоторые гетеротрофы нуждаются в живом растительном или животном белке. Эти микроорганизмы называются паратрофа-ми, они паразитируют в организме растений или животных и вызывают их заболевания.[ . ]

В природе широко распространены гетеротрофные микроорганизмы, которые воздействуют на минералы и горные породы.[ . ]

Процессы биохимического окисления у гетеротрофных микроорганизмов делят на три группы в зависимости оттого, что является конечным акцептором водородных атомов или электронов, отщепляемых от окисляемого субстрата.[ . ]

Число органических соединений, используемых гетеротрофными микроорганизмами в качестве источников углерода, очень велико. Предполагается, что для каждого углеродного соединения, образуемого в природе, существуют микроорганизмы, способствующие их разложению.[ . ]

Активный ил представляет собой сложный комплекс микроорганизмов различных классов, простейших микроскопических червей, водорослей. Количественное и качественное формирование этой экосистемы диктуется искусственными условиями существования. Гетеротрофные микроорганизмы способны усваивать углерод из готовых органических соединений различной химической структуры. Но разные группы микроорганизмов адаптировались к использованию углерода из определенного числа этих соединений. Существенное значение при использовании органических веществ микроорганизмами в качестве источников углерода имеет их строение. Насыщенные соединения — биологически стойкие и могут усваиваться только некоторыми видами микроорганизмов. Ненасыщенные органические соединения— хороший источник углерода для многих микроорганизмов.[ . ]

Имеющиеся данные позволяют заключить, что автотрофные и некоторые гетеротрофные микроорганизмы принимают участие в превращениях железа в природе, в частности в образовании железистых отложений, из которых формируются осадочпые железные руды в болотах, озерах и других водоемах.[ . ]

Денитрифицирующие бактерии потребляют те же макроэлементы, что и аэробные гетеротрофные микроорганизмы. В качестве источника азота и в том и в другом случае аммоний предпочтительнее нитрата. В городских стоках проблем с макроэлементами обычно не бывает, а вот промышленные стоки иногда могут быть обеднены фосфором.[ . ]

В вершине оврага, загрязненной сточными водами из мусоросвалки, сообщество гетеротрофных микроорганизмов - бактерий и актиномицетов -развито слабо (см. табл. 5.6), что объясняется присутствием в сточных водах токсичных элементов. При этом резко снижается заспоренность грибами: снижение числа КОЕ на питательных средах на фоне возросших показателей протяженности грибного мицелия, рассчитанное методом прямого счета, может быть вызвано только подавлением продукции спор или снижением их жизнеспособности. Подобная реакция репродуктивной функции отмечена ранее при техногенном загрязнении (Кобзев, 1980) и означает повышенную толерантность гиф по сравнению со спорами к высоким концентрациям тяжелых металлов, промышленным загрязнителям (Безель и др., 1994).[ . ]

В литературе содержатся данные, позволяющие предполагать, что потребление РОВ гетеротрофными микроорганизмами тесно связано с его продуцированием, поэтому выделяемое фитопланктоном РОВ почти не аккумулируется в воде [3, 6, 8, 9). Время оборота фитогенного РОВ составляет всего несколько часов, что подтверждается экспериментами с легко усвояемыми органическими субстратами, такими, как глюкоза, ацетат и аминокислоты (2, 5, 111.[ . ]

Разложение органических остатков до простых минеральных соединений осуществляют гетеротрофные микроорганизмы. Этот важнейший процесс в почвах может протекать в аэробных и анаэробных условиях.[ . ]

Роль стебельковых бактерий в природе определяется их физиологическими особенностями как гетеротрофных микроорганизмов, способных развиваться в зонах обеднения, где неактивны более требовательные к пище сапрофиты.[ . ]

Биологическое обезвреживание сточных вод химических производств основано на способности гетеротрофных микроорганизмов использовать в качестве источников питания разнообразные неорганические и органические соединения, подвергая их биохимическим превращениям.[ . ]

Следует также отметить, что наряду с нитрифицирующими хемоавтотрофными бактериями известны гетеротрофные микроорганизмы, способные вести близкие процессы. К гетеротрофным нитрификаторам относятся некоторые грибы из рода Fusarium и бактерии таких родов, как Alcaligenes, Corynebacterium, Achromoba-cter, Pseudomonas, Arthrobacter, Nocardia.[ . ]

Органическое вещество различных живых организмов после их отмирания становится достоянием (пищей) гетеротрофных микроорганизмов. Микроорганизмы разлагают органическое вещество в процессе питания, дыхания и брожения. При разложении углеводов образуется углекислый газ, который выделяется в атмосферу из наземного разложившегося органического вещества, а также из почвы. При разложении белков образуется аммиак, который частично выделяется в атмосферу, а в основном в процессе нитрификации пополняет запасы азота в почве.[ . ]

Эти процессы идут по двум каналам: 1) минерализация органических соединений, содержащих железо, при участии гетеротрофных микроорганизмов; 2) окисление восстановленных (закисных) и восстановленных окисных соединений железа.[ . ]

На стадии денитрификации в качестве источника водорода служит метиловый спирт. Для более полного отделения очищаемых вод от взвешенных веществ и активного ила применяются коагулянты.[ . ]

Нужно заметить, что существенное значение при определении величины хемосинтеза в водоемах имеет поправка на усвоение углекислоты гетеротрофными микроорганизмами. Как показал Ю. И. Сорокин, величина эта для гетеротрофных бактерий равна около 2% от величины конструктивного обмена (Сорокин, 1962).[ . ]

Таким образом, применение радиоуглеродного метода в сочетании с дифференциальной фильтрацией, позволяющей разделять автотрофные и гетеротрофные микроорганизмы, даст основание полагать, что около 20 % продуктов фотосинтеза непосредственным образом включается в бактериальную фракцию ВОВ. Приблизительно такая же доля первичной продукции подвергается, по-видимому, окислительной минерализации при дыхании бакте-риопланктона. Не исключено, что интенсивность потока углерода от фитогенного РОВ до С02 через бактериальное звено в большей мере, чем принято думать, влияет на степень отклонения показаний радиоуглеродного метода от валовой величины первичной продукции.[ . ]

В Германии разработан способ утилизации промышленных отходов и использования их в качестве источника углерода при культивировании гетеротрофных микроорганизмов [109]. Отходами служат продукты осаждения полиимином сульфитного щелока, содержащие сахар и свободные от лигносульфонатов, а также гидролизаты торфа и мелласа.[ . ]

Теоретически для любой точки реки существует определенная связь между типом и концентрацией биодеградирующих веществ и количеством гетеротрофных микроорганизмов, использующих эти соединения как питательные вещества. Продукция биомассы этих организмов (точно так же, как продукция фотосинтетической биомассы) представляет субстрат для сообществ—потребителей на более высоких трофических уровнях пищевых цепей в реках. Поэтому первый биоценологический результат самоочищения проявляется на втором и более высоких трофических уровнях и может вести к более или менее выраженному укорочению пищевых цепей. Их восстановление возможно только в том случае, если скорости самоочищения снизятся настолько, что вновь возникнут условия для существования первоначальной популяции консументов.[ . ]

К почкующимся бактериям относят и ряд своеобразных микробов, обнаруженных впервые Б. В. Перфильевым при исследовании пресных озер. Эти организмы, по-видимому, ответственны за образование озерных руд. Типичная стадия развития Ме1а11о-genium — микроколония, в форме паучка, составлена радиально расходящимися нитями, покрытыми окислениями марганца. После растворения окислов марганца удается часто обнаружить мелкие почкующиеся клетки, связанные плазматическими нитями. На нити вырастает короткая ножка, на которой образуется почка. Почка прорастает и вновь возникает паукообразная микроколония.[ . ]

В микробиологических исследованиях использовались образцы почв верхних горизонтов с глубины 0-10 см, 10-20, 20-30, 30-40 см (см. таблицу). При исследовании были использованы такие методы, как чашечный метод Коха, метод предельных десятикратных разведений, выделение чистых культур, истощающий посев.[ . ]

Осветленная часть сточных вод очищается в аэротенках — специальных закрытых резервуарах, через которые пропускают стоки, обогащенные кислородом и смешанные с активным илом. Активный ил представляет собой совокупность гетеротрофных микроорганизмов и мелких беспозвоночных животных (плесени, дрожжей, водных грибов, коловраток и др.), а также твердого субстрата.[ . ]

Долгое время бытовало такое мнение, что биологическое удаление фосфора осуществляется только бактериями Асте(юЬа ег. Однако в настоящее время уже хорошо известно, что способностью аккумулировать фосфор обладают очень многие гетеротрофные микроорганизмы, содержащиеся в сточной воде и в иле очистных сооружений. Все эти микроорганизмы называют био-Р-бактериями или фосфат-аккумулирующими организмами (ФАО) [41]. Механизм аккумуляции фосфора не всегда активирован в бактериях, поэтому определение концентраций, например, био-Р-бактерий в сточной воде может быть затруднено. В очистных сооружениях с биологическим удалением фосфора активны несколько групп гетеротрофных микроорганизмов, конкурирующих за субстрат, особенно за низкомолекулярные жирные кислоты, которые и необходимы для реализации фосфор-аккумулирующего механизма. Многие из конкурирующих бактерий не являются ФАО. Именно результат этой конкуренции и определяет успех био-Р-процесса.[ . ]

В живой микробиальной клетке непрерывно и одновременно протекают два процесса — распад молекул (катаболизм) и их синтез (анаболизм), составляющие в целом процесс обмена веществ — метаболизм. Иными словами, процессы деструкции потребляемых микроорганизмами органических соединений неразрывно связаны с процессами биосинтеза новых микробиальных клеток, различных промежуточных или конечных продуктов, на проведение которых расходуется энергия, получаемая микробиальной клеткой в результате потребления питательных веществ. Источником питания для гетеротрофных микроорганизмов являются углеводы, жиры, белки, спирты и т.д., которые могут расщепляться ими либо в аэробных, либо в анаэробных условиях. Значительная часть продуктов микробной трансформации может выделяться клеткой в окружающую среду или накапливаться в ней. Некоторые промежуточные продукты служат питательным резервом, который клетка использует после истощения основного питания.[ . ]

Наиболее важной стороной геохимической деятельности живых организмов является перераспределение газов. Основная масса диоксида углерода на суше образуется в результате микробиологических процессов в почве. Разрушая органические остатки, гетеротрофные микроорганизмы выделяют С02. Различные почвенные грибы в зависимости от скорости роста продуцируют от 200 до 2000 см3 в сутки С02 на 1 г их сухой массы. Весьма энергично дыхание бактерий, которые, в пересчете на живую массу, дышат в 200 раз интенсивнее человека.[ . ]

Установленное увеличение численности УОМ в опытных образцах сопровождается резким уменьшением содержания в них остаточных нефтепродуктов, что свидетельствует об ускорении процессов деструкции нефти в почве. Это подтверждается и восстановлением численности гетеротрофных микроорганизмов в обработанных почвах, являющихся одним из индикаторов биологической активности почв.[ . ]

Разложение включает как абиотические, так и биотические процессы. Однако обычно мертвые растения и животные разлагаются гетеротрофными микроорганизмами и сапрофагами. Такое разложение есть способ, посредством которого бактерии и грибы получают для себя пищу. Разложение, следовательно, происходит благодаря энергетическим превращениям в организмах и между ними. Этот процесс абсолютно необходим для жизни, так как без него все питательные вещества оказались бы связанными в мертвых телах и никакая новая жизнь не могла бы возникать. В бактериальных клетках и мицелии грибов имеются наборы ферментов, необходимых для осуществления специфических химических реакций. Эти ферменты выделяются в мертвое вещество; некоторые из продуктов его разложения поглощаются разлагающими организмами, для которых они служат пищей, другие остаются в среде; кроме того, некоторые продукты выводятся из клеток. Ни один вид сапротрофов не может осуществить полное разложение мертвого тела. Однако гетеротрофное население биосферы состоит из большого числа видов, которые, действуя совместно, производят полное разложение. Различные части растений и животных разрушаются с неодинаковой скоростью. Жиры, сахара и белки разлагаются быстро, а целлюлоза и лигнин растений, хитин, волосы и кости животных разрушаются очень медленно. Отметим, что около 25% сухого веса трав разложилось за месяц, а остальные 75% разлагались медленнее. Через 10 мес. еще оставалось 40% первоначальной массы трав. Остатки же крабов исчезли к этому времени полностью.[ . ]

Особенно подверженными к комбинированной нагрузке (загрязнению и эрозии) оказались черноземы. В них, в отличие от других типов почв, активизируется рост проактиномицетов, превалирует бактериальный олиготрофный комплекс, что свидетельствует о ситуации биогенного дефицита. Определенную компенсационную функцию в поддержании энергетических и трофических процессов гетеротрофных микроорганизмов выполняют фотосинтезирующие микроскопические водоросли и азотфиксирующие цианобактерии (см. табл. 5.4). Важно подчеркнуть, что суммарная протяженность трихомов и грибного мицелия при различной эродированности того или иного подтипа черноземов сохраняется на исходном уровне при различном соотношении длины фото- и гетеротрофной биоты, что означает проявление различных биологических механизмов формирования агрегатного состава в несмытых и смытых разновидностях черноземов. Агрегирующая эффективность фотосинтезирующих нитчатых форм выше, чем у грибных гиф вследствие слизистых, чаще всего многослойных, оболочек, чехлов, влагалищ, поскольку наряду с механическим опутыванием почвенных частиц происходит биохимическое (коагуляционное) сцепление. По мере декальцирования профиля и смыва тонкодисперсных частиц снижается доля вклада в механизм “фототрофного” сцепления азотфиксирующих слизистых особей. На их смену приходят нитчатые осциляториевые и формидумовые цианобактерии, участвующие в биогенном перехвате ионов натрия.[ . ]

Взаимоотношение почвенных цианобактерий с сапрофитными микромицетами носит характер метабиоза и реже - антагонизма. Выявлена приуроченность некоторых видов грибов к определенным видам цианобактерий. Уникальная способность цианобактерий осуществлять оксигенный фотосинтез и фиксацию молекулярного азота является важным фактором формирования активных микробных комплексов. Гетеротрофные микроорганизмы могут образовывать с цианобактериями устойчивые сообщества, в которых последние занимают доминирующее положение. Следовательно, цианобактерии служат дополнительным источником органического вещества как энергетического материала для гетеротрофных микроорганизмов и, в итоге, способствуют повышению плодородия обедненных от эрозии почв.[ . ]

1. Классификация микроорганизмов по типу питания.

Различают углеродное и азотное питание.

I. По типу углеродного питания микроорганизмы принято делить на аутотрофы и гетеротрофы . Аутотрофы (прототрофы) – микроорганизмы, способные воспринимать углерод из углекислоты воздуха. К ним относятся нитрифицирующие бактерии, железобактерии, серобактерии. Аутотрофы способны использовать воспринятую углекислоту для синтеза сложных органических соединений. Таким образом, аутотрофы обладают способностью синтезировать сложные органические соединения из неорганических. Поскольку такие микробы не нуждаются в готовых органических соединениях, среди них нет болезнетворных. Однако среди аутотрофов встречаются микроорганизмы, обладающие способностью усваивать углерод из углекислоты воздуха и из органических соединений. Такие микроорганизмы, имеющие смешанный тип питания определены как миксотрофы. Гетеротрофы в противоположность аутотрофам используют углерод из любых готовых органических соединений (чаще всего это углерод спиртов, сахаров, органических кислот, многоатомных спиртов). К гетеротрофам принадлежат возбудители различного рода брожений, гнилостные микробы и микроорганизмы – возбудители различных заболеваний. Однако деление микроорганизмов на аутотрофы и гетеротрофы достаточно условно, так как при изменении условий среды обмен веществ у микроорганизмов может меняться.Гетеротрофы включают в себя две подгруппы: метатрофы (сапрофиты) – живут за счет использования мертвых субстратов (гнилостные микроорганизмы) и паратрофы - паразитические микроорганизмы, живущие на поверхности или внутри организма хозяина и питающиеся за его счет.

II. По способу усвоения азотистых веществ микроорганизмы подразделяют на четыре группы:

·Протеолитические, способные расщеплять нативные белки, пептиды, аминокислоты.

·Дезаминирующие, способные отщеплять аминогруппы только у свободных аминокислот.

·Нитритно-нитратные, усваивающие окисленные формы азота.

·Азотфиксирующие, обладающие свойством усваивать атмосферный азот.

Потребность микроорганизмов в зольных элементах невелика. Необходимые для жизни минеральные соединения присутствуют в естественной среде обитания.Все изученные бактерии нуждаются в витаминах или ростовых веществах, которые играют роль катализаторов биохимических процессов микробной клетки. Они же служат структурными единицами при образовании некоторых ферментов. К витаминам, необходимым микробной клетке принадлежат: биотин, витамины группы В, витамин К и ряд других. Избыток витаминов задерживает рост бактерий.Кроме витаминов к факторам роста бактерий относят пуриновые и пиримидиновые основания (аденин, гуанин, цитозин, тимин, урацил, ксантин и гипоксантин). Некоторые микроорганизмы в качестве ростовых факторов используют аминокислоты, синтезируемые самой микробной клеткой или находящиеся в среде. Некоторые микроорганизмы обладают способностью синтезировать ростовые факторы в относительно больших количествах, обеспечивая не только свои потребности, но и интенсивно выделяя синтезируемые вещества в окружающую среду. Например, пропионовокислые бактерии способны синтезировать витамин В 12 , что активно используется в промышленности.Кроме описанных способов получения микроорганизмами питательных веществ часто применяется классификация микроорганизмов в зависимости от источника энергии:

· Фототрофные микроорганизмы – это микроорганизмы, способные использовать в качестве источника энергии свет. Например, синезеленые водоросли, пурпурные серобактерии. Эти микроорганизмы содержат пигменты, по своему составу близкие к хлорофиллу растений.

· Хемотрофные микроорганизмы получают энергию в результате окислительно-восстановительных реакций с участием питательных субстратов.

Способы поступления питательных веществ в клетку

Поступление веществ в клетку и выделение продуктов обмена в окружающую среду происходит у микроорганизмов через всю поверхность тела. У микроорганизмов очень большая по сравнению с объемом всасывающая пищу поверхность клетки, что обусловливает весьма активный обмен веществ. Поступление питательных веществ в клетку сложный процесс.

Вещества питательной среды могут поступать в клетку только в растворенном состоянии. Нерастворимые сложные органические соединения должны подвергнуться расщеплению на более простые вне клетки, что происходит с помощью экзоферментов микроорганизмов.

Наиболее известны два пути проникновения веществ в клетку: осмос и адсорбция (специфический перенос). Активная роль в этих процессах принадлежит цитоплазматической мембране.

О с м о с представляет собой диффузию веществ в растворах через полупроницаемую перепонку (мембрану). Как известно, через такие мембраны могут диффундировать вещества, находящиеся в состоянии истинных растворов. Возникает осмос под действием разности осмотических давлений в растворах по обе стороны полупроницаемой мембраны.

Оболочка клетки проницаема и задерживает лишь макромолекулы. Цитоплазматическая мембрана клетки обладает полупроницаемостью; она является осмотическим барьером, регулируя поступление в клетку и выход из неё растворённых веществ.

При осмотическом проникновении питательных веществ в клетку движущей силой служит разность осмотических давлений между средой и клеткой. Такой пассивный перенос веществ не требует затраты энергии и протекает до выравнивания концентрации с наружным раствором.

Если микроорганизм попадает в субстрат, осмотическое давление которого выше, чем в клетке, то цитоплазма отдает воду во внешнюю среду. Питательные вещества в клетку не поступают, содержимое клетки уменьшается в объёме, и протопласт отстаёт от клеточной оболочки. Это явление называется плазмолизом клетки.

При чрезмерно низком осмотическом давлении внешней среды может наступить плазмоптис клетки – явление, обратное плазмолису, когда вследствие высокой разности осмотических давлений цитоплазма быстро переполняется водой. Это может привести к разрыву клеточной оболочки, что наблюдается, например, при помещении бактерий в дистиллированную воду.

Второй путь поступления веществ в клетку – активный – путём переноса их особыми, локализованными в цитоплазматической мембране веществами ферментной природы. Эти переносчики, называемые пермеазами, обладают субстратной специфичностью. Каждый транспортирует только определённое вещество, имеющее сходную с белком-переносчиком стереохимическую структуру молекулы. На внешней стороне цитоплазматической мембраны переносчик адсорбирует вещество – вступает с ним во временную связь и диффундирует комплексно через мембрану, отдавая на внутренней стороне её транспортируемое вещество в цитоплазму. Вещество может поступать и тогда, когда концентрация его в клетке больше, чем в среде. При таком переносе веществ затрачивается энергия. При этом транспортируемое вещество может подвергнуться изменению, например из не растворимого в мембране переходит в растворимое состояние.

Цитоплазматическая мембрана, таким образом, является не только осмотическим барьером, но и обладает избирательной проницаемостью.

2. Микробиологические процессы, протекающие при квашении. Квашение, соление и мочение относят к биохимическим методам консервирования. Он основан на образовании естественного консерванта - молочной кислоты, которая накапливается в результате молочнокислого брожения. Сущность молочнокислого брожения состоит в преобразовании Сахаров в молочную кислоту под действием молочнокислых бактерий. Молочная кислота придает продукту специфический вкус и запах, подавляет развитие посторонней микрофлоры.

Молочнокислое брожение, может происходить двумя путями:

♦ гомоферментативным - когда преимущественно образуется молочная кислота;

♦ гетероферментативным - кроме молочной кислоты образуются и другие побочные продукты: углекислый газ, лимонная и пировиноградная кислоты и др.

Лучшая температура для периода квашения – комнатная, для зимнего хранения – от 5 °C тепла до нуля. Квашеная капуста считается готовой к употреблению, когда закончится молочнокислое брожение. К концу брожения она приобретает светлый, янтарно – желтый цвет, обладает приятным запахом и кисловатым вкусом. Горький вкус свидетельствует о ненормальном ходе брожения или некачественной подготовке капусты к квашению (плохая зачистка, оставлены зеленые листья).

Характеристика микроорганизмов – возбудителей порчи.

1.
В состав микроорганизмов входят вода, белки, нуклеиновые кислоты, углеводы, липиды,
минеральные вещества.
Вода – основной компонент бактериальной клетки, составляющий около 80 % ее массы. Она находится в свободном или связанном состоянии со структурными элементами клетки. В спорах количество воды уменьшается до 18.20 %. Вода является растворителем для многих веществ, а также выполняет механическую роль в обеспечении тургора. При плазмолизе . потере клеткой воды в гипертоническом растворе . происходит отслоение протоплазмы от клеточной оболочки. Удаление воды из клетки, высушивание приостанавливают процессы метаболизма. Большинство микроорганизмов хорошо переносят высушивание. При недостатке воды микроорганизмы не размножаются.
Высушивание в вакууме из замороженного состояния (лиофилизация) прекращает размножение и способствует длительному сохранению микробных особей.

Белки (40.80 % сухой массы) определяют важнейшие биологические свойства бактерий и
состоят обычно из сочетаний 20 аминокислот. В состав бактерий входит диаминопимелиновая кислота (ДАП), отсутствующая в клетках человека и животных. Бактерии содержат более 2000 различных белков, находящихся в структурных компонентах и участвующих в процессах метаболизма. Большая часть белков обладает ферментативной активностью. Белки бактериальной клетки обусловливают антигенность и иммуногенность, вирулентность, видовую принадлежность бактерий.

Нуклеиновые кислоты бактерий выполняют функции, аналогичные нуклеиновым кислотам эукариотических клеток: молекула ДНК в виде хромосомы отвечает за наследственность, рибонуклеиновые кислоты (информационная, или матричная, транспортная и рибосомная) участвуют в биосинтезе белка.

Бактерии можно характеризовать (таксономически) по содержанию суммы гуанина и цитозина (ГЦ) в молярных процентах (М%) от общего количества оснований ДНК. Более точной характеристикой микроорганизмов является гибридизация их ДНК. Основа метода гибридизации ДНК . способность денатурированной (однонитчатой) ДНК ренатурироваться, т.е. соединяться с комплементарной нитью ДНК и образовывать двухцепочечную молекулу ДНК.

Углеводы бактерий представлены простыми веществами (моно- и дисахариды) и комплексными соединениями.
Полисахариды часто входят в состав капсул. Некоторые внутриклеточные
полисахариды (крахмал, гликоген и др.) являются запасными питательными веществами.

Лип иды в основном входят в состав цитоплазматической мембраны и ее производных, а также клеточной стенки бактерий, например наружной мембраны, где, кроме биомолекулярного слоя липидов, имеется ЛПС. Липиды могут выполнять в цитоплазме роль запасных питательных веществ. Липиды бактерий представлены фосфолипидами, жирными кислотами и гли-церидами. Наибольшее количество липидов (до 40 %) содержат микобактерии туберкулеза.

Минеральные вещества бактерий обнаруживают в золе после сжигания клеток. В большом количестве выявляются фосфор, калий, натрий, сера, железо, кальций, магний, а также микроэлементы (цинк, медь, кобальт, барий, марганец и др.).Они участвуют в регуляции осмотического давления, рН среды, окислительно-восстановительного потенциала, активируют ферменты, входят в состав ферментов, витаминов и структурных компонентов микробной клетки.
2.
Микрофлора зерна
В 1 гр зерна содержатся миллионы микроорганизмов. Качественный состав микрофлоры: 90% состовляют бактерии, 5-7% споры плесневых грибов и небольшое число дрожжей. Среди бактерий преобладает гербикола, считается, что большое число клеток гербиколы является высоким показателем качества зерна. Встречаются также микрококки, молочнокислые бактерии и споровые анаэробные палочки. Преобладает полевая плесень, мало пенецилов и аспергиловю По мере хранения зерна, полевая плесень отмирает, а доминирующими становятся пенецилы и аспергилы, которые называют плесенями хранения. Жизнедеятельность микрофлоры зависит от температуры окружающей среды. Большинство бактерий и грибов мезофилы, оптимальная температура развития которых 20-30 градусов. Влияние температур на развитие микроор

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции