Дифтерийная палочка прокариот или эукариот

Структура бактериальной клетки

Бактериальная клетка состоит из клеточной стенки, цитоплазматической мембраны, цитоплазмы с включениями и ядерного аппарата, называемого нуклеоидом. Имеются другие структуры: мезосома, хроматофоры, тилакоиды, вакуоли, включения полисахаридов, жировые капельки, капсула (микрокапсула, слизь), жгутики, пили. Некоторые бактерии способны образовывать споры.
Структуру и морфологию бактерий изучают с помощью различных методов микроскопии: световой, фазово-контрастной, интерференционной, темнопольной, люминесцентной и электронной.

Обозначения:

1-гранулы поли-β-оксимасляной кислоты;
2-жировые капельки;
3-включения серы;
4-трубчатые тилакоиды;
5-пластинчатые тилакоиды;
6-пузырьки;
7-хроматофоры;
8-нуклеоид;
9-рибосомы;
10-цитоплазма;
11-клеточная стенка;
12-цитоплазматическая мембрана;
13-мезосома;
14-вакуоли;
15ламелярные структуры;
16гранулы полисахарида;
17гранулы полифосфата.


Цитоплазматическая мембрана при электронной микроскопии ультратонких срезов представляет собой трехслойную мембрану (2 темных слоя толщиной по 2,5 нм разделены светлым - промежуточным). По структуре она похожа на плазмалемму клеток животных и состоит из двойного слоя фосфолипидов с внедренными поверхностными, а также интегральными белками, как бы пронизывающими насквозь структуру мембраны. При избыточном росте (по сравнению с ростом клеточной стенки) цитоплазматическая мембрана образует инвагинаты — впячивания в виде сложно закрученных мембранных структур, называемые мезосомами. Менее сложно закрученные структуры называются внутрицитоплазматическими мембранами.


Нуклеоид — эквивалент ядра у бактерий. Он расположен в центральной зоне бактерий в виде двунитевой ДНК, замкнутой в кольцо и плотно уложенной наподобие клубка. Ядро бактерий, в отличие от эукариот, не имеет ядерной оболочки, ядрышка и основных белков (гистонов). Обычно в бактериальной клетке содержится одна хромосома, представленная замкнутой в кольцо молекулой ДНК.
Кроме нуклеоида, представленного одной хромосомой, в бактериальной клетке имеются внехромосомные факторы наследственности - плазмиды, представляющие собой ковалентно замкнутые кольца ДНК.

Капсула - слизистая структура толщиной более 0,2мкм, прочно связанная с клеточной стенкой бактерий и имеющая четко очерченные внешние границы. Капсула различима в мазках-отпечатках из патологического материала. В чистых культурах бактерий капсула образуется реже. Она выявляется при специальных методах окраски мазка (например, по Бурри-Гинсу), создающих негативное контрастирование веществ капсулы: тушь создает темный фон вокруг капсулы. Капсула состоит из полисахаридов (экзополисахаридов), иногда из полипептидов, например, у сибиреязвенной бациллы она состоит из полимеров D-глутаминовой кислоты. Капсула гидрофильна, препятствует фагоцитозу бактерий. Капсула антигенна: антитела против капсулы вызывают ее увеличение (реакция набухания капсулы).
Многие бактерии образуют микрокапсулу - слизистое образование толщиной менее 0,2мкм, выявляемое лишь при электронной микроскопии. От капсулы следует отличать слиэь - мукоидные экзополисахариды, не имеющие четких границ. Слизь растворима в воде.
Бактериальные экзополисахариды участвуют в адгезии (прилипании к субстратам), их еще называют гликокаликсом. Кроме синтеза
экзополисахаридов бактериями, существует и другой механизм их образования: путем действия внеклеточных ферментов бактерий на дисахариды. В результате этого образуются декстраны и леваны.

Жгутики бактерий определяют подвижность бактериальной клетки. Жгутики представляют собой тонкие нити, берущие начало от цитоплазматической мембраны, имеют большую длину, чем сама клетка. Толщина жгутиков 12-20 нм, длина 3-15 мкм. Они состоят из 3 частей: спиралевидной нити, крюка и базального тельца, содержащего стержень со специальными дисками (1 пара дисков - у грамположительных и 2 пары дисков - у грамотрицательных бактерий). Дисками жгутики прикреплены к цитоплазматической мембране и клеточной стенке. При этом создается эффект электромотора со стержнем-мотором, вращающим жгутик. Жгутики состоят из белка - флагеллина (от flagellum - жгутик); является Н-антигеном. Субъединицы флагеллина закручены в виде спирали.
Число жгутиков у бактерий различных видов варьирует от одного (монотрих) у холерного вибриона до десятка и сотен жгутиков, отходящих по периметру бактерии (перитрих) у кишечной палочки, протея и др. Лофотрихи имеют пучок жгутиков на одном из концов клетки. Амфитрихи имеют по одному жгутику или пучку жгутиков на противоположных концах клетки.


Пили (фимбрии, ворсинки) - нитевидные образования, более тонкие и короткие (3-10нм х 0, 3-10мкм) , чем жгутики. Пили отходят от поверхности клетки и состоят из белка пилина, обладающего антигенной активностью. Различают пили, ответственные за адгезию, то есть за прикрепление бактерий к поражаемой клетке, а также пили, ответственные за питание, водносолевой обмен и половые (F-пили), или конъюгационные пили. Пили многочисленны - несколько сотен на клетку. Однако, половых пилей обычно бывает 1-3 на клетку: они образуются так называемыми "мужскими" клетками-донорами, содержащими трансмиссивные плазмиды (F-, R-, Col-плазмиды). Отличительной особенностью половых пилей является взаимодействие с особыми "мужскими" сферическими бактериофагами, которые интенсивно адсорбируются на половых пилях.

Споры - своебразная форма покоящихся фирмикутных бактерий, т.е. бактерий
с грамположительным типом строения клеточной стенки. Споры образуются при неблагоприятных условиях существования бактерий (высушивание, дефицит питательных веществ и др.. Внутри бактериальной клетки образуется одна спора (эндоспора). Образование спор способствует сохранению вида и не является способом размножения, как у грибов. Спорообразующие бактерии рода Bacillus имеют споры, не превышающие диаметр клетки. Бактерии, у которых размер споры превышает диаметр клетки, называются клостридиями, например, бактерии рода Clostridium (лат. Clostridium - веретено). Споры кислотоустойчивы, поэтому окрашиваются по методу Ауески или по методу Циля-Нильсена в красный, а вегетативная клетка в синий цвет.

Форма спор может быть овальной, шаровидной; расположение в клетке -терминальное, т.е. на конце палочки (у возбудителя столбняка), субтерминальное - ближе к концу палочки (у возбудителей ботулиэма, газовой гангрены) и центральное (у сибиреязвенной бациллы). Спора долго сохраняется из-за наличия многослойной оболочки, дипиколината кальция, низкого содержания воды и вялых процессов метаболизмов. В благоприятных условиях споры прорастают, проходя три последовательные стадии: активация, инициация, прорастание.

Дифтерия принадлежит к немногим инфекциям, патогенетическую сущность которых определяет мономолекулярная интоксикация. Своевременное введение антител, нейтрализующих токсин (их вводят в виде антитоксической сыворотки или антитоксического иммуноглобулина), обрывает симптомы заболевания, а в опытах на животных предупреждает развитие местных поражений и смертельной интоксикации. Размножение бактерий почти всегда ограничивается слизистыми оболочками, не выходя за пределы эпителиального барьера. Однако токсин, секретируемый возбудителем, преодолевает этот рубеж и через регионарный лимфоидный барьер проникает в кровяное русло, поражая органы, которые наиболее интенсивно снабжаются кровью и содержат максимальное число рецепторов к токсину (см. ниже).

Дифтерийный токсин убивает клетки эпителия, подавляет фагоцитоз, а повреждая эндотелиоциты и стенку сосудов, вызывает обильную экссудацию. Экссудат свертывается, плотно спаиваясь с подлежащей тканью. Образуется толстая плотная пленка — псевдомембрана, содержащая сгустки фибрина, некротизированные ткани и бактерии. Возбудитель получает здесь великолепные условия для размножения и продукции токсина. Дифтерийная палочка продуцирует ферменты (нейраминидазу и N-ацетилнейраминиатлиазу), которые, действуя на эстафетной основе, обеспечивают бактерии энергетическим сырьем: нейраминидаза отщепляет N-ацетилнейраминовую кислоту от гликопротеинов слизи и поверхности клеток, а лиаза расщепляет ее на пируват и N-ацетилманнозамин. Пируват служит готовым источником энергии, стимулируя рост коринебактерий.

Не обладая капсулой, возбудитель находит внутри дифтеритической пленки отличную защиту от эффекторов иммунитета. Палочка дифтерии не образует спор, но в пленках не погибает при 98°С в течение часа, хотя чистая культура даже при 60°С гибнет через несколько минут. В высохшей пленке дифтерийная палочка сохраняет жизнеспособность около месяца, тогда как в чистом виде (например, на детских игрушках) выживает лишь несколько дней.

Выделив впервые культуру дифтерийной палочки, Ф. Леффлер не скрывал опасений, что его открытие может быть ложным. Причиной этих сомнений были противоречия с имевшими тогда непререкаемый авторитет постулатами Р. Коха, согласно которым микроб мог быть признан возбудителем болезни при трех обязательных условиях:

  1. он должен выделяться от всех больных данным заболеванием;
  2. обязан отсутствовать у здоровых и больных другими заболеваниями;
  3. основные симптомы должны быть воспроизведены при заражении чистой культурой экспериментальных животных.

Но оставалась другая загвоздка: путаницу вносили штаммы, которые по классическим маркерам невозможно отдифференцировать от патогенетически значимых изолятов дифтерийной палочки. Проблема решилась с открытием дифтерийного токсина. Оказалось, что единственное отличие безвредных двойников от вирулентных штаммов состоит в том, что они не продуцируют токсин, т.е. являются нетоксигенными. Нетоксигенные штаммы не вызывают дифтерии, хотя и способны персистировать в респираторном тракте человека. По сути, это факультативные представители нормальной микрофлоры, а бессимптомность инфекции доказывает, что токсинообразование — не обязательный (или, по крайней мере, не единственный) фактор колонизации.

Загадка токсигенных и нетоксигенных двойников дифтерийной палочки прояснилась в 1951 г. Оказалось, что токсигенные штаммы заражены умеренными фагами (b- и w-фаги), которые вносят в клетку tox-ген, ответственный за синтез токсина. Штаммы, не инфицированные лизогенными фагами или потерявшие их, лишены токсигенности. Бактериальная клетка сохраняет определенный контроль над токсинообразованием, продуцируя особый белок, который в присутствии ионов железа (Fe 2- ) подавляет транскрипцию tox-гена. Если содержание железа в среде падает ниже определенного уровня, образование токсина усиливается. Этим объясняется повышенный синтез токсина на поздних стадиях роста бактериальной культуры, когда основная часть неорганического железа израсходована. Сходная ситуация возникает, по-видимому, и в очагах дифтерийного поражения (в псевдомембранах), способствуя интоксикации.

Краткая характеристика инфекций, основные системы.
2. Характеристика возбудителя:
2.1. Морфологические и тинкториальные свойства;
2.2. Культуральные свойства;
2.3. Биохимические свойства;
2.4. Токсические свойства;
2.5. Антигенные свойства;
2.6. Резистентность;
2.7. Патогенность для животных;
3. Патогенез и эпидемиология.
4. Иммунитет.
5. Лабораторная диагностика.
6. Специфическая профилактика и терапия.

Краткая характеристика инфекций, основные системы.

2. Характеристика возбудителя.

2.1. Морфологические и тинкториальные свойства.

Дифтерийная палочка (палочка Клебса – Леффлера) представлена тонкими, слегка изогнутыми или прямыми палочками размером 1 – 12 × 0,3 – 0,8 мкм. Часто они утолщены на концах и напоминают булаву. Для дифтерийной палочки характерен выраженный полиморфизм. Наряду с типичными формами, можно обнаружить карликовые, кокковидные, толстые с колбовидным утолщением на концах, гигантские, клиновидные, нитевидные, ветвящиеся и другие формы. На поверхности бактерий имеются фимбрии, облегчающие адгезию к эпителию слизистой оболочки. У С . Diphtheriae выделяют три биовара – gravis, mitis и intermedius.

Бактерии биовара gravis – короткие неправильной формы, с небольшим количеством метахроматических гранул.

Биовар mitis образуют длинные изогнутые полиморфные палочки, содержащие много волютиновых зерен (тельца Бабеша-Эрнста).

Бактерии биовара intermedius наиболее крупные, с бочковидными очертаниями; для них характерны поперечные перегородки, разделяющие клетку на несколько сегментов. В настоящее время биовар intermedius относят в группу gravis.

Рост на средах с теллуритом

Мелкие сухие матовые серо-черные колонии с более прозрачной периферией, поднятым центром и неровными краями

Мелкие гладкие блестящие полупрозрачные черные колонии с ровными краями

Рост на бульоне

Пленка, помутнение (иногда отсутствует), крошковидный или крупнозернистый осадок

Помутнение с последующим просветлением и образованием мелкозернистого осадка

Равномерное помутнение и порошкообразный осадок

Гемолиз на кровяных средах

2.2. Культуральные свойства.

Дифтерийная палочка хорошо растет при 36-37ºС; оптимум рН 7,4-8,0. Питательные среды должны содержать аминокислоты, витамины, ионы металлов (Са 2+ , Mg 2+ , Fe 2+ и др.), играющие роль ростовых факторов. На сывороточных средах (например, среде Леффлера) дают рост уже через 10-12 ч; за это время контаминирующая микрофлора обычно успевает развиться. Наибольшее распространение получили среды с теллуритом, так как возбудитель резистентен к высоким концентрациям теллурита калия или натрия, ингибирующим рост сопутствующей микрофлоры. На таких средах возбудитель образует серовато-черные колонии в результате восстановления теллурита до металлического теллура, аккумулирующегося внутри бактерий. В жидких средах образуют помутнение и осадок; их образование и характер варьируют у различных биоваров.

2.3. Биохимические свойства.

С. diphtheriae сбраживает с образованием кислоты глюкозу, мальтозу, галактозу, декстрин; не разлагает сахарозу, лактозу, манит. Способность разлагать крахмал и гликоген варьирует у различных штаммов, что используют для внутривидовой дифференцировки. Дифтерийная палочка не гидролизует мочевину и не образует индол. Отсутствие способности ферментировать палочку сахарозу и разлагать мочевину – дифференцирующий признак, отличающий дифтерийную палочку от других коринебактерий. Другой дифференцирующий признак – способность разлагать цистин. С. diphtheriae продуцирует каталозу, гиалуронидазу, нейромидазу, ДНК-азу и др. Дифтерийная палочка лизирует эритроциты морской свинки и кролика. Биовары возбудителя дифтерии существенно различаются по культуральным и биохимическим свойствам. Среди дифференциально-диагностических биохимических тестов наиболее часто учитывают различия в способности разлагать углеводы и мочевину.

Бактериоцины. Дифтерийная палочка образует бактериоцины (корицины), образующие узким спектром действия. Гены, кодирующие синтез бактериоцинов, передаются плазмидами. Бактериоцины образуют как токсические, так и нетоксические штаммы.

2.4. Токсические свойства.

С. diphtheriae продуцирует мощный экзотоксин – основной фактор патогенности. Нетоксигенные штаммы не вызывают развития заболевания . В чистом виде токсин впервые получили Э.Ру и А.Иерсен (1888), что явилось решающим моментом для установления этиологической роли микроорганизма. Токсин проявляет все свойства экзотоксина (термолабильный, высокотоксичный, иммуногенный белок, нейтрализуемый антитоксической сывороткой). Нативный токсин – полипептид с М r около 72000; его образуют фрагменты А (проявляет ферментативную активность) и В (взаимодействует с клеточными рецепторами, облегчая проникновения фрагмента А). клетки всех чувствительных организмов способны рецептировать В – фрагмент и поглощать молекулу посредством эндоцитоза. В кислой среде эндосом (фаголизосом) дисульфидные связи, объединяющие оба компонента, разрушаются фрагмент В взаимодействует с мембраной эндосомы, облегчая проникновение фрагмента А в цитоплазму. Последний устойчив к денатурации и длительно сохраняется в цитозоле. Механизм цитотоксического действия связан с модификацией белков через АТФ-рибозилирование. Подобным свойством обладают многие токсины, но лишь дифтерийный токсин и токсин А Pseudomonas aeruginosa имеют специфическую мишень – фактор элонгации 2 – трансферазу, ответственную за наращивание (элонгацию) полипептидной цепи на рибосоме.

Дифтерийный токсин катализирует перенос АТФ-рибозы от цитоплазматического никотинамиддинуклеотида (НАД) к фактору элонгации 2, приводя к АТФ-рибозилированию гистидиновых остатков в молекуле фактора с необратимым блокированием элонгации полипептидной цепи (то есть любого белкового синтеза). Немодифицированный фактор элонгации 2 образует комплекс с ГТФ и тРНК, связывающийся с мРНК в эукариотических клетках, после чего ингибирует белковый синтез, в том числе и в миокарде, приводя к структурным и функциональным нарушениям, способным вызвать смерть больного. Результат действия токсина на нервную ткань – демиелинизация нервных волокон, часто приводящая к параличам и парезам.

Способность к токсинообразованию проявляют лишь лизогенные штаммы Corynebacterium diphtheriae , инфицированные бактериофагом (β-фаг), несущим ген tox , кодирующий структуру токсина. Образование последнего наиболее выражено при вступлении бактериальной популяции в стадию отмирания. Переход умеренного фага в литическую форму мало влияет на синтез токсина.

2.5. Антигенные свойства.

У С. diphtheriae выделяют О- и К-Аг. Липидные и полисахаридные термолабильные фракции О-АГ коринебактерий преимущественно представлены межвидовыми Аг. Поверхностные термолабильные К-Аг (нуклеопротеиды, белки) обеспечивают видовую специфичность и проявляют выраженную иммуногенность. С помощью анти-К-сывороток дифтерийные бактерии разделяют на серологические варианты. Биовар mitis включает 40 сероваров, gravis – 14, intermedius – 4. в отечественной практике используют диагностические агглютинирующие, неадсорбированные сыворотки; в том числе полигрупповые и к сероварам для РА на стекле и в пробирках.

Коринебактерии дифтерии устойчивы к факторам окружающей среды, высыханию и могут долго сохранять жизнеспособность, например, на мягких игрушках — до 3 мес. Дезинфицирующие вещества (5% раствор карболовой кислоты, 1% раствор сулемы и др.) Дифтерийные бактерии чувствительны к пенициллину, эритромицину, тетрациклину и другим антибиотикам.

2.7. Патогенность для животных.

К дифтерийному экзотоксину чувствительны морские свинки. Токсигенность коринебактерии определяется внутрикожным методом, позволяющим на одной морской свинке изучить токсигенность нескольких штаммов. При подкожном введении дифтерийных бактерий свинка погибает на 2—5-й день. На вскрытии обнаруживаются резкое увеличение и гиперемия надпочечников — специфическое действие экзотоксина.

3. Патогенез и эпидемиология.


Входные ворота для возбудителя – слизистые оболочки носоглотки, иногда глаз, половых органов (у женщин), поврежденные кожные покровы. Дифтерийная палочка колонизирует ткани в месте внедрения, вызывая развитие местного фибринозного воспаления. При этом тип воспаления зависит от строения слизистых оболочек. Например, в однослойном цилиндрическом эпителии дыхательных путей формируется крупозное воспаление, на многослойном плоском эпителии образуется желто-серая фибринозная пленка, плотно спаянная с прилежащими тканями. Подобный тип поражений известен как дифтеритическое воспаление. Разрастание пленок и переход процесса, поражающего нервную систему (преимущественно периферические симпатические узлы), сердце и сосуды, надпочечники и почки. Ферменты С. diphtheriae (гиалуронидаза, нейромидаза, фибринолизин) обеспечивают проникновение возбудителя в различные ткани, включая кровоток. Однако (в отличии от токсинемии) бактериемия клинически не проявляется.

Резервуар дифтерии — человек (больной, реконвалесцент, бактерионоситель); наибольшую эпидемическую опасность представляют больные лица. Реконвалесценты выделяют дифтерийную палочку в течение 15-20 сут. Основной путь передачи дифтерийной палочки — воздушно-капельный; также возможно заражение через предметы, используемые больным, и инфицированные пищевые продукты (обычно молоко). При комнатной температуре во влажной атмосфере палочка Клебса-Лёффлера сохраняется долго. При 60°С дифтерийная палочка отмирает в течение 10 мин; в высушенных плёнках выдерживает температуру 98 "С в течение 1 ч, а при комнатной температуре может сохраняться до 7 мес. На игрушках дифтерийная палочка сохраняется до 2 нед, в пыли — до 5 нед, в воде и молоке — до 6-20 сут, на рассеянном свету остаётся жизнеспособным до 8 ч. Дезинфектанты и антисептики инактивируют возбудителя дифтерии в течение 5-10 мин. Пик заболеваемости дифтерией приходится на осенне-зимние месяцы.

После заболевания длительное время сохраняется антимикробный и антитоксический иммунитет. Грудные дети дифтерией не болеют, так как у них имеется пассивный иммунитет от матери. Наиболее восприимчивы дети в возрасте от 1 года до 5—6 лет. Для выявления антитоксического противодифтерийного иммунитета используется внутрикожная проба Шика. У детей, восприимчивых к дифтерии, на предплечье в месте введения малых доз дифтерийного токсина через 48 ч появляются покраснение и инфильтрат, что свидетельствует об отсутствии антитоксинов в крови.

5. Лабораторная диагностика.

С целью раннего выявления заболевания и определения носителей необходимы выделение и идентификация возбудителя, а так же определение его способности к токсинообразованию. Материалом для исследования служат дифтерические пленки, слизь из носоглотки или отделяемое из подозрительных поражений кожных покровов. Забор материала проводят двумя стерильными тампонами: один используют для посева, с другого делают мазки и окрашивают их по Граму и Найссеру. Взятый материал следует доставлять в лабораторию не позднее чем через три часа.

Бактериоскопия. Окраска по Граму не является специфичной, так как бактерии сравнительно плохо воспринимают красители, но позволяет косвенно идентифицировать непатогенные коринебактерии, располагающиеся в виде полисада (параллельно) или в виде китайских иероглифов. Окраска по Найссеру позволяет выделить характерные зерна Бабеша-Эрнста и отличить дифтерийную палочку от ложнодифтерийной палочки. C . pseudodiphtheriticum ( С. hofmannii ), часто обитающей в носоглотке.

Определение in vivo . Проводят подкожным и внутрикожным заражением 0,5 – 1,0 мл бактериальной культуры морских свинок массой 250 г. За 24 часа до заражения одному животному вводят дифтерийный антитоксин. При положительном результате не иммунизированные животные погибают в течение 3 -5 суток.

Фаготипирование. Для дифференциальной диагностики возбудителей используют набор из 9 коринефагов. С его помощью можно типировать большинство токсигенных и нетоксигенных штаммов биовара gravis .

6. Специфическая профилактика и терапия.

Первоначально развитие заболевание предупреждали введением инактивированного антисывороткой дифтерийного токсина. В настоящее время основу профилактики дифтерии составляет плановая или постэкспозиционная вакцинация. Для иммунопрофилактики применяют дифтерийный анатоксин, разработанный Г.Рамоном. Препарат – токсин, лишенный ядовитых свойств обработкой 0,4% раствором формалина и выдержкой в термостате при температуре 40ºС в течение 30 суток, но сохранивший иммуногенность. Очищенный и концентрированный препарат входи в состав комбинированных вакцин – АКДС, АДС, АДС – М.

Наличие и содержание АТ к дифтерийному токсину определяют в РПГА и РНГА.

Постинфекционный иммунитет нестойкий, поэтому реконвалесценты подлежат вакцинации в общем порядке.

При выявлении заболевания в детских коллективах контактировавших с заболевшими детьми лиц следует обследовать бактериологическим и изолировать от коллектива на 7 суток.

Поскольку патогенез поражений обусловлен действием токсина, то основу специфической терапии составляет противодифтерийная лошадиная сыворотка (антитоксин), содержащая не менее 2000 международных антитоксических единиц активности (МЕ) 1мл. антитоксин вводят внутримышечно или внутривенно в дозах, соответствующих тяжести заболевания (от 20000 до 100000 ЕД). открытие Э.Беренгом и Ш.Китазато антитоксических свойств сыворотки иммунных животных явилось одним из важных этапов развития микробиологии, а практическая медицина получила возможность противостоять этой высоколетальной инфекции. Параллельно назначают эффективные антимикробные препараты (амигликозиды, цефалоспорины), а также проводят симптоматическую терапию. Выписку больных проводят только после двукратного отрицательного результата бактериологического обследования.

По морфологическим и культуральным свойствам с возбудителями дифтерии сходна большая группа бактерий рода Corynebacterium, обозначаемых как кориноформные бактерии, или дифтероиды. Они широко распространены в окружающей среде – в воздухе, почве, пыли, воде, а также в некоторых пищевых продуктах (например, молоке). Нередко их выделяют от клинически здоровых лиц, а также при различных заболеваниях (часто их роль остается неясной). От человека их наиболее часто выделяют со слизистой оболочки носоглотки (где они доминируют наравне со стафилококками), с эпителия влагалища (особенно у детей), а также из различных ран. Большинство видов представлено организмами-комменсалами, например C . pseudodiphtheriticum (палочка Хофмана) и С. xerosis , но также имеются виды, вызывающие спорадические поражения человека ( C . ulceras , C . jeikeium , C . urealyticum , C . minutissimum и др).

К прокариотам относят две большие группы: Бактерии (Bacteria) и Археи (Archaea), к эукариотам — все остальные живые существа (животные, растения и грибы). Археи имеют сходные с бактериями размеры, принципы организации и способы деления, однако представители этой группы имеют свои существенные особенности.

Клетки бактерий имеют наиболее простой тип строения (рис. 4.1):

• нет ограниченного мембранами ядра;

• единственная молекула ДНК, замкнутая в кольцо, находится в области цитоплазмы, называемой нуклеоидом.

• слабо развита система внутриклеточных мембран, нет хлоропластов, митохондрий, эндоплазматической сети, комплекса Гольджи, функции которых выполняют выпячивания цитоплазматической мембраны;

• в цитоплазме находятся рибосомы; ферменты, обеспечивающие процессы жизнедеятельности, диффузно расположены в цитоплазме или связаны с внутренней поверхностью мембраны;

• центриоли и митотическое веретено отсутствуют, деление клеток осуществляется путем перетяжки (этому предшествует репликация ДНК, затем две копии расходятся, увлекаемые растущей клеточной мембраной);

• внутри клеток многих бактерий откладываются запасные вещества — полисахариды, липиды, полифосфаты, что обеспечивает продление жизни в условиях отсутствия внешних источников энергии;

• жгутик образован субъединицами белка флагеллина; в клеточной оболочке фибрилла жгутика закреплена крюком, в цитоплазме находится базальное тельце, обеспечивающее движение жгутика;

• помимо жгутиков бактерии образуют и другие выросты (фимбрии и пили), которые обеспечивают прикрепление клеток к различным поверхностям, а также отвечают за межклеточное распознавание;

• обычно снаружи формируется клеточная стенка, состоящая из особого гликопептида — муреина;

• некоторые виды бактерий образуют слизистую капсулу.


Рис. 4.1. Строение бактериальной клетки:

А — схема; Б — электронная микрофотография кишечной палочки

Эубактерии имеют размеры от 0,5 до 20 мкм. Основные формы (рис. 4.2): кокки (шаровидные), бациллы (палочковидные), вибрионы (изогнутые в виде запятой), спириллы и спирохеты (спирально закрученные). В зависимости от вида бактерии или существуют по отдельности, или образуют характерные скопления. Например, стрептококк, вызывающий воспалительные заболевания у человека и животных, образует цепочки из нескольких бактериальных клеток, а стафилококк, поражающий дыхательные пути у детей, растет в виде образований, напоминающих кисть винограда.

Размножаются бактерии обычно делением клетки надвое, которое наступает после удвоения бактериальной хромосомы — кольцевидной молекулы ДНК; некоторые бактерии размножаются почкованием. Половой процесс (генетическая рекомбинация) осуществляется в форме обмена генетическим материалом между особями. В неблагоприятных условиях бактерии способны образовывать споры за счет формирования плотной оболочки вокруг молекулы ДНК с участком цитоплазмы. Споры отличаются исключительной устойчивостью к различным неблагоприятным воздействиям. В подходящих условиях споры набухают, оболочки разрываются и клетки переходят к активному функционированию.


Рис. 4.2. Виды бактериальных клеток:

А — кокки; Б — диплококки; В — стафилококки; Г— стрептококки; Д — палочковидные бактерии; Е — вибрионы; Ж — спириллы

По способу дыхания бактерии делятся на анаэробов, живущих в бескислородной среде, и аэробов, живущих в среде с присутствием кислорода; факультативные анаэробы способны жить в кислородной и бескислородной среде. Большинство бактерий питаются гетеротрофно, используя готовые органические вещества отмершей биомассы (сапрофиты) или живых организмов (паразиты). Многие гетеротрофные бактерии выделяют ферменты, вызывающие брожение: молочнокислое, маслянокислое, уксуснокислое. Бактерии осуществляют минерализацию — гниение остатков растений и трупов животных, превращая сложные органические соединения в неорганические. Конечными продуктами этих процессов являются СO2 Н2О, Н2S, NН3 и другие вещества.

Для многих бактерий средой обитания является биотическая среда, т.е. организмы других видов. Они могут образовывать ассоциации различной сложности с другими прокариотами, одноклеточными эукариотическими организмами или поселяться в органах и тканях многоклеточных животных и растений.

Паразитизм у бактерий широко распространен. Многие бактерии являются возбудителями болезней, разрушая клетки хозяина, другие вызывают заболевания, выделяя токсические вещества. К числу паразитических бактерий, вызывающих заболевания человека, относятся холерный вибрион, дифтерийная и дизентерийная палочки и др. Для уничтожения и ослабления жизнедеятельности бактерий проводят дезинфекцию (например, раствором карболовой кислоты, формалина, спирта и др.) или стерилизацию высокой температурой (до 120 °С), а также пастеризацию, когда пищевые продукты несколько раз нагревают до 60 — 70 °С. В медицине применяют различные препараты (антибиотики и др.), в присутствии которых бактерии погибают или значительно снижают жизнедеятельность.

При симбиозе взаимодействие благоприятно для обоих или одного из партнеров, обычно адаптированных друг к другу. Примером может являться обитание азотфиксирующих клубеньковых бактерий на корнях бобовых растений.

Во многих случаях партнеры существуют без какого-либо выраженного влияния друг на друга, такие ситуации определяют, как нейтрализм. Примером нейтральных взаимоотношений могут служить бактерии, селящиеся на кожных покровах человека. Однако следует помнить, что при изменении условий существования, например, появлении раны на коже, характер этого взаимодействия может измениться на антибиотический.

Автотрофные бактерии синтезируют органические вещества путем усвоения СO2; источником энергии для этого может служить окисление минеральных соединений — хемосинтез или свет — фотосинтез. К хемотрофам относят нитрифицирующие, азотфиксирующие, серобактерии, железобактерии и некоторые другие. Нитрифицирующие и азотфиксирующие бактерии задерживают в почве азот аммиака, что приводит к обогащению плодоносного слоя почвы. Клубеньковые бактерии вступают в симбиоз с корнями бобовых растений. Хемотрофным бактериям свойствен анаэробный тип фотосинтеза (не выделяют кислорода). Этим они значительно отличаются от цианобактерий.

Цианобактерии — значительная группа бактерий, способных к фотосинтезу, сопровождающемуся выделением кислорода. Их ранее относили к водорослям, в настоящее время их относят к прокариотам. Это водные или реже почвенные автотрофные организмы; живут в виде отдельных клеток или объединяются в колонии с образованием нитей. Они древнейшие представители растительного мира, клетка их не имеет настоящих ядер, хлоропластов и вакуолей, заполненных клеточным соком; нередко встречаются заполненные азотом вакуоли. Оболочка клеток многослойная. В зависимости от соотношения пигментов их окраска может быть от сине-зеленой до буроватой. Продуктом ассимиляции является гликогеноподобный полисахарид. В отличие от хемотрофных бактерий цианобактерии фотосинтезируют с выделением кислорода. Возможно, что цианобактерии явились первыми организмами, которые стали выделять кислород в окружающую среду. Они обладают смешанным типом питания; способны к синтезу углеводов (автотрофы), но иногда могут использовать и готовые распадающиеся органические вещества (гетеротрофы). Среди них встречаются виды, приспособленные к хемосинтезу (фиксации атмосферного азота — например, носток). Цианобактерии размножаются путем простого деления клетки, возможна генетическая рекомбинация. Нитчатые формы могут распадаться на многоклеточные части. Некоторые формы с наступлением неблагоприятных условий среды образуют споры. Споры могут выдерживать длительное высушивание, а при благоприятных условиях прорастают в новую особь. Широко известными представителями цианобактерий являются осциллатория и носток — обитатели пресных водоемов. Разработаны способы культивирования спирулины, богатой высокоценными белками и витаминами и успешно применяемой в качестве пищевой добавки, регулирующей обменные процессы. Некоторые виды живут в местах загрязнения органическими веществами, питаясь миксотрофно. Они способны очищать воду, минерализуя продукты гниения. Некоторые сине-зеленые водоросли способны к фиксации азота. Цианеи первыми осваивают безжизненные места обитания — вулканические острова, лавовые потоки, встречаются в качестве симбионтов во многих лишайниках.

Археи — прокариоты, считающиеся древнейшими живыми организмами на Земле, играли ведущую роль в биологических процессах трансформации элементов в начальные периоды эволюции жизни. Среди них нет возбудителей инфекционных болезней. Археи существенно отличаются от других микроорганизмов по составу и последовательности нуклеотидов в рибосомных и транспортных РНК. Они разнообразны по типу обмена веществ, физиологическим и экологическим особенностям: среди них встречаются аэробы и анаэробы, хемогетеротрофы и хемоавтотрофы и др. Некоторые археи обладают особым типом фотосинтеза, при котором свет поглощается не хлорофиллом, а бактериородопсином. Галофилы (способны жить при концентрациях солей, превышающих 250 — 300 г/л) населяют соляные озера, например, Мертвое море. Ряду архей свойственен энергетический процесс, в результате которого образуется метан.

Метанобразующие археи широко распространены: 1,0 — 1,5% углерода, участвующего в круговороте углерода в биосфере, проходит через стадию метана. Также они входят в состав кишечной микрофлоры, в частности развиваются в отделе желудка — рубце жвачных животных. Накопление метана, хотя и незначительное, отмечено и в кишечнике человека. Метанобразующие бактерии интенсивно синтезируют витамин В12 и обеспечивают им своих хозяев. Метанобразующие археи используют для утилизации органических отходов.

• У прокариот генетический материал клетки представлен одной кольцевой молекулой ДНК.

• Все бактерии, сине-зеленые водоросли и микоплазмы гаплоидны, т.е. содержат одну копию генов.

• В клетках прокариотических организмов практически нет внутренних мембран, поэтому большинство ферментов диффузно распространено по цитоплазме.

• Для передвижения прокариотические клетки используют жгутики, которые устроены проще, чем у эукариот.

Вопросы и задания для повторения

1. На чем основано деление всех живых организмов на две группы — прокариоты и эукариоты?

2. Какие организмы относят к прокариотам?

3. Опишите строение бактериальной клетки.

4. Как размножаются бактерии?

5. В чем заключается сущность процесса спорообразования у бактерий?

6. В чем состоит значение прокариот в биоценозах? Расскажите об их экологической роли.

7. Чем образован генетический материал бактерий?

8. Почему большинство ферментов диффузно распространено в цитоплазме бактерий?

9. Какие отличия в строении жгутиков прокариот и эукариот?

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции