Вопрос микроорганизм обычно не вирус

Коронавирусная инфекция – это патология, которая выражается в признаках поражения органов дыхательной системы и кишечника. Заболевание, провоцируемое этим микроорганизмом, может протекать в тяжелой форме и стать причиной летального исхода. Заражению вирусом особо подвержены дети и подростки, а также лица с пониженной иммунной защитой.


Коронавирусная инфекция у человека – результат проникновения микроорганизма, который способен поражать дыхательную систему, а также желудочно-кишечный тракт. Название вируса обусловлено тем, что на поверхности этого микроорганизма имеется кольцо и шипообразные наросты, что в целом напоминает корону. Он относится к группе крупных РНК-геномных вирусов, является неустойчивым к действию внешних факторов и мгновенно разрушается при температуре 56 градусов. Все возрастные группы лиц являются восприимчивыми к этому микроорганизму: даже непродолжительный контакт с возбудителем инфекции приводит к заражению.

Известно 3 основных типа коронавирусов:

  • первая группа – вирусы, которые поражают человека, котов, собак, кроликов;
  • вторая группа – микроорганизмы, проникающие в организм человека, грызунов и крупного рогатого скота;
  • третья группа – вирусы человека и домашней птицы, провоцирующие кишечные инфекции.


Преобладающей формой инфекции, которую провоцирует коронавирус, является респираторная. Кишечная разновидность встречается гораздо реже, в основном у детей. ОРВИ, которое возникает под действием вируса, обычно длится в течение нескольких дней и заканчивается полным выздоровлением. Однако в ряде случаев оно может приобретать форму атипичной пневмонии или тяжелого острого респираторного синдрома (ТОРС). Эта патология характеризуется высоким показателем летального исхода (38%), поскольку сопровождается острой дыхательной недостаточностью.



Также заражение может произойти при пользовании общими бытовыми предметами. Вирус содержится в фекалиях носителя, поэтому любой контакт с ними может способствовать проникновению инфекции в организм человека.

Инкубационный период заболевания, провоцируемого коронавирусной инфекцией, зависит от формы и длится от 3 до 14 дней.

Роспотребнадзор объявил о вспышке коронавирусной инфекции в форме острого респираторного синдрома в Саудовской Аравии. На территории страны в период с 13 по 30 августа 2017 года зарегистрировано 12 новых случаев заражения вирусом, 2 из которых привели к летальному исходу. Именно в Саудовской Аравии в 2012 году впервые был выявлен опасный для жизни синдром. Такая распространенность заболевания в этой стране обусловлена тем, что природным источником коронавирусной инфекции являются верблюды.


Известно, что после обнаружения инфекции на Ближнем Востоке вирус распространился на несколько десятков стран мира.

Симптомы коронавирусной инфекции у людей

Если коронавирус протекает в виде респираторной инфекции, то его частицы размножаются в эпителиальных клетках верхних дыхательных путей. В том случае, если заболевание приобретает форму ТОРС, возбудитель инфекционного процесса локализуется в эпителиальных клеток альвеол, а также в легких. При атипичной пневмонии происходит усиленный транспорт жидкости в легкие, что провоцирует дыхательную недостаточность. Частицы вируса также поражают ткань этого органа. Это обуславливает присоединение грибковой либо бактериальной инфекции.

Если заболевание не осложнено, то оно длится около 5-7 дней и заканчивается полнейшим выздоровлением. Симптомами в данном случае выступают:

  • слабость без выраженного ухудшения общего состояния;
  • увеличение шейных лимфоузлов (характерно для болеющих детей);
  • боль при совершении глотательных движений;
  • першение в горле;
  • сухой кашель;
  • белый налет на языке;
  • заложенность носа;
  • ринорея;
  • отек слизистой оболочки носа.


При легкой форме заболевания симптомы интоксикации не наблюдаются.

Если вирус проник в кишечник, проявляются симптомы гастроэнтерита: выраженное вздутие живота, сильная тошнота, снижение аппетита, обезвоживание организма, о чем свидетельствует постоянная сухость во рту и дряблость кожи. Возможно изменение цвета каловых масс: они приобретают оранжевый или зеленый оттенок.

В более тяжелых случаях, когда коронавирус вызывает развитие атипичной пневмонии, патологический процесс начинается остро. У заболевшего наблюдаются следующие проявления:

  • боль в области головы и в мышцах;
  • резкое повышение показателей температуры (до 38 градусов), затем их возвращение к норме;
  • озноб;
  • дыхательная недостаточность, одышка (эти симптомы появляются на 3-7 день после начала развития болезни);
  • сильный кашель;
  • заложенность носа;
  • расстройства пищеварения (водянистая диарея, рвота);
  • повышение артериального давления;
  • учащение сердечных сокращений.


Патологические процессы в легких, возникающие под действием коронавируса, вызывают кислородное голодание, нарушение дыхательного ритма.

Сложность лечения атипичной пневмонии, спровоцированной коронавирусом, заключается в быстром прогрессировании патологического процесса. Патология вызывает острую дыхательную недостаточность, тромбоэмболию легочной артерии, токсический миокардит. Именно эти осложнения чаще всего становятся причиной смерти.


В аэропортах, на вокзалах, пассажиров проверяют тепловизорами: главный симптом коронавируса - повысившаяся температура. Во всех регионах страны к тестированию готовы лаборатории Роспотребнадзора.

Создан штаб по предупреждению коронавируса, его председателем назначили вице-премьера страны Татьяну Голикову.

Главные правила профилактики, которые снижают риск подцепить коронавирусную инфекцию.

· Обязательно мыть руки после посещения общественных мест,

· Доводить до полной готовности блюда из мяса и яиц;

· Избегать контактов с людьми, у которых есть симптомы, похожие на простуду или грипп - в первую очередь насморк или кашель.

Вирусы — группа ультрамикроскопических облигатных внутриклеточных паразитов, способных размножаться только в клетках живых организмов (многоклеточных и одноклеточных). Среди них имеются возбудители заболеваний человека, животных, растений, насекомых, простейших и микроорганизмов.

Вирусы были открыты в 1892 г. Д. И. Ивановским при изучении причин гибели табака от мозаичной болезни, выражающейся в появлении пятен на листьях растений. Ученый обнаружил, что здоровое растение получает возбудителя с соком больного растения даже после пропускания этого сока через бактериологические фильтры. Следовательно, болезнь вызывает организм, который способен проходить через бактериологические фильтры. Эти микроорганизмы назвали фильтрующимися вирусами, а затем просто вирусами.

Вирусы обладают следующими характерными особенностями, отличающими их от других микроорганизмов:

  • • не имеют клеточного строения;
  • • не способны к росту и бинарному делению;
  • • не имеют собственных систем метаболизма;
  • • содержат нуклеиновые кислоты только одного типа — ДНК или РНК;
  • • используют рибосомы клетки-хозяина для образования собственных белков;
  • • не размножаются на искусственных питательных средах и могут существовать только в организме восприимчивого к ним хозяина.

Обычно вирусы существуют в двух формах — внеклеточной в виде так называемого вириона и внутриклеточной, называемой репродуцирующимся, или вегетативным, вирусом. У вириона отсутствует обмен веществ, он не растет и не размножается. Внутриклеточная форма представляет собой активный агент, который, попав в клетку хозяина (растения, животного, микроорганизма), использует ее биосинтетический и энергетический аппарат для репродукции новых вирусов, а впоследствии может вызвать и гибель самой клетки. Следовательно, только в клетке хозяина вирус способен функционировать и репродуцироваться, приобретая свойства живого организма.

Химический состав вирусов довольно прост. Число химических соединений, из которых они состоят, невелико. Вирусы представляют собой нуклеоп роте иды и состоят из нуклеиновой кислоты и нескольких кодируемых ею белков. Нуклеиновые кислоты вирусов отличаются значительным разнообразием, превосходя в этом отношении даже клеточные формы жизни — эукариот и прокариот.

Как известно, в состав клеток входят ДНК и РНК, в то время как вирусы содержат только один тип нуклеиновой кислоты — ДНК или РНК. Поэтому все вирусы подразделяют на две группы — ДНК-геномные и РНК-геномные. Обычно вирусы растений содержат РНК-геномы, вирусы человека и животных как ДНК-, так и РНК-геномы. Почти все бактериофаги ДНК-геномны.

Сложно организованные вирусы (вирусы животных и человека) сложны по химическому составу и содержат дополнительные белковые или липопротеидные оболочки. Кроме нуклеиновой кислоты и белков, они содержат липиды в наружных оболочках и углеводы в составе белков наружных оболочек (гликопротеидов). Некоторое количество липидов есть у бактериофагов и ряда крупных вирусов растений. У некоторых сложных вирусов выявлены ферменты. У бактериофагов также обнаружены ферменты — лизоцим и аденозинтрифосфатаза.

Один из наиболее хорошо изученных фитопатогенных вирусов — вирус табачной мозаики (ВТМ). В 1935 г. У. Стенли выделил и получил этот вирус в кристаллической форме. При введении в рас-


Рис. 28. Электронные микрофотографии вирусов животных, растений и бактерий: слева — коровьей оспы, заболеваний насекомых, бактериофага ТЗ. полиомиелита; справа — гриппа, бактериофага Г2. папилломы кроликов, мозаики табака

тение табака кристаллы вызывали симптомы мозаичной болезни. Получены в кристаллическом виде и многие другие вирусы.

Изучение вирусов под электронным микроскопом показало, что они разнообразны по форме и имеют довольно сложное строение. Различают следующие формы вирусов: палочковидную, при которой вирус имеет вид прямого цилиндра (вирус табачной мозаики); нитевидную, представляющую эластичные изгибающиеся нити (некоторые вирусы растений и бактерий); сферическую, сходную с многогранниками (вирусы животных и человека); кубовидную, по виду напоминающую параллелепипед с закругленными краями (вирусы животных и человека); булавовидную, характеризующуюся наличием головки и отростка (вирусы бактерий и актиномицетов) (рис. 28).

Внеклеточная форма существования вируса, вирион, состоит из нуклеиновой кислоты и белка. Нуклеиновая кислота уложена в виде спирали и окружена белковой оболочкой, называемой капсидом. Последний образован большим числом субъединиц белка — капсамеров, которые, в свою очередь, представлены одной или несколькими молекулами белка. Белковый капсид, объединенный с нуклеиновой кислотой (ДНК или РНК), носит название нуклеокапсида. По способу укладки капсомсров выделяют капсиды, построенные по спиральному и кубическому типам симметрии. В первом случае капсид имеет цилиндрическую форму, во втором — форму многогранника. К вирусам со спиральным типом симметрии относят вирус табачной мозаики.


Рис. 29. Т-бактериофаг. Электронная микрофотография (по: С. Бреннер)

Для многих вирусов бактерий, или фагов, характерен так называемый сложный тип симметрии: головка фага имеет форму многогранника (кубическая симметрия), хвостовой отросток — форму цилиндра (спиральная симметрия) (рис. 29).

Размеры вирусов определяют различными способами: по размеру пор фильтров, пропускающих вирусы, по скорости осаждения вирусов при центрифугировании и при помощи фотографий, полученных в электронном микроскопе. Размеры вирионов вирусов колеблются в довольно широких пределах — от 15 до 400 нм. В обычный световой микроскоп отдельные вирусные частицы не видны, но в пораженных вирусом клетках часто можно различить тельца-включения, представляющие собой, как считают, гигантские колонии вирусов.

Вирусы специфичны, они паразитируют только на определенных хозяевах — растениях, животных или микроорганизмах. Это обусловливает распределение вирусов на группы на основе типа хозяев. В последнее время при классификации вирусов принимают во внимание их строение, чувствительность к внешним факторам и т. д. Выделяют группы вирусов, патогенных для растений, животных и, наконец, для микроорганизмов. Вирусы бактерий и актиномицетов называют соответственно бактериофагами и актииофагами. Известны субмикроскопические агенты — микофаги, поражающие грибы, и цианофаги, паразитирующие на цианобактериях.

Вирусы нс размножаются в почве, но могут долго сохраняться в ней, если условия исключают их инактивацию. Так сохраняются вирусы мозаичной болезни пшеницы, овса и табака, кольцевой пятнистости картофеля и др. Некоторые вирусы человека и животных, попадая в почву, остаются инфекционными в течение нескольких месяцев.

Фаги — облигатные паразиты микроорганизмов — открыли независимо друг от друга в 1915 г. Ф. Туорт ив 1917 г. Ф. Д. Эррель. Длина головки фага достигает 60—100 нм, отростка — 100—200 нм. Призматическая головка фага покрыта оболочкой из упорядоченно расположенных капсомсров. Внутри головки находится одна или две нити ДНК.

Отросток представляет собой белковый стержень, покрытый сверху чехлом из спирально расположенных капсомеров, способных к сокращению. Обычно отросток оканчивается базальной пластинкой с пятью-шестью выростами. От пластинки отходят тонкие нити — органы адсорбции. Через отросток из головки фага ДНК переходит в клетку микроорганизма.

Механизм проникновения бактериофага в бактерии подробно изучен. Обычно фаг адсорбируется чувствительной к нему клеткой бактерии. Затем содержимое головки (ДНК) переходит в бактерию, а оболочка остается снаружи. После нападения фага бактерия утрачивает способность к делению, перестает двигаться. Метаболизм бактериальной клетки перестраивается под влиянием ДНК фага, и клетка начинает производить продукты не собственного обмена, а бактериофага, и в результате в ней происходит интенсивное образование частиц бактериофага. Затем клеточная стенка бактерии растворяется, и из нес выходят зрелые бактериофаги. Одна клетка бактерии становится источником нескольких сотен и даже тысяч бактериофагов.

При наблюдении колоний бактерий на агаре лизирующее действие бактериофага видно по образованию прозрачных зон вокруг колоний, а на жидкой среде — но уменьшению мутности бактериальной суспензии.

Растворять (лизировать) данный вид бактерий способен только вирулентный к нему фаг. Нередко бактериальная клетка инфицируется фагом, который может в ней существовать, не вызывая лизиса. При размножении бактерии инфекционное начало переходит в дочерние клетки. Бактериофаги такого характера называют умеренными, а бактерий — передатчиков данных фагов — лизогенными. При определенных условиях лизогенные культуры бактерий могут быть лизированы находящимся в них фагом. Каждый фаг способен поражать бактерий одного вида или группы близких видов.

Исследовано большое число фагов, поражающих рахзичных микроорганизмов. Известны фаги, лизирующие бактерии родов Pseudomonas, Bacillus, Rhizobium, Streptococcus, Staphylococcus; актиноми исты рода Streptomyces; микобактерии рода Mycobacterium и др. Фаги встречаются в воде, почве и других природных объектах. Некоторых фагов используют в медицине для профилактики заболеваний.

1. Назовите основные группы водорослей и их свойства. 2. Какие группы простейших широко представлены в почве? 3. Чем отличаются микромицс- ты от миксомицетов? 4. Что представляют собой вирусы и какие организмы они способны заражать?

Кирилл Стасевич, биолог

Какие слабые места антибиотики находят у бактерий?

Во-первых, клеточная стенка. Любой клетке нужна какая-то граница между ней и внешней средой — без этого и клетки-то никакой не будет. Обычно границей служит плазматическая мембрана — двойной слой липидов с белками, которые плавают в этой полужидкой поверхности. Но бактерии пошли дальше: они кроме клеточной мембраны создали так называемую клеточную стенку — довольно мощное сооружение и к тому же весьма сложное по химическому строению. Для формирования клеточной стенки бактерии используют ряд ферментов, и если этот процесс нарушить, бактерия с большой вероятностью погибнет. (Клеточная стенка есть также у грибов, водорослей и высших растений, но у них она создаётся на другой химической основе.)

Во-вторых, бактериям, как и всем живым существам, надо размножаться, а для этого нужно озаботиться второй копией

Третья мишень антибиотиков — это трансляция, или биосинтез белка. Известно, что ДНК хорошо подходит для хранения наследственной информации, но вот считывать с неё информацию для синтеза белка не очень удобно. Поэтому между ДНК и белками существует посредник — матричная РНК. Сначала с ДНК снимается РНК-копия, — этот процесс называется транскрипцией, а потом на РНК происходит синтез белка. Выполняют его рибосомы, представляющие собой сложные и большие комплексы из белков и специальных молекул РНК, а также ряд белков, помогающих рибосомам справляться с их задачей.

Например, клеточная стенка бактерий — мишень для хорошо известного антибиотика пенициллина: он блокирует ферменты, с помощью которых бактерия осуществляет строительство своей внешней оболочки. Если применить эритромицин, гентамицин или тетрациклин, то бактерии перестанут синтезировать белки. Эти антибиотики связываются с рибосомами так, что трансляция прекращается (хотя конкретные способы подействовать на рибосому и синтез белка у эритромицина, гентамицина и тетрациклина разные). Хинолоны подавляют работу бактериальных белков, которые нужны для распутывания нитей ДНК; без этого ДНК невозможно правильно копировать (или реплицировать), а ошибки копирования ведут к гибели бактерий. Сульфаниламидные препараты нарушают синтез веществ, необходимых для производства нуклеотидов, из которых состоит ДНК, так что бактерии опять-таки лишаются возможности воспроизводить свой геном.

Почему же антибиотики не действуют на вирусы?

Что произойдёт, если к клеткам с вирусной инфекцией добавить, например, антибиотик, прерывающий процесс образования клеточной стенки? Никакой клеточной стенки у вирусов нет. И потому антибиотик, который действует на синтез клеточной стенки, ничего вирусу не сделает. Ну а если добавить антибиотик, который подавляет процесс биосинтеза белка? Всё равно не подействует, потому что антибиотик будет искать бактериальную рибосому, а в животной клетке (в том числе человеческой) такой нет, у неё рибосома другая. В том, что белки и белковые комплексы, которые выполняют одни и те же функции, у разных организмов различаются по структуре, ничего необычного нет. Живые организмы должны синтезировать белок, синтезировать РНК, реплицировать свою ДНК, избавляться от мутаций. Эти процессы идут у всех трёх доменов жизни: у архей, у бактерий и у эукариот (к которым относятся и животные, и растения, и грибы), — и задействованы в них схожие молекулы и надмолекулярные комплексы. Схожие — но не одинаковые. Например, рибосомы бактерий отличаются по структуре от рибосом эукариот из-за того, что рибосомная РНК немного по-разному выглядит у тех и других. Такая непохожесть и мешает антибактериальным антибиотикам влиять на молекулярные механизмы эукариот. Это можно сравнить с разными моделями автомобилей: любой из них довезёт вас до места, но конструкция двигателя может у них отличаться и запчасти к ним нужны разные. В случае с рибосомами таких различий достаточно, чтобы антибиотики смогли подействовать только на бактерию.

До какой степени может проявляться специализация антибиотиков? Вообще, антибиотики изначально — это вовсе не искусственные вещества, созданные химиками. Антибиотики — это химическое оружие, которое грибы и бактерии издавна используют друг против друга, чтобы избавляться от конкурентов, претендующих на те же ресурсы окружающей среды. Лишь потом к ним добавились соединения вроде вышеупомянутых сульфаниламидов и хинолонов. Знаменитый пенициллин получили когда-то из грибов рода пенициллиум, а бактерии стрептомицеты синтезируют целый спектр антибиотиков как против бактерий, так и против других грибов. Причём стрептомицеты до сих пор служат источником новых лекарств: не так давно исследователи из Северо-Восточного университета (США) сообщили о новой группе антибиотиков, которые были получены из бактерий Streptomyces hawaiensi, — эти новые средства действуют даже на те бактериальные клетки, которые находятся в состоянии покоя и потому не чувствуют действия обычных лекарств. Грибам и бактериям приходится воевать с каким-то определённым противником, кроме того, необходимо, чтобы их химическое оружие было безопасно для того, кто его использует. Потому-то среди антибиотиков одни обладают самой широкой антимикробной активностью, а другие срабатывают лишь против отдельных групп микроорганизмов, пусть и довольно обширных (как, например, полимиксины, действующие только на грамотрицательные бактерии).

Более того, существуют антибиотики, которые вредят именно эукариотическим клеткам, но совершенно безвредны для бактерий. Например, стрептомицеты синтезируют циклогексимид, который подавляет работу исключительно эукариотических рибосом, и они же производят антибиотики, подавляющие рост раковых клеток. Механизм действия этих противораковых средств может быть разным: они могут встраиваться в клеточную ДНК и мешать синтезировать РНК и новые молекулы ДНК, могут ингибировать работу ферментов, работающих с ДНК, и т. д., — но эффект от них один: раковая клетка перестаёт делиться и погибает.

Возникает вопрос: если вирусы пользуются клеточными молекулярными машинами, то нельзя ли избавиться от вирусов, подействовав на молекулярные процессы в заражённых ими клетках? Но тогда нужно быть уверенными в том, что лекарство попадёт именно в заражённую клетку и минует здоровую. А эта задача весьма нетривиальна: надо научить лекарство отличать заражённые клетки от незаражённых. Похожую проблему пытаются решить (и небезуспешно) в отношении опухолевых клеток: хитроумные технологии, в том числе и с приставкой нано-, разрабатываются для того, чтобы обеспечить адресную доставку лекарств именно в опухоль.

Что же до вирусов, то с ними лучше бороться, используя специфические особенности их биологии. Вирусу можно помешать собраться в частицу, или, например, помешать выйти наружу и тем самым предотвратить заражение соседних клеток (таков механизм работы противовирусного средства занамивира), или, наоборот, помешать ему высвободить свой генетический материал в клеточную цитоплазму (так работает римантадин), или вообще запретить ему взаимодействовать с клеткой.

Вирусы не во всём полагаются на клеточные ферменты. Для синтеза ДНК или РНК они используют собственные белки-полимеразы, которые отличаются от клеточных белков и которые зашифрованы в вирусном геноме. Кроме того, такие вирусные белки могут входить в состав готовой вирусной частицы. И антивирусное вещество может действовать как раз на такие сугубо вирусные белки: например, ацикловир подавляет работу ДНК-полимеразы вируса герпеса. Этот фермент строит молекулу ДНК из молекул-мономеров нуклеотидов, и без него вирус не может умножить свою ДНК. Ацикловир так модифицирует молекулы-мономеры, что они выводят из строя ДНК-полимеразу. Многие РНК-вирусы, в том числе и вирус СПИДа, приходят в клетку со своей РНК и первым делом синтезируют на данной РНК молекулу ДНК, для чего опять же нужен особый белок, называемый обратной транскриптазой. И ряд противовирусных препаратов помогают ослабить вирусную инфекцию, действуя именно на этот специфический белок. На клеточные же молекулы такие противовирусные лекарства не действуют. Ну и наконец, избавить организм от вируса можно, просто активировав иммунитет, который достаточно эффективно опознаёт вирусы и заражённые вирусами клетки.

Итак, антибактериальные антибиотики не помогут нам против вирусов просто потому, что вирусы организованы в принципе иначе, чем бактерии. Мы не можем подействовать ни на вирусную клеточную стенку, ни на рибосомы, потому что у вирусов ни того, ни другого нет. Мы можем лишь подавить работу некоторых вирусных белков и прервать специфические процессы в жизненном цикле вирусов, однако для этого нужны особые вещества, действующие иначе, нежели антибактериальные антибиотики.

Очевидно, различия между бактериальными и эукариотическими молекулами и молекулярными комплексами, участвующими в одних и тех же процессах, для ряда антибиотиков не так уж велики и они могут действовать как на те, так и на другие. Однако это вовсе не значит, что такие вещества могут быть эффективны против вирусов. Тут важно понять, что в случае с вирусами складываются воедино сразу несколько особенностей их биологии и антибиотик против такой суммы обстоятельств оказывается бессилен.

Впрочем, главный побочный эффект от антибиотиков связан как раз с тем, что они вредят мирной желудочно-кишечной микрофлоре. Антибиотики обычно не различают, кто перед ними, мирный симбионт или патогенная бактерия, и убивают всех, кто попадётся на пути. А ведь роль кишечных бактерий трудно переоценить: без них мы бы с трудом переваривали пищу, они поддерживают здоровый обмен веществ, помогают в настройке иммунитета и делают много чего ещё, — функции кишечной микрофлоры исследователи изучают до сих пор. Можно себе представить, как чувствует себя организм, лишённый компаньонов-сожителей из-за лекарственной атаки. Поэтому часто, прописывая сильный антибиотик или интенсивный антибиотический курс, врачи заодно рекомендуют принимать препараты, которые поддерживают нормальную микрофлору в пищеварительном тракте пациента.

Основные факты

  • Escherichia coli (E. coli) – это бактерия, обычно обнаруживаемая в нижних отделах кишечника теплокровных организмов. Большинство штаммов E.coli безвредные, но некоторые штаммы могут вызывать тяжелое пищевое отравление.
  • E. coli, продуцирующая шигатоксин (STEC) – это бактерия, которая может вызывать тяжелую болезнь пищевого происхождения.
  • Основными источниками вспышек STEC являются сырые или не прошедшие достаточную тепловую обработку продукты из мясного фарша, сырое молоко и овощи, загрязненные фекалиями.
  • В большинстве случаев болезнь проходит сама, но иногда может развиваться заболевание, представляющее угрозу для жизни, включая гемолитический уремический синдром (ГУС), особенно у детей раннего возраста и пожилых людей.
  • STEC чувствительна к высоким температурам. При приготовлении пищи в домашних условиях необходимо соблюдать основные практические методики гигиены пищевых продуктов, такие как "надлежащая тепловая обработка продуктов".
  • Выполнение практических методик, указанных в "Пяти принципах повышения безопасности пищевых продуктов" ВОЗ является одной из основных мер для профилактики инфекций, вызываемых такими патогенными микроорганизмами пищевого происхождения, как STEC.

Обзор

Бактерия Escherichia coli (E. coli), продуцирующая шигатоксин часто обнаруживается в кишечнике людей и теплокровных животных. Бол ьшинство штаммов E. coli безвредны. Однако некоторые штаммы, такие как энтерогеморрагическая E. coli (STEC), могут вызывать тяжелые болезни пищевого происхождения. Эта бактерия передается человеку, главным образом, при потреблении зараженных пищевых продуктов, таких как сырые или не прошедшие достаточную тепловую обработку продукты из мясного фарша, сырое молоко и загрязненные сырые овощи и ростки.

STEC производит токсины, известные как шига токсины, названные так из-за их сходства с токсинами, производимыми Shigella dysenteriae. Количество бактерий STEC может увеличиваться при температуре от 7°C до 50°С (оптимальная температура 37°С). Количество некоторых бактерий STEC может расти в кислых продуктах с показателем pH вплоть до 4,4, а также в продуктах с минимальной активностью воды (aw) на уровне 0,95.

Бактерии погибают при тщательной тепловой обработке пищевых продуктов - до тех пор, пока все части продуктов не достигнут температуры 70°С или выше. Наиболее значимым для общественного здравоохранения серотипом STEC является E. Coli O157:H7; однако возбудителями спорадических случаев и вспышек заболеваний часто являются и другие серотипы.

Симптомы

Симптомы болезней, вызываемых бактериями STEC, включают абдоминальные спазмы и диарею, которая в некоторых случаях может переходить в кровавую диарею (геморрагический колит). Возможны также лихорадка и рвота. Инкубационный период длится от 3 до 8 дней, при средней продолжительности 3-4 дня. Большинство пациентов выздоравливает в течение 10 дней, но у незначительного числа пациентов (особенно детей раннего возраста и пожилых людей) инфекция может приводить к развитию такой представляющей угрозу для жизни болезни, как гемолитический уремический синдром (ГУС). Для ГУС характерны острая почечная недостаточность, гемолитическая анемия и тромбоцитопения (низкий уровень тромбоцитов в крови).

Люди, страдающие от кровавой диареи или тяжелых абдоминальных спазмов, должны обращаться за медицинской помощью. Антибиотики не являются составной частью лечения пациентов с болезнью, вызванной STEC, и могут повышать риск развития ГУС.

По оценкам, ГУС может развиваться у 10 % пациентов с инфекцией STEC, а коэффициент летальности составляет от 3 до 5 %. Во всем мире ГУС является самой распространенной причиной острой почечной недостаточности у детей раннего возраста. Он может приводить к неврологическим осложнениям (таким как конвульсии, инсульт и кома) у 25 % пациентов и к хроническим заболеваниям почек, обычно нетяжелым, примерно у 50 % выживших пациентов.

Источники и передача инфекции

Имеющаяся о STEC информация относится, в основном, к серотипу O157:H7, так как с биохимической точки зрения его можно легко дифференцировать от других штаммов E. coli. Резервуаром этого патогенного микроорганизма является, в основном, крупный рогатый скот. Кроме того, значительными резервуарами считаются другие жвачные животные (такие как овцы, козы и олени), обнаруживаются и другие инфицированные млекопитающие (такие как свиньи, лошади, кролики, собаки, кошки) и птицы (такие как куры и индейки).

E. coli O157:H7 передается человеку, главным образом, в результате потребления в пищу зараженных пищевых продуктов, таких как сырые или не прошедшие достаточную тепловую обработку продукты из мясного фарша и сырое молоко. Загрязнение фекалиями воды и других пищевых продуктов, а также перекрестное загрязнение во время приготовления пищи (через продукты из говядины и другого мяса, загрязненные рабочие поверхности и кухонные принадлежности) также могут приводить к инфицированию. Примеры пищевых продуктов, явившихся причиной вспышек E. coli O157:H7, включают не прошедшие надлежащую тепловую обработку гамбургеры, копченую салями, непастеризованный свежевыжатый яблочный сок, йогурт и сыр, приготовленный из сырого молока.

Все большее число вспышек болезни связано с потреблением в пищу фруктов и овощей (включая ростки, шпинат, латук, капусту и салат), заражение которых может происходить в результате контакта с фекалиями домашних или диких животных на какой-либо стадии их выращивания или обработки. Бактерии STEC обнаруживаются также в водоемах, (таких как пруды и реки), колодцах и поилках для скота. Они могут оставаться жизнеспособными в течение нескольких месяцев в навозе и осадочных отложениях на дне поилок. Так же была зарегистрирована передача инфекции как через зараженную питьевую воду, так и через воды для рекреационного использования.

Близкие контакты людей являются одним из основных путей передачи инфекции (орально-фекальный путь заражения). Были зарегистрированы бессимптомные носители, то есть лица, у которых не проявляются клинические симптомы болезни, но которые способны инфицировать других людей. Период выделения бактерий STEC у взрослых людей длится примерно одну неделю или менее, а у детей этот период может быть более длительным. В числе значительных факторов риска инфицирования STEC отмечается также посещение ферм и других мест содержания сельскохозяйственных животных, где возможен прямой контакт с ними.

Профилактика

Для профилактики инфекции необходимо соблюдать контрольные меры на всех стадиях продовольственной цепи – от производства сельскохозяйственной продукции на фермах до переработки, обработки и приготовления пищевых продуктов как на коммерческих предприятиях, так и в домашних условиях.

Число случаев заболевания можно уменьшить благодаря проведению разнообразных стратегий по снижению риска в отношении мясного фарша (например, обследование животных перед убоем для предотвращения попадания большого количества патогенных микроорганизмов в места для убоя скота). Надлежащая практика убоя скота и соблюдение гигиены снижают уровень загрязнения туш фекалиями, но не гарантируют отсутствия бактерий STEC в продуктах. Для сведения к минимуму микробиологического заражения крайне важно проводить обучение гигиеническим навыкам при обращении с пищевыми продуктами среди работников ферм, скотобоен и предприятий по производству пищевых продуктов. Единственным эффективным способом уничтожения бактерий STEC в пищевых продуктах является бактерицидная обработка, такая как нагревание (например, тепловая обработка или пастеризация) или облучение.

Меры для профилактики инфекции E. coli O157:H7 схожи с мерами, рекомендуемыми для профилактики других болезней пищевого происхождения. Основные практические методики надлежащей гигиены пищевых продуктов, приводимые в "Пяти принципах повышения безопасности пищевых продуктов" ВОЗ, могут способствовать предотвращению передачи патогенных микроорганизмов, вызывающих многие болезни пищевого происхождения, а также защищать от болезней пищевого происхождения, вызываемых STEC.

Пятью важнейшими принципами обеспечения более безопасных пищевых продуктов являются:

Эти рекомендации необходимо выполнять во всех случаях, особенно рекомендацию в отношении "надлежащей тепловой обработки продуктов", при которой температура в середине продуктов достигает, по меньшей мере, 70°C. Необходимо тщательно мыть фрукты и овощи, особенно если они употребляются в пищу в сыром виде. По возможности овощи и фрукты следует чистить. Уязвимым группам населения (таким как дети и пожилые люди) следует избегать потребления в пищу сырых или не прошедших надлежащую тепловую обработку мясных продуктов, сырого молока и продуктов, приготовленных из сырого молока.

Настоятельно рекомендуется регулярное мытье рук, в частности перед приготовлением пищи, едой и после посещения туалета, особенно для людей, ухаживающих за детьми раннего возраста, пожилыми людьми и людьми с ослабленным иммунитетом, так как бактерия может передаваться не только через пищевые продукты, воду и при прямых контактах с животными, но и от человека человеку.

Некоторое количество инфекций STEC возникает в результате контакта с водами для рекреационного использования. Поэтому, важно также защищать такие водоемы, равно как и источники питьевой воды, от попадания в них экскрементов животных.

Производители фруктов и овощей

Пятью важнейшими принципами выращивания более безопасных фруктов и овощей являются:

  • Соблюдение надлежащей личной гигиены.
  • Защита полей от загрязнения фекалиями животных.
  • Использование обработанных фекальных отходов.
  • Оценка рисков, связанных с использованием ирригационной воды, и управление этими рисками.
  • Содержание оборудования и помещений для сбора и хранения урожая в чистоте и сухости.
  • Пять важнейших принципов выращивания более безопасных фруктов и овощей

Деятельность ВОЗ

ВОЗ проводит научные оценки для контроля пищевых продуктов на присутствие STEC. Эти оценки служат основанием для международных стандартов на пищевые продукты, руководящих принципов и рекомендаций, разрабатываемых Комиссией Кодекс Алиментариус.

В отношении профилактики ВОЗ разработала глобальную стратегию для уменьшения бремени болезней пищевого происхождения. ВОЗ разработала информационное сообщение "Пять основных правил для обеспечения более безопасных пищевых продуктов". Эти пять правил и связанные с ними учебные пособия являются материалами для стран, которые легко использовать, воспроизводить и адаптировать к различным целевым аудиториям.

ВОЗ способствует укреплению систем безопасности пищевых продуктов путем продвижения надлежащей практики производства и просвещения розничных торговцев и потребителей в отношении надлежащего обращения с пищевыми продуктами и предотвращения их загрязнения.

Во время вспышек E. coli, таких как вспышки, имевшие место в Европе в 2011 году, ВОЗ осуществляет поддержку координации в области обмена информацией и сотрудничества с помощью Международных медико-санитарных правил и в рамках Международной сети органов по безопасности пищевых продуктов (ИНФОСАН) во все мире; ВОЗ осуществляет тесное сотрудничество с национальными органами здравоохранения и международными партнерами, обеспечение технической помощи и предоставление последней информации о вспышках болезни.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции