Определение титра вируса методом бляшек

Из локальных повреждений, вызываемых вирусами, наиболее известны бляшки (островки мертвых, не окрашенных клеток в слое окрашенных живых) в зараженных культурах клеток, залитых агаровой средой с красителем нейтральрот и оспины (некротические узелки) на ХАО куриных эмбрионов, зараженных оспенными и некоторыми другими вирусами.

Количество вируса при этом может быть измерено, соответственно, в бляшкообразуюших единицах (БОЕ) и оспообразующих единицах (ООЕ): 1 БОЕ = доза вируса, вызвавшая образование одной бляшки; 1 ООЕ = доза вируса, вызвавшая образование одной оспины. Методика определения титра вируса в БОЕ (ООЕ) заключается в следующем:

1. Точно отмеренными и строго одинаковыми объемами исследуемого вируссодержащего материала заражают несколько культур клеток в матрасах или куриных эмбрионов на ХАО.

2. Подсчитывают количество образовавшихся в каждом матрасе бляшек или в каждом курином эмбрионе оспин.

3. Рассчитывают среднее арифметическое этого количества, которое равно количеству БОЕ или ООЕ вируса в заражающей дозе вируссодержащего материала.

4. Титр вируса (Т) рассчитывают по формуле:

Т = среднее арифметическое количество бляшек (оспин) / объем заражающей дозы х разведение вируссодержащего материала.

Считается, что счету поддаются бляшки и оспины, если их количество не превышает 50 на матрас или ХАО. Иногда, в случае высокой концентрации вируса в материале, бляшки в культуре клеток или оспины на ХАО могут сливаться, и их невозможно будет сосчитать. В таких случаях готовят несколько десятикратных разведений испытуемого материала и каждым разведением в одинаковых дозах заражают равные группы культур клеток или куриных эмбрионов, затем рассчитывают среднее арифметическое количество бляшек или оспин для каждого разведения. Титр вируса в этом случае рассчитывается по более сложной формуле:

Т = сумма средних арифметических количества бляшек (оспин) в каждом разведении / объем заражающей дозы х сумму разведений вируссодержащего материала

Метод титрования вирусов в БОЕ дает наиболее достоверные данные о концентрации вирусов, но он встречает технические трудности с подсчетом бляшек. Что касается оспин, то их использование ограничивается довольно немногочисленными вирусами, способными образовывать узелки на ХАО куриных эмбрионов.

Метод образования бляшек основан на образовании вирусом в однослойных культурах, залитых агаровой средой, содержащей витальный краситель - нейтральрот, негативных колоний или бляшек. Бляшки представляют собой обесцвеченные участки культуры, состоящие из погибших под действием вируса клеток. Некоторые вирусы дают бляшки без покрытия слоем агара: вирус чумы крупного рогатого скота, осповакцины, некоторые вирусы герпеса.

При постановке бляшек лучше использовать культуры, выращенные во флаконах или матрасах, культура должна быть без признаков дегенерации. На клетки, промытые раствором Хенкса, наносят вирус в определенных разведениях и обеспечивают контакт вируса с клетками, периодически покачивая в течение 1-2 часов при температуре 37-38°С. Неадсорбировавшийся вирус удаляют путем промывания раствором Хенкса или отсасывают пастеровской пипеткой, а на слой клеток наносят специальное агаровое покрытие, содержащее раствор Эрла, краситель, бычью сыворотку, антибиотики и другие компоненты. Выбор среды покрытия определяется видом клеток и вируса. После застывания с поверхности агара сливают конденсированную влагу, флаконы переносят в термостат и инкубируют клетками вверх при оптимальной для конкретного вируса температуре. За это время вирусы начинают поражать клетки. При этом раствор красителя окрашивает только живые клетки. Поэтому на сплошном красновато-розовом фоне слоя живых клеток появляются бесцветные пятна (бляшки) - пораженные вирусом клетки. Если вирус высокой концентрации, бляшки быстро сливаются. Время появления и морфология бляшек зависят от вида и штамма вируса, типа клеток и условий культивирования.

Дата добавления: 2014-12-17 ; просмотров: 1716 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Ознакомление с методикой титрования вирусов.

Оборудование и материалы

Задачи на определение титра вируса в ЭД50 по фактическим данным, выписанным на карточки (на каждого студента по одной карточке, всего не менее 10 вариантов задач); аллантоисная жидкость куриных эмбрионов, зараженных вирусом ньюкаслской болезни; 1- процентная суспензия отмытых эритроцитов кур; физиологический раствор (изотонический раствор NaCl); плексигласовые панели с лунками; градуированные пипетки на 1 мл; резиновые груши; сосуды с дезраствором; карандаши для записи по стеклу, калькуляторы, логарифмические таблицы, мультимедийное оборудование, презентации MS Office Power Point по теме занятия.

Методика проведения занятия и методические указания по теме.

В лабораторных работах с вирусами, биофабричном производстве и в ветеринарной практике постоянно возникает необходимость определения количества вирусов в том или ином материале. Без такого определения невозможны экспериментальное заражение вирусами живых лабораторных систем, производство живых и инактивированных противовирусных вакцин и диагностических препаратов, оценка активности живых противовирусных вакцин, получение иммунных сывороток и многие другие работы.

Количество вируса в каком-либо материале определяют по титру вируса в этом материале. Под титром вируса понимают выражение его концентрации в материале.

Титр вируса - это количество вируса, содержащееся в единице объема материала

Поскольку количество вируса невозможно выразить в обычно применяемых (объем, масса и т. и.) единицах, прибегают к измерению в единицах действия или единицах активности. Вирусы обладают инфекционным и гемагглютинирующим действием. Отсюда и единицы количества вирусов инфекционные и гемагглютинирующие.

Размерность этих единиц зивисит от соотношения полноценных и неполноценных вирионов в используемой суспензии, объекта, способа титрования и других факторов. В практике нашли применение три типа единиц количества вируса: 1-й - инфекционные единицы локальных повреждений, вызываемых вирусами и оцениваемых по единичному эффекту; 2-й - инфекционные единицы 50-процентного действия вирусов на чувствительные живые объекты, оцениваемые статистически; 3-й - гемагглютинирующие единицы.

Из локальных повреждений, вызываемых вирусами, наиболее известны бляшки в зараженных культурах клеток (островки мертвых клеток в слое живых) и оспины (некротические узелки) на ХАО куриных эмбрионов, зараженных оспенными и некоторыми другими вирусами. В случаях такого проявления инфекционной активности вирусов количество вируса может быть измерено в бляшкообразующих единицах (БОЕ) или оспообразующих единицах (ООЕ). Одна БОЕ равна дозе вируса, способной вызвать образование одной бляшки, а одна ООЕ - одной оспины.

Наиболее универсален метод определения титра вируса в единицах 50-процентного инфекционного действия. По этому методу за единицу количества вируса принимается такая его доза, которая способна вызывать инфекционный эффект у 50 % зараженных тест-объектов. Она обозначается как ЭД50 - эффективная 50-процентная доза.

Число таких доз вируса в единице объема материала и будет выражать титр вируса в этом материале.

Таблица 6 - Виды единиц количества вирусов при определении _ по 50-процентному инфекционному действию_

Виды инфекционного действия вирусов

Единицы количества вирусов

50-процентная летальная доза

Клинические симптомы или патологоанатомические изменения

50-процентная эмбриональная летальная доза

В качестве тест-объектов в лабораториях обычно используют белых мышей, куриные эмбрионы и культуры клеток, у которых инфекционное действие вируса может проявляться гибелью, клиническими симптомами, патологоанатомическими изменениями и цитопа- тическим эффектом. Для каждого вируса подбирают чувствительный к нему тест-объект и форму учета его инфекционного действия, по которой оценивают эффект заражения. В зависимости от вида тест- объекта и формы проявления инфекционного действия ЭД50 принимает один из следующих видов, приведенных в таблице 6.

  • 1 ЛД50 - это доза вируса, убивающая 50 % лабораторных животных (обычно белых мышей);
  • 1 ИД50 — доза вируса, вызывающая клинические симптомы или патологоанатомические изменения у 50 % зараженных лабораторных животных;
  • 1 ЭЛД — доза вируса, убивающая 50 % куриных эмбрионов;
  • 1 ЭИД5о — доза вируса, вызывающая патологоанатомические изменения у 50 % зараженных куриных эмбрионов;
  • 1 ЦПД50 — доза вируса, вызывающая цитопатический эффект у 50 % зараженных культур клеток (обычно пробирок с культурами клеток).

Количество ЭД50 (ЛД50, ИД ЭЛД50, ЭИД50 или ЦПД50) вируса, содержащееся в единице объема вируссодержащего материала, и будет выражением титра (Т) вируса в этом материале. Например, Т=10 3,4 ЦПД5о/0,1 мл означает, что в каждой 0,1 мл вируссодержащего материала содержится 10 3 ’ 48 доз вируса (т. е. более 1000, но менее 10 000, а именно 10 3 ’ 48 = 3020), каждая из которых способна вызвать цитопатический эффект в 50 % пробирок с культурой клеток.

Названные единицы 50-процентного инфекционного действия вируса (ЛД50, ИД50, ЭЛД50, ЭИД50, ЦПД50) используются в случаях оценки инфекционного действия вируса со статистически оцениваемым эффектом, имеющим место, когда учет инфекционного действия вируса ведется по летальному действию, клиническим симптомам, патологоанатомическим изменениям или цитопатическому действию.

Титрование вирусов по 50-процентному инфекционному действию - наиболее универсальный прием, пригодный для титрования практически любого вируса, если подобрать чувствительную к нему живую систему (текст-объект). Однако этот метод титрования вирусов довольно трудоемкий, длительный и требует статистических расчетов.

Задача определения титра вируса в единицах 50-процентного инфекционного действия (ЛД50, ИД50, ЭЛД50, ЭИД50, ЦПД50) сводится к тому, чтобы найти такое разведение испытуемого вируссодержащего материала, в объеме заражающей дозы которого содержалась бы одна ЭД50, а затем рассчитать, сколько таких единиц вируса содержится в таком же объеме вируссодержащего материала, что и будет показателем титра вируса в этом материале.

Чтобы решить эту задачу, сначала из исследуемого вируссодержащего материала готовят ряд последовательных 10-кратных разведений. 10-кратные разведения берут по двум причинам:

во-первых, как видно из графика зависимости инфекционного эффекта от дозы вируса (рис. 36), кривая этой зависимости вблизи точки, соответствующей ЭД5о, на значительном отрезке приближается к прямой.


Рисунок 36 - График зависимости инфекционного эффекта от дозы вируса

Это означает, что в определенных пределах, центр которых в точке ЭД50, между логарифмом дозы (разведения) вируса и инфекционным эффектом существует прямолинейная зависимость, т. е. величина инфекционного эффекта пропорциональна логарифму дозы вируса (или его разведения), в области малых и особенно больших доз эта зависимость нарушается;

во-вторых, при 10-кратном разведении облегчаются последующие расчеты.

Одинаковыми объемами каждого из 10-кратных разведений исследуемого вируссодержащего материала заражают равные группы чувствительных к данному вирусу живых тест-объектов (мышей, куриных эмбрионов или культур клеток). При этом в каждой группе должно быть не менее 4-6 тест-объектов, так как при меньшем количестве статистически рассчитываемая величина титра вируса будет иметь слишком большую погрешность (статистическая величина тем точнее, чем на большем количестве исходных данных она основана).

После заражения учитывают результат действия вируса (гибель, клинические симптомы, патологоанатомические изменения или ЦПЭ) на зараженные объекты и определяют, в каком разведении вирус проявил свое действие на 50 % чувствительных объектов. Разведение, дающее 50-процентный эффект, рассчитывают методом прямолинейной интерполяции. Когда такое разведение нашли, то считают, что в заражающем объеме вируса, разведенного в найденное (соответствующее 50-процентному эффекту) число раз, содержится 1 ЭД50. В таком же объеме исходного (неразведенного) вируссодержащего материала таких доз (ЭД5о) содержится больше во столько раз, во сколько был разведен материал, давший 1 ЭД50. Затем пересчитывают, сколько таких единиц 50-процентного инфекционного действия вируса содержится в единице объема (мл) вируссодержащего материала, что и будет выражением титра вируса в данном материале.

  • 1 Рассчитать титр вируса в единицах 50-процентного инфекционного действия по предложенным фактическим данным.
  • 20пределить титр вируса ньюкаслской болезни в аллантоисной жидкости в единицах гемагглютинирующего действия.

Самостоятельная работа студентов

  • а) подготовка панелей, пипеток и материала;
  • б) получение последовательных 2-кратных разведений вируса по 0,5 мл или по 0,2 мл;
  • в) добавление 1-процентной суспензии эритроцитов;
  • г) учет результатов и их интерпретация. Во время экспозиции переписывание в тетрадь (с доски или таблицы) схемы титрования антител к вирусу ньюкаслской болезни в РТГА.

Подведение итогов занятия Задание к следующему занятию Контрольные вопросы

  • 1 Что такое титр вируса?
  • 2 Каковы единицы измерения количества вируса?
  • 3 Каков принцип определения титра вируса в БОЕ и ООЕ?
  • 4 В чем принцип определения титра вируса в единицах 50- процентного инфекционного действия?
  • 5 Какова методика расчета титра вируса в единицах 50- процентного инфекционного действия?
  • 6 В чем принцип определения титра вируса в ГАЕ?
  • 7 Каковы достоинства и недостатки разных методов титрования вирусов?

Вирусологическое исследование

Основными методами, используемыми в диагностике вирусных болезней, являются культивирование и идентификация вирусов.

Для доказательства вирусной этиологии болезни необходимо: выделение вируса из организма больной рыбы, пассирование его на культуре клеток или чувствительных рыбах, воспроизведение болезни у здоровых рыб того же или родственного вида, повторное выделение того же вируса от экспериментальных животных.

Для идентификации вирусов используют несколько взаимодополняющих методов: электронная микроскопия вируса, изучение его физико-химических свойств, обнаружение характерных морфологических изменений в зараженных клетках и симптомов у зараженных животных, различные иммунологические методы.

Вирусы выделяют в основном на однослойных первичных или перевиваемых клеточных культурах, подбирая в каждом случае культуры, чувствительные к данному вирусу. Для получения первичных культур клеток рыб наиболее часто используют гонады самок карпа или карася. Гонады должны быть II или II-III стадии зрелости по шкале Киселевича. Такие гонады не содержат икринок, различимых невооруженным глазом. В противном случае содержимое икринок будет отрицательно влиять на рост клеток. Культуры клеток из гонад карпа и карася готовят по утвержденной методике.

В качестве перевиваемых культур наиболее широко используют следующие клеточные линии: FHM - из тканей хвостового стебля жирноголового гольяна; RTG- из гонад радужной форели; ЕРС - из оспенных разростов на коже карпа. Названные линии поддерживаются в специализированных лабораториях по изучению болезней рыб ветеринарных и рыбохозяйственных научно-исследовательских институтов, где их можно заказать и получить.

При диагностике хорошо изученных вирусных болезней исследуют органы и ткани, где концентрируется возбудитель.

При болезнях рыб, сведения о которых недостаточны, вирусологическому исследованию подвергают наиболее пораженные органы. Соскобы с кожи и жабр, кусочки этих органов вместе со слизью помещают в стерильные флаконы с 2-3 мл стерильного физиологического или буферного раствора. Пробы из внутренних органов берут в строго асептических условиях.

В тех случаях, когда быстро исследовать материал невозможно, его сохраняют не более суток в холодильнике при температуре не выше 5°С. Материал в замороженном состоянии можно сохранять более длительное время.

Предназначенный для исследования патологический материал измельчают в гомогенизаторе или растирают в фарфоровой ступке с кварцевым песком. Из измельченных тканей готовят 10 %-ную суспензию на растворах Хенкса, Эрла, буферном или физиологическом растворе и центрифугируют 10-15 мин при 2000-3000 об/мин, надосадочную жидкость отсасывают пипеткой и помещают в стерильные флаконы. Если суспензия не стерильна,, подготовленные материалы фильтруют через мембранные фильтры с диаметром пор 0,2-0,45 мкм или обрабатывают антибиотиками (пенициллин 1000 ЕД/мл и стрептомицин 1000 мкг/мл).

Из кишечного содержимого готовят 20 %-ную взвесь в стерильной дистиллированной воде и центрифугируют 10-15 мин при 2000 об/мин. Надосадочную жидкость центрифугируют повторно при 4000-5000 об/мин в течение 30 мин. Затем надосадочную жидкость отсасывают в стерильный флакон и обрабатывают антибиотиками. На 1 мл добавляют 1000 мкг/мл стрептомицина и 1000 ЕД/мл пенициллина. Смесь выдерживают 2-3 ч при: комнатной температуре. Все материалы проверяют на бактериальную стерильность путем посева на МПБ и МПА. Приготовленные материалы сразу используют для работы или, в крайнем случае, сохраняют в замороженном состоянии (при температуре минус 20°С).

Заражение культуры клеток. Для заражения используют пробирки с хорошим клеточным монослоем или зоной роста вокруг эксплантата. Питательную среду отсасывают и в каждую пробирку вносят по 0,2-0,3 мл исследуемой суспензии. Одновременно в пробирки добавляют по 0,8-0,9 мл питательной среды с 2-3 % сыворотки.

Материалом, приготовленным из каждой пробы, заражают культуру тканей в 4-6 пробирках. Из каждой серии исследований столько же пробирок оставляют в качестве контроля, добавляя в них по 1 мл питательной среды. Пробирки оставляют при комнатной температуре на 1-2 ч для адсорбции вируса на клетках, затем отсасывают пипеткой надосадочную жидкость и вносят поддерживающую питательную среду до первоначального объема.

Зараженные и контрольные культуры клеток инкубируют при температуре 22-26°С и ежедневно просматривают под малым увеличением микроскопа для обнаружения появившихся морфологических изменений в клетках. При выраженной дегенерации клеток культуральную жидкость отсасывают и делают пассажи, а при отсутствии цитопатогенного действия (ЦПД) проводят два последовательных пассажа. Для этого используют культуральную жидкость вместе с клеточной фракцией, разрушенной путем повторного замораживания и оттаивания. Для заражения свежих культур используют надосадочную жидкость центрифугированной клеточной массы. ЦПД после третьего пассажа учитывают как специфическое действие вирусного агента.

Степень поражения клеточного монослоя оценивается по 4-крестовой системе; " + - поражение до 25%, "+ + " - до 50%, "+ + +" - до 75% и "+ + + + " - до 100 % монослоя.

При некоторых вирусных заболеваниях рыб в клетках (цитоплазме ядре) различных органов и тканей появляются тельца-включения. Материалом для исследования вирусных включений служат инфицированные культуры тканей, соскобы и мазки-отпечатки из органов и тканей, казанные материалы перед окраской фиксируют по общепринятым методам, спользуя жидкости Дюбоск - Бразил - Буэна, Буэна, Карнуа или 10 %-ный раствор нейтрального формалина.

Вирусные включения окрашивают различными методами: по Муромцеву, рубиной, Манну, Селлексу, Клисенко, Романовскому-Гимзе, Май-Грюн-альду - Гимзе и др.

Титрование вируса - количественное определение вирусной активности. Титр вируса выражается количеством инфекционных единиц, содержащихся единице объема суспензии вируса. За инфекционную единицу вируса принимается такая его доза, которая вызывает инфекцию у 50 % зараженных ею чувствительных объектов. Такая доза вируса называется инфекционной и обозначается ИД50.

В качестве чувствительных объектов при титровании вирусов рыб используют главным образом культуры клеток. Титрование на культуре клеток осуществляют по цитопатогенному действию вирусов. В этом случае ИД50 называют тканевой цитопатогенной дозой (ТЦД50), а титр вируса выражают количеством ТЦД50 в 1 мл вирусной суспензии. Титр вируса при этом определяют методом конечных разведений. Согласно этому методу чувствительные культуры клеток вводят определенный объем суспензии вируса в последовательно возрастающих разведениях и, учитывая результат к аждого введения как положительный (если есть ЦПД) или отрицательный если ЦПД отсутствует), рассчитывают конечную точку титрования - 1 ТЦД50.

Для титрования вирусов, дающих ярко выраженное ЦПД, используют также метод бляшек. При этом зараженный вирусом монослой клеток заливают смесью питательной среды с агаром, чтобы предотвратить перенос вируса на другие клетки, значительно удаленные от первично инфицированных, и иметь возможность инфицировать первоначальные очаги заражения бляшки).

Каждая бляшка возникает из одной инфекционной единицы, которую обозначают БОЕ (бляшкообразующая единица), а титр вируса выражают количеством БОЕ в единице объема суспензии.

Реакция нейтрализации (РН) на культуре клеток.

В основе реакции лежит связывание антигена антителами гомологичной антисыворотки. Реакцию используют для идентификации возбудителей при диаг-остике заболеваний вирусной этиологии. Она позволяет определять по из-естным антителам неизвестный вирусный антиген или по заведомо известному (стандартному) антигену - неизвестные антитела в сыворотках больных ли переболевших рыб.

Определение выделенного вируса в реакции нейтрализации проводят, применяя набор диагностических гипериммунных антисывороток (антител) гомологичных к ним антигенов (вирусов).

Гипериммунные антисыворотки получают при заражении лабораторных животных (например, кроликов) известными штаммами вирусов - возбудителей болезней рыб. У полученных антисывороток определяют титры специфических антител. Для работы берут антисыворотки, содержащие антитела в высоких титрах.

Порядок проведения реакции.

1. Инактивирование нормальной и гипериммунной сыворотки прогреванием при 56 о С в течение 30 мин.

2. Приготовление разведений ингредиентов реакции. Питательной средой без сыворотки и антибиотиков разводят антиген и сыворотки, начиная с 1 : 5, 1 : 50, 1 : 500 и до получения разведения содержанием менее 1 ТЦД50/0,2 мл. Гипериммунную сыворотку разводят 1 : 2 или 1 : 5. При малом титре сыворотку используют неразведенной. Нормальную сыворотку разводят так же, как и гипериммунную.

3. Постановка реакции. В штативе размещают три ряда стерильных пробирок. В первый ряд разливают разведенную гипериммунную сыворотку, во второй - разведенную нормальную сыворотку, в третий - питательную среду. Каждый ингредиент вносят в объеме 0,5 мл.

Приготовленные разведения вируса переносят по 0,5 мл в соответствующие пробирки каждого из трех рядов, причем вирус каждого разведения I переносят отдельной пипеткой, начиная с наибольшего разведения. Таким образом, в каждом ряду пробирок получают последовательные 10-кратные разведения вируса: 10-1, 10-2 и т. д.

Для контроля токсичности сывороток в отдельную пробирку вносят 0,5 мл приготовленного разведения гипериммунной сыворотки, а затем прибавляют равное количество питательной среды. То же проделывают с нормальной сывороткой.

Пробирки со смесями тщательно встряхивают и выдерживают при комнатной температуре в течение 1 часа. Затем заражают культуру клеток каждым разведением вируса (0,2 мл на каждую пробирку) с гипериммунной нормальной сыворотками и питательной средой по 4 пробирки культуры клеток. Параллельно ставят контроли на токсичность используемых клеток и контрольные пробы культуры клеток.

Пробирки с культурой клеток инкубируют в термостате при оптимальной для размножения данного вируса температуре, ежедневно просматривают под малым увеличением микроскопа для обнаружения ЦПД вируса. Результаты заносят в таблицу (табл. 11).



Таблица 11. Реакция с титрованием вируса (по В. А. Мусселиус и др., 1983)

Титр вируса выражается количеством инфекционных единиц, содержащихся в единице объема суспензии вируса. Находят индекс нейтрализации (IN). Он соответствует максимальному количеству ИД50, которое может быть нейтрализовано гипериммунной сывороткой. Расчет IN ведут по формуле: lgIN = lgT1-lgT2, где Т1 - титр вируса в присутствии нормальной сыворотки; Т2 - титр вируса в присутствии гипериммунной сыворотки. Значение IN находят по таблице антилогарифмов. Принято считать значение IN до 10 отрицательным, от 10 до 49 - сомнительным, 50 и более - положительным результатом.

Результаты реакции можно считать достоверными только в том случае если гипериммунная сыворотка проверена на специфическую нейтрализующую активность. Для этого предварительно определяют титр нейтрализующих антител в этой сыворотке или ее индекс нейтрализации в реакции с гомологичным вирусом.

Выделение рабдовирусов методом бляшек. Данный метод специфический, применяют его для выделения, предварительного типирования и селекции рабдовирусов карпа, форели при наличии специфических иммунных сывороток для идентификации вируса.

Округлые колонии (бляшки) образуются в клеточных культурах под агаровым покрытием при наличии вируса в исследуемом материале.

В асептических условиях пастеровской пипеткой набирают ткань почек, печени, селезенки и жидкость из брюшной полости, переносят во флакон со средой, содержащей по 500 ME (мкг)/мл антибиотиков в соотношении 1 : 10. выдерживают 60-90 мин при температуре 18-22°С, затем центрифугируют при 2-3 тыс. об/мин в течение 10 мин. Надосадочную жидкость разводят питательной средой 1 : 10 (разведение 1 : 100). Для заражения клеточных культур используют надосадочные жидкости обоих разведений.

Для исследования отбирают 3-суточную перевиваемую культуру клеток, выращенную в матрацах с хорошо выраженным монослоем, из расчета 2 матраца на каждое разведение патологического материала и по 2 матраца для контроля. Из флаконов удаляют питательную среду и вносят по 2 мл среды без эмбриональной сыворотки. Затем вносят по 0,2 мл исследуемого патматериала и оставляют для адсорбции вируса на 60 мин при температуре оптимальной для вирусов, поражающих рыб (для вирусов карпа - 24-26°С и для вирусов форели-16-18°С).

Контроль ставят в 2 матрацах с клеточными культурами по 0,2 мл, содержащих по 100 ТЦД50/мл известного вируса, а в 2 - по 0,2 мл питательной среды без вируса.

Через 60 мин жидкость из флаконов удаляют. По стенке, противоположной монослою, вносят во флакон емкостью 50 мл 5 мл агарового покрытия,, нагретого до 40-42°С (при выделении вируса ВГС - не более 38°С). Матрацы поворачивают монослоем вниз, покрывают черной бумагой. Через 15-20 мин матрацы переносят для инкубации при оптимальной для изучаемых вирусов температуре. Матрацы кладут агаровым покрытием вверх. При неизвестном вирусе культуры содержат при двух температурных режимах - 14-18 и 22-24°С.

Зараженные клеточные культуры просматривают на белом фоне. При наличии в изучаемом материале вируса в клеточной культуре вначале появляются прозрачные точки на розово-матовом фоне культуры. В дальнейшем они увеличиваются в размере, образуя круглые прозрачные колонии - бляшки, наличие которых свидетельствует о наличии в патматериале рабдовирусов.

Пастеровской пипеткой набирают кусочек бляшки на границе пораженной и непораженной части с таким расчетом, чтобы попал не только агаровый, но и клеточный слой. Отобранный кусочек помещают в пробирку с 1 мл ростовой среды, замораживают при минус 20°С и выдерживают 60 мин. В случае большого количества бляшек (весь клеточный слой прозрачный) исследования повторяют в разведениях 10 -3 и 10 -4 .

Бляшки диаметром 3-8 мм рабдовируса карпа на перевиваемой культуре ЕРС и FHM, инкубируемой при температуре 24-26°С, проявляются на 4-7-й день.

При отсутствии бляшек и наличии ЦПД в клеточных культурах проводят дополнительные исследования вируссодержащей культуральной жидкости в разведениях 10 -2 -10 -3 (2-3 пассажа). В качестве дополнительных методов идентификации вирусов используют: метод флуоресцирующих антител; определение чувствительности вируса к хлороформу, эфиру, величине рН, нагреванию; электронно-микроскопическое исследование морфологии вирусов.

Окончательным доказательством этиологической роли выделенного вируса является положительная биопроба.



тЙУ. 5. йОДЙЛБГЙС ТЕРТПДХЛГЙЙ ЧЙТХУБ Ч ЛХМШФХТЕ ФЛБОЙ РП ГЙФПРБФЙЮЕУЛПНХ ДЕКУФЧЙА (грд): 1.ЙОФБЛФОБС НПОПУМПКОБС ЛХМШФХТБ ЛМЕФПЛ; 2. ЪБТБЦЕООБС ЛХМШФХТБ (грд). (нЙЛТПВЙПМПЗЙС Й ЙННХОПМПЗЙС.-рПД ТЕД. б.б. чПТПВШЕЧБ.-н, нЕДЙГЙОБ, 1999.-464 У.)

л РПМХРЕТЕЧЙЧБЕНЩН ЛХМШФХТБН ПФОПУСФУС ДЙРМПЙДОЩЕ ЛМЕФЛЙ ЮЕМПЧЕЛБ. пОЙ РТЕДУФБЧМСАФ УПВПК ЛМЕФПЮОХА УЙУФЕНХ, УПИТБОСАЭХА Ч РТПГЕУУЕ 50 РБУУБЦЕК (ДП ЗПДБ) ДЙРМПЙДОЩК ОБВПТ ИТПНПУПН. дЙРМПЙДОЩЕ ЛМЕФЛЙ ЮЕМПЧЕЛБ ОЕ РТЕФЕТРЕЧБАФ ЪМПЛБЮЕУФЧЕООПЗП РЕТЕТПЦДЕОЙС Й ЬФЙН ЧЩЗПДОП ПФМЙЮБАФУС ПФ ПРХИПМЕЧЩИ.
дМС ЧЩТБЭЙЧБОЙС ЧЙТХУПЧ НПЦОП ЙУРПМШЪПЧБФШ ЛХМШФХТЩ ФЛБОЕК МАВПЗП ФЙРБ. дПЪБ ЪБТБЦЕОЙС ЪБЧЙУЙФ ПФ ГЕМЙ Й ОБЪОБЮЕОЙС ПРЩФБ. фЛБОЕЧЩЕ ЛХМШФХТЩ ЙУРПМШЪХАФ ДМС ЧЩДЕМЕОЙС ОПЧЩИ НБМПЙЪХЮЕООЩИ ЧЙТХУПЧ, ЛПЗДБ ПВЩЮОЩН НЕФПДПН (ЪБТБЦЕОЙЕ ЦЙЧПФОЩИ, ЛХТЙОЩИ ЬНВТЙПОПЧ) ОЕЧПЪНПЦОП ХУФБОПЧЙФШ ЧЙТХУОХА РТЙТПДХ ЧПЪВХДЙФЕМС. чЩВПТ ЛМЕФПЮОЩИ ЛХМШФХТ ПРТЕДЕМСЕФУС ЙИ ЮХЧУФЧЙФЕМШОПУФША Л ПФДЕМШОЩН ЗТХРРБН ЧЙТХУПЧ.
тБЪМЙЮБАФ ПУФТХА Й ИТПОЙЮЕУЛХА ЙОЖЕЛГЙЙ. пУФТПЕ ФЕЮЕОЙЕ ЙОЖЕЛГЙЙ ИБТБЛФЕТЙЪХЕФУС ГЙФПРБФЙЮЕУЛЙН ДЕКУФЧЙЕН (ДЕУФТХЛФЙЧОЩНЙ ЙЪНЕОЕОЙСНЙ ЪБТБЦЕООЩИ ЛМЕФПЛ, ЪБЧЕТЫБАЭЙИУС ЙИ ЗЙВЕМША). иТПОЙЮЕУЛБС ЖПТНБ ТЕРТПДХЛГЙЙ ЧЙТХУБ ОЕ ЧЩЪЩЧБЕФ ВЩУФТХА ЗЙВЕМШ ЛМЕФПЛ, ПОЙ ДПМЗПЕ ЧТЕНС ПУФБАФУС ЦЙЪОЕУРПУПВОЩНЙ Й ЧОЕЫОЕ НПЗХФ ОЕ ПФМЙЮБФШУС ПФ ЪБТБЦЕООЩИ.
йОДЙЛБГЙА ЧЙТХУПЧ Ч ЛХМШФХТЕ ЛМЕФПЛ РТПЧПДСФ ОБ ПУОПЧБОЙЙ УМЕДХАЭЙИ ЖЕОПНЕОПЧ:

  • гЙФПРБФЙЮЕУЛПЕ ДЕКУФЧЙЕ (грд) - ЧЙДЙНЩЕ РПД НЙЛТПУЛПРПН НПТЖПМПЗЙЮЕУЛЙЕ ЙЪНЕОЕОЙС ЛМЕФПЛ, ЧРМПФШ ДП ЙИ ПФФПТЦЕОЙС ПФ УФЕЛМБ, ЛПФПТЩЕ ЧПЪОЙЛБАФ Ч ТЕЪХМШФБФЕ ЧОХФТЙЛМЕФПЮОПК ТЕРТПДХЛГЙЙ ЧЙТХУПЧ (ТЙУ. 5). иБТБЛФЕТ грд РТЙ ТБЪМЙЮОЩИ ЧЙТХУОЩИ ЙОЖЕЛГЙСИ ОЕПДЙОБЛПЧ. рТЙ ТЕРТПДХЛГЙЙ ПДОЙИ ЧЙТХУПЧ (РБТБНЙЛУПЧЙТХУЩ, ЗЕТРЕУЧЙТХУЩ) ОБВМАДБЕФУС УМЙСОЙЕ ЛМЕФПЛ У ПВТБЪПЧБОЙЕН УЙОГЙФЙС, ДТХЗЙИ (ЬОФЕТПЧЙТХУЩ, ТЕПЧЙТХУЩ) - УНПТЭЙЧБОЙЕ Й ДЕУФТХЛГЙС ЛМЕФПЛ, ФТЕФШЙИ (БДЕОПЧЙТХУЩ) - БЗТЕЗБГЙС ЛМЕФПЛ Й Ф.Д.
  • чЙТХУОЩЕ ЧЛМАЮЕОЙС - УЛПРМЕОЙЕ ЧЙТХУОЩИ ЮБУФЙГ ЙМЙ ПФДЕМШОЩИ ЛПНРПОЕОФПЧ ЧЙТХУПЧ Ч ГЙФПРМБЪНЕ ЙМЙ СДТЕ ЛМЕФПЛ, ЧЩСЧМСЕНЩЕ РПД НЙЛТПУЛПРПН РТЙ УРЕГЙБМШОПН ПЛТБЫЙЧБОЙЙ. чЛМАЮЕОЙС ТБЪМЙЮБАФУС РП ЧЕМЙЮЙОЕ, ЖПТНЕ, ЮЙУМЕООПУФЙ. иБТБЛФЕТОЩЕ СДЕТОЩЕ ЧЛМАЮЕОЙС ЖПТНЙТХАФУС Ч ЛМЕФЛБИ, ЪБТБЦЕООЩИ ЧЙТХУБНЙ ЗЕТРЕУБ, БДЕОПЧЙТХУБНЙ, ЗТЙРРБ, ВЕЫЕОУФЧБ, ПУРЩ Й ДТ.
  • вМСЫЛЙ, ЙМЙ ОЕЗБФЙЧОЩЕ ЛПМПОЙЙ - ПЗТБОЙЮЕООЩЕ ХЮБУФЛЙ, УПУФПСЭЙЕ ЙЪ ДЕЗЕОЕТБФЙЧОЩИ ЛМЕФПЛ, ЛПФПТЩЕ ЧЙТХУЩ УРПУПВОЩ ПВТБЪПЧЩЧБФШ Ч НПОПУМПЕ ЛМЕФПЛ РПД БЗБТПЧЩН РПЛТЩФЙЕН. пОЙ ЧЙДОЩ ОЕЧППТХЦЕООЩН ЗМБЪПН ЛБЛ УЧЕФМЩЕ РСФОБ ОБ ЖПОЕ РТЙЦЙЪОЕООП ПЛТБЫЕООЩИ ОЕКФТБМШОЩН ЛТБУОЩН ЛМЕФПЛ. пДОБ ВМСЫЛБ УППФЧЕФУФЧХЕФ РПФПНУФЧХ ПДОПЗП ЧЙТЙПОБ. оЕЗБФЙЧОЩЕ ЛПМПОЙЙ ТБЪОЩИ ЧЙТХУПЧ ПФМЙЮБАФУС РП ТБЪНЕТХ, ЖПТНЕ. вМСЫЛППВТБЪПЧБОЙЕ ЙУРПМШЪХАФ ДМС ДЙЖЖЕТЕОГЙБГЙЙ, УЕМЕЛГЙЙ ЧЙТХУПЧ, Б ФБЛЦЕ ДМС ПРТЕДЕМЕОЙС ЙИ ЛПОГЕОФТБГЙЙ Ч ЙУУМЕДХЕНПН НБФЕТЙБМЕ. фЙФТ ЧЙТХУБ, ХУФБОПЧМЕООЩК ЬФЙН НЕФПДПН, ЧЩТБЦБАФ ЮЙУМПН ВМСЫЛППВТБЪХАЭЙИ ЕДЙОЙГ (впе) Ч 1 НМ.
  • `гЧЕФОБС' РТПВБ. еУМЙ ЧЙТХУЩ ОЕ ТБЪНОПЦБАФУС Ч ЛХМШФХТЕ ЛМЕФПЛ, ФП ЦЙЧЩЕ ЛМЕФЛЙ Ч РТПГЕУУЕ УЧПЕЗП НЕФБВПМЙЪНБ ЧЩДЕМСАФ ЛЙУМЩЕ РТПДХЛФЩ, ЮФП ЧЕДЕФ Л ЙЪНЕОЕОЙА То УТЕДЩ Й ГЧЕФБ ЙОДЙЛБФПТБ ЖЕОПМПЧПЗП ЛТБУОПЗП ОБ ЦЕМФЩК. рТЙ РТПДХЛГЙЙ ЧЙТХУПЧ ОПТНБМШОЩК НЕФБВПМЙЪН ЛМЕФПЛ ОБТХЫБЕФУС, ЛМЕФЛЙ ЗЙВОХФ, Й УТЕДБ УПИТБОСЕФ УЧПК РЕТЧПОБЮБМШОЩК (ЛТБУОЩК) ГЧЕФ. фБЛЙН ПВТБЪПН, ЛТБУОЩК ГЧЕФ УТЕДЩ ХЛБЪЩЧБЕФ ОБ ОБМЙЮЙЕ ЧЙТХУБ Й РТЕЛТБЭЕОЙЕ ЦЙЪОЕДЕСФЕМШОПУФЙ ЛМЕФПЛ.
  • зЕНБДУПТВГЙС - УРПУПВОПУФШ ЛХМШФХТ ЛМЕФПЛ, ЙОЖЙГЙТПЧБООЩИ ЧЙТХУБНЙ, БДУПТВЙТПЧБФШ ОБ УЧПЕК РПЧЕТИОПУФЙ ЬТЙФТПГЙФЩ ПРТЕДЕМЕООЩИ ЧЙДПЧ ЦЙЧПФОЩИ Й РФЙГ. зЕНБДУПТВГЙС РТПСЧМСЕФУС УЛПРМЕОЙЕН Ч ЧЙДЕ ЗТПЪДЕК ЬТЙФТПГЙФПЧ, БДУПТВЙТПЧБООЩИ ОБ ЙОЖЙГЙТПЧБООЩИ ЧЙТХУПН ЛМЕФЛБИ.
  • йОФЕТЖЕТЕОГЙС - ОЕЛПФПТЩЕ ЧЙТХУЩ НПЦОП ПВОБТХЦЙФШ Ч ЛХМШФХТЕ ФЛБОЙ ФПМШЛП РП ОБМЙЮЙА ЙОФЕТЖЕТЕОГЙЙ. йУРЩФХЕНЩК ЧЙТХУ ЧЧПДЙФУС Ч ЛХМШФХТХ ЛМЕФПЛ РЕТЧЩН, ЮЕТЕЪ ОЕУЛПМШЛП ДОЕК ФХДБ ЦЕ ЧОПУСФ УФБОДБТФОХА ДПЪХ ЧЙТХУБ, ПВМБДБАЭЕЗП ЧЩТБЦЕООПК ГЙФПРБФЙЮЕУЛПК БЛФЙЧОПУФША ЙМЙ УРПУПВОПУФША ЧЩЪЩЧБФШ ЗЕНБДУПТВГЙА. рПУМЕ ПРТЕДЕМЕООПЗП ЙОЛХВЙТПЧБОЙС РТПЧЕТСАФ ОБМЙЮЙЕ ГЙФПРБФЙЮЕУЛЙИ ЙЪНЕОЕОЙК ЙМЙ ЗЕНБДУПТВГЙЙ, РПДФЧЕТЦДБАЭЙИ ТБЪНОПЦЕОЙЕ `ЧЩСЧМСАЭЕЗП' ЧЙТХУБ. пФУХФУФЧЙЕ Ч ЛХМШФХТЕ `ЧЩСЧМСАЭЕЗП' ЧЙТХУБ ЗПЧПТЙФ П ОБМЙЮЙЙ ЙУРЩФХЕНПЗП ЧЙТХУБ.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции