Как вирус выходит из клетки

← Предыдущая глава Глава 1.6 Следующая глава →
Вирусы — неклеточные формы жизни


Ви́рус (от лат. virus — яд) — микроскопическая частица, состоящая из белков и нуклеиновых кислот и способная инфицировать клетки живых организмов. Вирусы являются облигатными паразитами — они не способны размножаться вне клетки. В настоящее время известны вирусы, размножающиеся в клетках растений, животных, грибов и бактерий (последних обычно называют бактериофагами). Обнаружен также вирус, поражающий другие вирусы (Вирусы тоже болеют вирусными заболеваниями).

Вирусы представляют собой молекулы нуклеиновых кислот (ДНК или РНК), заключённые в защитную белковую оболочку (капсид). Наличие капсида отличает вирусы от других инфекционных агентов, вироидов. Вирусы содержат только один тип нуклеиновой кислоты: либо ДНК, либо РНК. Ранее к вирусам также ошибочно относили прионы, однако впоследствии оказалось, что эти возбудители представляют собой особые белки и не содержат нуклеиновых кислот.




Роль вирусов в биосфере

Вирусы являются одной из самых распространённых форм существования органической материи на планете по численности: воды мирового океана содержат колоссальное количество бактериофагов (около 10 11 частиц на миллилитр воды), их общая численность в океане — около 4 х 10 30 , а численность вирусов (бактериофагов) в донных отложениях океана практически не зависит от глубины и всюду очень высока [1]. В океане обитают сотни тысяч видов (штаммов) вирусов, подавляющее большинство которых не описаны и тем более не изучены [2][3]. Вирусы играют важную роль в регуляции численности популяций животных.

Вирусные частицы (вирио́ны) представляют собой белковую капсулу — капсид, содержащую геном вируса, представленный одной или несколькими молекулами ДНК или РНК. Капсид построен из капсомеров — белковых комплексов, состоящих в свою очередь из протомеров. Нуклеиновая кислота в комплексе с белками обозначается термином нуклеокапсид. Некоторые вирусы имеют также внешнюю липидную оболочку. Размеры различных вирусов колеблются от 20 нм (пикорнавирусы) до 500 нм (мимивирусы). Вирионы часто имеют правильную геометрическую форму (икосаэдр, цилиндр). Такая структура капсида предусматривает идентичность связей между составляющими её белками, и, следовательно, может быть построена из стандартных белков одного или нескольких видов, что позволяет вирусу экономить место в геноме.

Фазы вирусной инфекции [ править ]

Условно процесс вирусного инфицирования в масштабах одной клетки можно разбить на несколько взаимоперекрывающихся этапов:

Классификация Балтимора и жизненные циклы вирусов [ править ]

Нобелевский лауреат, биолог Дэвид Балтимор, предложил свою схему классификации вирусов, основываясь на различиях в механизме продукции мРНК и связанных с этим особенностях жизненного цикла вирусов. .Эта система включает в себя семь основных групп:

  • (I) Вирусы, содержащие двуцепочечную ДНК и не имеющие РНК-стадии (например, герпесвирусы, поксвирусы, паповавирусы, мимивирус).
  • (II) Вирусы, содержащие двуцепочечную РНК (например, ротавирусы).
  • (III) Вирусы, содержащие одноцепочечную молекулу ДНК (например, парвовирусы).
  • (IV) Вирусы, содержащие одноцепочечную молекулу РНК положительной полярности (например, пикорнавирусы, флавивирусы).
  • (V) Вирусы, содержащие одноцепочечную молекулу РНК негативной или двойной полярности (например, ортомиксовирусы, филовирусы).
  • (VI) Вирусы, содержащие одноцепочечную молекулу РНК и имеющие в своем жизненном цикле стадию синтеза ДНК на матрице РНК, ретровирусы (например, ВИЧ).
  • (VII) Вирусы, содержащие двуцепочечную ДНК и имеющие в своем жизненном цикле стадию синтеза ДНК на матрице РНК, ретроидные вирусы (например, вирус гепатита B).

История изучения вирусов [ править ]

В 1901 г. было обнаружено первое вирусное заболевание человека — жёлтая лихорадка. Это открытие было сделано американским военным хирургом У. Ридом и его коллегами.

В 1911 г. Фрэнсис Раус доказал вирусную природу рака — саркомы Рауса (лишь в 1966 г, спустя 55 лет, ему была вручена за это открытие Нобелевская премия по физиологии и медицине).

В последующие годы изучение вирусов сыграло важнейшую роль в развитии эпидемиологии, иммунологии, молекулярной генетики и других разделов биологии. Так, эксперимент Херши-Чейз стал решающих доказательством роли ДНК в передаче наследственных свойств. В разные годы еще как минимум шесть Нобелевских премий по физиологии и медицине и три Нобелевских премии по химии были вручены за исследования, непосредственно связанные с изучением вирусов.

В 2002 году, в университете Нью-Йорка был создан первый синтетический вирус (вирус полиомиелита).

Сейчас известно 39 видов коронавирусов, в каждый вид могут входить десятки и сотни штаммов. Кроме того, есть еще 10 видов — кандидатов в коронавирусы. Специалисты пока только проверяют, можно ли их считать настоящими коронавирусами. У них широкий спектр хозяев среди птиц и зверей, у которых они вызывают заболевания дыхательной системы и желудочно-кишечного тракта. К людям коронавирусы приходят от животных: вирус атипичной пневмонии 2002—2003 годов SARS-CoV пришел от подковоносых летучих мышей, от которых он перескочил в мусанга, или малайскую пальмовую куницу, а из мусанга — уже в человека. (Любителям кофе малайская пальмовая куница должна быть знакома — это тот самый зверек, без которого не было бы кофе копи-лювак: мусангам скармливают кофейные зерна, которые определенным образом ферментируются в кишечнике, изменяя вкусовые свойства; кофе из зерен, которые прогнали через мусангов, считается особо изысканным и стоит весьма немалых денег.)

Еще один человеческий коронавирус известен по вспышке ближневосточного респираторного синдрома, первые случаи которого были зарегистрированы в 2012 году в Саудовской Аравии, — он получил название MERS-CoV. Этот вирус также пришел к людям от летучих мышей с промежуточной остановкой в одногорбых верблюдах (оттого его еще называют верблюжьим гриппом, что неправильно, — коронавирусы от вирусов гриппа отличаются). Умирают от него более трети заразившихся, однако заразиться им сложно: с момента появления вируса и до начала этого года в мире зарегистрировано лишь около двух с половиной тысяч случаев.

Подозревают, что и новый вирус SARS-CoV-2 тоже пришел к нам от летучих мышей.

Наконец, есть еще четыре человеческих коронавируса, два из которых, HCoV-229E и HCoV-OC43, были известны еще до атипичной пневмонии от SARS-CoV, а два других, HCoV-NL63 и HCoV-HKU1, открыли в 2004 и 2005 годах. Все четыре не вызывают ничего серьезнее мягкой простуды; хотя коронавирусная простуда встречается довольно часто — на ее счет относят 15—30% всей простуды в мире.

Но об эпидемиологии коронавирусов мы рассказывать не будем, а вместо этого поговорим о том, как они устроены и как на них реагируют наши клетки.

Обладатели белковой короны

И белок S, и белок HE сидят в мембранной липидной оболочке. Откуда она берется? Как мы помним, наши клетки окружены мембраной и внутри них существует много мембранных органелл — клеточных органов, выполняющих разные функции и ради правильной работы отделенных от остальной клетки двуслойной липидной мембраной. Ее-то вирус и заимствует, выходя из клетки, а как именно, скажем чуть ниже. Кроме S и HE в ней сидит очень много белка М, который поддерживает и структурирует мембрану, и еще немного белка E. Под липидной оболочкой с белками мы найдем геном вируса — нить молекулы РНК, которая усажена белком N: он упаковывает вирусную РНК в компактную свернутую спираль. (Белковая оболочка вирусов, непосредственно взаимодействующая с нуклеиновой кислотой, называется капсидом.) Когда РНК попадает в клетку, то на ней сразу можно синтезировать белки, и такую РНК у вирусов обозначают плюсом.

По этим признакам коронавирусы относят к РНК-содержащим вирусам, чей геном представляет собой одну-единственную плюс-цепь РНК. Так же выглядит геном у множества других вирусов, среди которых есть риновирусы (одна из самых частых причин простуды) и вирус гепатита С. В то же время коронавирусы относят к оболочечным вирусам, у которых кроме нуклеиновой кислоты и связанного с ней структурно-защитного белка (у коронавирусов это белок N) есть еще мембранная оболочка. К оболочечным вирусам еще относятся, например, вирусы герпеса, у которых наследственная информация хранится в ДНК, и ВИЧ. Как видим, по отдельности разные молекулярные черты можно найти у множества вирусов и лишь по их сочетанию отделить одну группу вирусов от другой.

Кстати, геном в виде РНК — это, можно сказать, слабость коронавирусов. В нуклеиновых кислотах время от времени появляются мутации либо из-за внешних факторов, вроде фоновой радиации, либо из-за стандартных ошибок белков, которые эти нуклеиновые кислоты копируют. Но в клеточной ДНК мутации могут быть исправлены специальными ремонтными белками. Этим же ремонтом способны воспользоваться вирусы с геномом в виде ДНК или же те, которые геномную РНК на время копируют в ДНК (такие вирусы называются ретровирусами). А в коронавирусной РНК ошибки никак не исправляются. Мутации помогают вирусам сменить хозяина, но среди мутаций есть очень много вредных, и если вирус не может никак корректировать дефекты в ДНК, они в какой-то момент могут сделать его просто нежизнеспособным.

Любые вирусы — это, грубо говоря, лишь комок молекул, пусть и сложно устроенный. Собственного обмена веществ у вирусов нет, и размножаться за пределами клетки они не могут. Вирусам с мембранной оболочкой проникнуть в клетку проще как из-за самой мембраны, так и благодаря сидящим на ней белкам: они хорошо подходят к клеточным рецепторам. Кроме того, белки мембранной оболочки, как собственно вирусные, так и те, которые вирус прихватил у клетки вместе с куском мембраны, помогают вирусу уходить от иммунной атаки. Но из-за мембраны такие вирусы более чувствительны к разным неблагоприятным факторам, вроде обезвоживания или моющих детергентов, мембрану разрушающих. Поэтому вирусы с мембранной оболочкой лучше всего передаются от хозяина к хозяину, а сидеть на какой-то поверхности и ждать, когда их оттуда снимет потенциальный хозяин, они долго не могут. Этим они отличаются от вирусов без мембраны, которые представляют собой нуклеиновую кислоту, заключенную в белковый капсид, — они более устойчивы в окружающей среде, но проникнуть в клетку для них зачастую сложнее.

Внедрение в клетку

Разные вирусы пользуются разными клеточными белками для входа. Так, вирус атипичной пневмонии SARS-CoV и относительно безобидный HCoV-NL63 связываются с ангиотензинпревращающим ферментом 2, который помогает регулировать кровяное давление, участвует в управлении иммунитетом и играет роль еще в целом ряде процессов. Но белка одного вида для входа бывает недостаточно, поэтому, например, SARS-CoV нужен еще белок TMPRSS2 — одна из сериновых протеаз, участвующая в разных биохимических реакциях. Вирус сначала связывается с одним белком на поверхности клетки, а потом второй белок на поверхности клетки режет вирусный белок S, после чего мембраны вируса и клетки соединяются.


Схема жизненного цикла коронавируса. Проникнув в клетку, вирус высвобождает свою РНК, на которой рибосомы — клеточные машины для белкового синтеза — собирают вирусные белки, необходимые для формирования мембранных пузырьков и для синтеза плюс-цепи геномной РНК — гРНК. На вспомогательных мембранных пузырьках появляются вирусные белки, образующие RTC — replication transcription complex, этот комплекс выполняет репликацию (удвоение генома вируса) и транскрипцию — синтез коротких субгеномных РНК (сгРНК), предназначенных для сборки структурных вирусных белков. Структурный белок N соединяется с геномной РНК и образует нуклеокапсид вируса (геном плюс капсидный белок). На эндоплазматической сети синтезируются другие структурные белки, которые организуют вирусу липидную мембрану.

Вирус проник в клетку, и теперь он начинает копировать свой геном, то есть молекулу РНК, и синтезировать белки, нужные для копирования РНК и для формирования вирусных частиц. Кроме полных геномных РНК коронавирусы создают еще набор более коротких РНК — они синтезируются на больших геномных РНК и нужны только для синтеза белков; в вирусные частицы эти короткие РНК не попадают (точно так же ведут себя некоторые другие вирусы, которые вместе с коронавирусами объединяют в группу Nidovirales). Все вирусные РНК синтезируются в особых белковых комплексах, которые, в свою очередь, закреплены в небольших мембранных пузырьках. Эти пузырьки создает сам вирус: его белки вторгаются во внутриклеточные мембраны и фрагментируют их, создавая пузырьки-везикулы, чтобы РНК-синтезирующим комплексам было к чему пришвартоваться.

Часть насинтезированной РНК остается плавать в цитоплазме клетки — на ней синтезируется белок N, который будет упаковывать геномную вирусную РНК в спираль. Другие структурные белки, те, что потом окажутся в мембранной оболочке вируса (S, M и пр.), синтезируются на РНК, осевшей на особой внутриклеточной структуре — эндоплазматической сети, или эндоплазматическом ретикулуме (ЭР). Эндоплазматическая сеть — это огромная система мембранных канальцев, цистерн и пузырьков, на которых сидят белоксинтезирующие молекулярные машины рибосомы и собирают белки в соответствии с информацией в РНК. Готовые белки погружаются внутрь полостей ЭР, где приобретают правильную пространственную форму и потом либо переходят в клеточную цитоплазму, либо отправляются на экспорт, наружу из клетки, будучи заключены в транспортный мембранный пузырек.

Особенности внутриклеточной борьбы

О том, что у нее внутри орудует вирус, клетка может догадаться по неполадкам с внутренними мембранами — мы помним, что коронавирусы фрагментируют мембраны, чтобы дать опору своим белкам, синтезирующим РНК, и сами вирусные частицы прихватывают себе куски мембран. Кроме того, вирусные белки накапливаются в эндоплазматической сети и вызывают так называемый ЭР-стресс, то есть стресс эндоплазматического ретикулума. ЭР-стресс заставляет клетку остановить синтез белков (что, несомненно, бьет по вирусу — ведь он зависит от клеточной белоксинтезирующей машины) и активирует сигнальные молекулярные пути, которые включают программы клеточного суицида. Наконец, клетка может понять по вирусной РНК, что внутри у нее поселилась инфекция, и в ответ начать синтез интерферона первого типа. Это сигнальный белок, который выходит из клетки и оповещает всех об инфекции, в результате здоровые клетки готовятся защищаться от своей соседки, а иммунные клетки стремятся уничтожить зараженную клетку.

Репортаж

28 мая 2018 года.

28 май 2018 28 май 2018

Группе французских ученых удалось снять процесс заражения здоровой клетки вирусом ВИЧ.

Группе французских ученых удалось снять процесс заражения здоровой клетки вирусом ВИЧ. Сотрудник ЮНЭЙДС побеседовал с Морганом Бомселем, директором исследовательской группы во французском Национальном центре научных исследований (CNRS), который рассказал о проделанной работе.

Почему вы решили заснять процесс передачи ВИЧ на видео?
Морган Бомсель: Передача ВИЧ еще недостаточно изучена, и мы слабо представляли себе точную последовательность событий, приводящую к инфицированию различных жидкостей, выделяемых во время полового акта. Кроме того, у нас не хватало знаний о том, как поражается иммунная клетка и к чему это приводит. Подавляющее большинство случаев заражения ВИЧ происходит через слизистые оболочки половых органов и прямой кишки, но внешний слой, или эпителий, этих тканей может иметь разные характеристики, и именно от них зависит, каким образом вирус проникает в организм.

Какие проблемы перед вами стояли?

М. Б.: Одной из проблем было построение экспериментальной модели, имитирующей заражение слизистой половых органов жидким секретом, таким образом, чтобы весь процесс можно было снять на видео. Мы воспроизвели in vitro слизистую мочеиспускательного канала мужчины на базе человеческих клеток, поверхность которой сделали красной, а зараженные белые клетки крови (Т-лимфоциты, основной инфекционный элемент в половых жидкостях) — флуоресцентными зелеными, и они, в свою очередь, производили такие же флуоресцентные зеленые частицы, зараженные ВИЧ.

Флуоресценция была необходима, чтобы можно было визуально наблюдать за процессом и отслеживать проникновение ВИЧ в слизистую методом флуоресцентного сканирования в реальном времени. И наконец, система должна была обеспечивать возможность наблюдения за контактом между клетками под микроскопом. Конечно, все это проводилось в среде с высочайшим уровнем безопасности, и все исследователи надевали две пары перчаток, шапочку, халат, очки и лицевую маску.

Когда вы поняли, что совершили прорыв?

М. Б.: Нашим звездным моментом стал заснятый нами процесс разрыва цепочки вируса. Это было похоже на пистолет, выбрасывающий пули одну за другой. Весь процесс длился несколько часов, а затем зараженная клетка будто потеряла интерес к нему, отцепилась от остальных и начала перемещаться.

Расскажите, что происходит на экране.

М. Б.: ВИЧ-инфицированные клетки имеют зеленый цвет и производят флуоресцентные вирусные частицы, которые здесь видны как зеленые точки.

Мы видим, как ВИЧ-инфицированная клетка присоединяется к внешнему слою, эпителию, состоящему из здоровых клеток реконструированной слизистой половых путей.

Белые клетки крови иммунной системы, макрофаги, которые обычно поглощают инородные тела, омертвевшую ткань и раковые клетки, сейчас поглощают красные частицы, которые медленно движутся возле синего ядра макрофага.

ВИЧ-инфицированная клетка подходит к поверхности слизистой и мягко присоединяется к ней. Установив контакт, зараженная клетка подтягивает уже готовые вирусные частицы к месту контакта (яркое желто-зеленое пятно) и начинает буквально выстреливать этими вирусами, обладающими полной заражающей силой. Здесь они отображаются как зеленые точки.

Эти вирусы проникают сквозь внешний слой ткани. Такой процесс называется трансцитозом, это один из видов трансцеллюлярного транспорта. Вирусы попадают в клетку и выходят с другой стороны эпителиального барьера, по-прежнему сохраняя свою инфицирующую силу. Таким образом ВИЧ поражает белые клетки крови, отвечающие за обнаружение, поглощение и уничтожение инородных тел. Дойдя до ядра, вирус встраивается в генетический материал, ДНК, и кровяные клетки, которые должны защищать организм, начинают вместо этого производить вирусы.

Что интересно, сделанная нами запись помогла понять, что процесс производства вирусов продолжается не так долго. Спустя три недели зараженные белые клетки крови погрузились в спящее состояние, и образовался некий резервуар с такими клетками.

Почему с ВИЧ так сложно бороться?

М. Б.: Вылечить ВИЧ-инфицированного человека сложно именно из-за спящих белых клеток крови. Иммунной системе очень трудно находить и уничтожать эти клетки. Точно так же и ученым очень трудно их изучать. Антиретровирусные препараты не дают вирусу распространяться по всему организму, и иммунная система получает возможность выявлять клетки, активно транскрибирующие вирусную ДНК. Но из-за наличия резервуара эти клетки представляют проблему, если пациент перестает принимать антиретровирусные препараты. В этом случае спящие клетки начинают медленно просыпаться, и вирус вновь может свободно распространяться по телу.

Вместе со специалистом профилактической медицины Екатериной Степановой Sputnik выяснил, как вирусам удается обманывать наш организм и почему ученые считают их в некотором роде полезными.

Информационными носителями биологической жизни являются гены (белковые структуры), которые определенным образом собраны в цепочки (ДНК и РНК).


Принято считать, что гены находятся в клетках живых организмов, бактерий, растений, которые потребляют питательные вещества, производят энергию, делятся (размножаются) и погибают.

Но существуют и другие формы существования генных цепочек ДНК и РНК – это вирусы. Точное их количество на сегодняшний день доподлинно не известно.

Вирусы не имеют клеточного строения, это генетическая программа (фрагмент ДНК или чаще РНК), покрытая белковой оболочкой – капсидом.

Они не могут жить самостоятельно, у них нет для этого ничего, никаких механизмов поддержания жизни. Поэтому вирусы паразитируют на живых клетках организмов и используют их для своего репродуцирования (воспроизводства того, что сохранилось в памяти генов).


Такое соседство почти всегда заканчивается гибелью живой клетки. Все виды живых клеток на Земле имеют свой набор вирусов: человек, мыши, клещи, растения, бактерии. Как правило, вирус опасен для одних видов и безопасен для других (растение – человек).

Попав в организм, вирус ищет именно свою клетку, свой орган.

В научном мире до сих пор идут споры о том, что такое вирус. Он производит себе подобных, но непонятно, зачем, ведь у него отсутствует механизм размножения (для этого ему нужен носитель-хозяин) он просто реплицирует (копирует свои данные из одной клетки в другую).

Но, безусловно, вирус влияет на жизнь людей. И не лучшим образом.

Размер вируса невероятно мал и определяется наукой в нанометрах. Вирус настолько мал относительно человека, как человек мал относительно размеров земного шара.

Он не виден в обычном световом микроскопе, для его изучения используют электронный, с выведением изображения на экран монитора.


Вирусы не могут отнести ни к какой эволюционной системе.

Вирус состоит из белковой оболочки, которая помогает ему сохраниться во внешних условиях и защититься от физических факторов (уфо-лучи, ферменты, химические агенты). Она же помогает найти по белку в организме именно свою клетку. Но эта же оболочка может представлять и угрозу для вируса – на ее поверхности содержится антиген, благодаря которому наша иммунная система его распознает. Поэтому иногда сложный вирус бывает покрыт дополнительной липидной оболочной – она называется суперкапсидом.

Внутренняя структура вируса называется сердцевиной – это одна или две генные цепочки РНК, реже ДНК. Цепочки могут иметь свой заряд (+ или -).

Геном вируса содержит самую важную для него информацию: как регулировать и запускать процесс заражения клетки, как размножить саму генную цепочку, как сформировать (синтезировать) белковые оболочки, в которые нужно упаковать новые генные цепочки. Они синтезируются по отдельности с оболочкой в разных частях пораженной клетки, и только потом идет окончательный сбор.

С момента появления вирус эволюционирует и в этот период ведет себя агрессивно. После того, как он доходит до пика развития, агрессия спадает, вирус всячески старается сосуществовать со своим хозяином, иначе погибнет и он сам. А иногда он уничтожает хозяина еще до пика развития.

Известно несколько механизмов проникновения в клетку.

  • Вирус прикрепляется к клетке. Если у клетки гибкая мембрана, вирус накрывает ее своей оболочкой. Похожие белковые структуры сливаются вместе, и вирус проникает вглубь клетки. Поэтому каждый вирус в организме ищет свою "родственную" белковую оболочку.
  • Благодаря белковым рецепторам на своей поверхности вирус убеждает клетку, что он не чужак. И, как троянский конь, попадает в нее.
  • Использует механизм фагоцитоза клетки: она поглощает его как что-то чужеродное в надежде переварить и заражается.

Как только вирус проник в клетку, он высвобождает свой генный материал и замещает ДНК клетки на свою. С этого момента зараженная клетка уже начинает производить вирусные фрагменты (работает на вирус).


Иногда клетка довольно длительное время производит аналогичный вирус, и вирусные образования (верионы) постоянно выходят в межклеточное пространство, поражая другие клетки. А иной раз клетка реплицирует вирус в себе до того момента, пока ее ресурс не исчерпается. Тогда в определенный момент клетка разрывается под действием фермента вируса, в этот момент огромное число верионов выходит в межклеточное пространство и массово поражает соседние здоровые клетки.

От механизма распространения вируса зависит и общее состояние организма. Нюанс в том, что иногда, выходя из клетки, верион (вирусное образование) может забирать с собой фрагмент или часть оболочки или ядра клетки, поэтому наша иммунная система не сразу может распознать "чужака".

В 1971 году Дэвиду Балтимору удалось разделить известные вирусы на 7 классов по форме, размеру, содержимому сердцевины. Но в природе их, безусловно, неисчислимое количество, они постоянно мутируют.

Поэтому нельзя создать универсальную таблетку или вакцину просто от вируса.

Как это ни странно, но ученые утверждают, что и для человека, и для природы есть определенная польза.

Попадая в организм, вирус тренирует нашу иммунную систему. Она совершенствуется. Переходя от клетки к клетке, из организма в организм, вирус частично в момент клеточного синтеза обменивается генами с клеткой. И они не всегда "плохие", бывают и положительные мутации для организма.


Выжившие клетки начинают свой обновленный цикл развития, что сказывается и на эволюции человека – следы столкновения с вирусами оседают в наших генах. Положительные мутации открывают нашему организму новые возможности. Например, на поверхности трехдневного эмбриона уже сидит много вирусных белков от древнего вируса, которые защищают сам эмбрион от враждебных "чужаков". Вирусы широко используют в генной инженерии, а для природы вирусы – часть контроля популяции.

Коронавирус для науки тоже частично известен, и он имеет свои особенности и штаммы.

Получил он такое название за схожесть по форме с короной. В 70% случаев он приходит из природы и от животных.

Полностью победить вирус трудно – можно вылечить всех людей, но невозможно вылечить всех мышей или, например, клещей. История знает множество подобных примеров.

При любом вирусном поражении стоит вопрос не в самом принципе заражения, а в уязвимости определенных групп населения и их систем организма.


Коронавирус поражает дыхательные пути – легкие, вернее, альвеолы – клетки, где происходит непосредственно газообмен. Смертность в основном наступает не от самого вируса, а от реакции организма на него, так как мутация для нас новая.

Наша иммунная система, имеющая комплекс механизмов, отвечает разнообразными процессами, часть из которых формирует воспаление (формирование интерферонов), а часть противостоит воспалению, формируя другие механизмы борьбы. Пока сохраняется баланс – большой угрозы для жизни нет.

Но такой баланс может быть сохранен при нормальном здоровом функционировании всех систем в организме: детокс-органов (печень, почки, кишечник), сосудов (их проходимость без бляшек) и т.д.

Воспаление – это всегда отек, и если воды много, в частности в альвеолах легких, функция дыхания затрудняется, человек может погибнуть. Процесс борьбы и реакции развивается от 6 до 10 дней – в этот период человеку нужна сторонняя помощь, к примеру, искусственная вентиляция легких. Потом воспалительные реакции идут на спад. Правда, при этом и сама иммунная система истощается, поэтому в такой период необходимо уберечься уже от бактериальных инфекций как факта осложнения.

Вирулентность (злобность) вируса определяется количеством вирусных частиц, которые попадают на слизистые. Поэтому принципы личной гигиены и самоизоляция всегда первостепенны, как и образ жизни.

А в питании должны присутствовать белки животного происхождения, потому что из них синтезируются клетки иммунной системы, а также железо, цинк, животные жиры (сливочное масло), масло какао, омега-3, щелочные продукты.

В любом случае, наше здоровье заслуживает большего внимания, чем мы иногда ему оказываем: кто-то уверен, что четыре часа сна в сутки – достаточно, кто-то отказывает от мяса, другие живут в постоянном стрессе. А между тем все это факторы, угнетающие иммунитет.

Мы – человеческая популяция, и от ответственности каждого из нас зависит здоровье и выживаемость человечества вообще.

Без кризиса нет развития, любой пережитый вирус делает наш организм совершеннее.


— Давайте начнем с простого общего вопроса: что такое вирус? Это вообще живое или неживое?

— Если давать формальное определение, то это внутриклеточные паразиты, достаточно примитивно устроенные, которые могут заражать клетки и вызывать заболевания. Но это определение не отражает сути вирусов.

Чтобы понять биологическую сущность вирусов, представьте себе живую клетку. Внутри нее есть разные органеллы, есть ядро. В ядре расположены хромосомы — геном, который управляет всей жизнью клетки. Их строго определенное количество, которое удваивается, когда клетка делится. Но представьте, что в этой клетке, помимо ее собственных хромосом, вдруг откуда-то появились другие хромосомы — одна или несколько — и начинают вести себя по-хозяйски: не считаются с теми программами, которые заложены в самой клетке, а синтезируют собственные белки. А потом выходят из клетки, чтобы искать себе нового хозяина.

Вирусы можно охарактеризовать как некие автономные геномы, которые не имеют собственной клетки и способны существовать какое-то время во внешней среде в виде вирионов — состояния, при котором геном вируса упакован в капсид (белковую оболочку. — Прим. ред.). Этим вирусы принципиально отличаются от клеточной жизни.
Мы не можем назвать их организмами, потому что у них нет органов или органелл. Но это живые существа.

— Если у них нет органелл, значит, они не могут участвовать в энергетическом обмене? Вне клетки они пассивны?

— Да. С точки зрения биологии основная жизнь вируса, основные связанные с ним эволюционные события происходят именно в клетке.

— Вирусы могут заражать любые клетки? В том числе бактерии?

— Все виды клеток, все виды организмов, существующие на Земле, имеют свои наборы вирусов, которые их инфицируют.

— Как появились вирусы?

— Происхождение вирусов неразрывно связано с происхождением жизни на Земле. Согласно абиогенной теории, на Земле зародились первые самореплицирующиеся молекулы — протогеномы, которые дальше эволюционировали в двух направлениях: одни пошли по пути обособления от окружающей среды и стали формировать клетки, а другие начали выступать в роли паразитических протогеномов, которые используют для жизни чужие клетки, хотя и могут выйти из них в окружающую среду в составе капсида.

Это две отдельные ветви жизни, но они тесно связаны между собой. Вирусам нужны клетки, потому что только внутри клетки вирусы могут реплицироваться. Но и вирусы нужны клеткам: без вирусов немыслима эволюция, потому что они, начиная с самых ранних этапов эволюции клеточной жизни, были своего рода переносчиками геномов.

— Чем отличаются вирусы друг от друга?

— Вирусы — это вообще самые разнообразные живые существа на Земле.

Геном любой клетки представлен двухцепочечной ДНК, которая упакована в хромосомы, и только. У вирусов геном представлен во всех мыслимых и немыслимых формах. Это может быть такая же двухцепочечная ДНК в линейной хромосоме, или двухцепочечная ДНК в кольцевой хромосоме, или одноцепочечная ДНК, или РНК, также линейная или кольцевая, положительно или отрицательно полярная.

Все возможные формы генома, которые мы только можем себе представить, присутствуют в вирусном мире.

— Мы говорили о том, что для каждой клетки найдется какой-нибудь вирус. А как вирусы переходят от одних видов к другим? Могут ли от бактерий переходить к ядерным клеткам?

— Нет, вирусы из бактерий не могут перейти к эукариотам: это слишком далекие с точки зрения эволюции организмы. Если говорить о человеке, то к нам вирусы пришли от животных при близких контактах, например при одомашнивании. Все человеческие вирусы, которые мы знаем, — бывшие зоонозы. Оспу мы, судя по всему, получили от верблюдов, корь — от собак, коронавирус — от летучих мышей.

— А как же версия, что от змей?

— Это недостоверная информация, она с самого начала была сомнительной.

— Были еще новости, что родиной коронавируса стал рынок морепродуктов.

— Рынок морепродуктов мог быть тем местом, где были инфицированы первые заболевшие. Но это не значит, что сами морепродукты — источник этого заражения: мы с ними эволюционно все-таки очень разные.

Когда в 2002 году возникла первая эпидемия SARS, изначально в качестве источника подозревали цивет (хищные млекопитающие семейства виверровых, распространены в тропиках Старого Света. — Прим. ред.). Но потом начали обследовать виды животных, обитающих в районе вспышки, и в конце концов обнаружили, что очень похожие вирусы крайне активно циркулируют в летучих мышах. Буквально пара мутаций в поверхностном белке, который связывается с клеточными рецепторами, — и этого оказывается достаточно, чтобы такой вирус мог уже инфицировать человека.

В Китае найдены пещеры, где живут большие популяции подковоносых летучих мышей. И в этих популяциях циркулирует множество вариантов коронавируса, некоторые из которых — один или два — могут иметь такие мутации.


— Давно ли коронавирус перешел к человеку?

— Вообще с 1960-х годов, когда были открыты первые коронавирусы (сначала стало известно о двух таких вирусах, потом это число выросло до четырех), было понятно, что они просто циркулируют у нас в популяции и вызывают обыкновенные ОРВИ.

— И у популяции не возникает иммунитета?

— Какой-то возникает. Но, во-первых, насколько он стойкий? Как долго держится: полгода, год? А во-вторых, вирус тоже немного меняется, изменяет свои антигенные эпитопы, что позволяет ему избегать иммунного ответа.

— Как выглядит этот иммунный ответ?

— Вирусный патогенез достаточно сложная вещь, в нем действует множество факторов. Если клетка понимает, что она инфицирована (например, детектирует внедрение двухцепочечной РНК, которой в обычном состоянии у нее нет), она включает механизмы самоуничтожения — например, уходит в апоптоз или экспонирует антигены вируса на поверхность, чтобы ее заметил и убил Т-лимфоцит. Одновременно она продуцирует интерферон и тем самым подает сигналы всем окружающим клеткам, чтобы они немедленно прекратили синтез вообще любых белков.

Как только иммунная система идентифицирует чужеродный антиген или получает от зараженной клетки такой сигнал, возникает воспаление, повышается температура. Собственно, воспаление легких и есть проявление иммунного ответа, направленного на борьбу с вирусом.

— То есть если у человека слабый иммунитет, у него меньше вероятность заболеть воспалением легких?

— Реакция организма должна быть сбалансированной: сначала должны подействовать провоспалительные факторы, а потом их действие должно быть уравновешено противовоспалительными. Пожилой человек может скончаться от воспаления легких не потому, что иммунная система дает неправильный ответ, а потому, что этот ответ не сбалансирован.

— Могут ли эти вирусы, которые циркулируют у нас в популяции, мутировать в более тяжелую форму?

— Обычно бывает наоборот: когда появляется какая-то новая тяжелая форма, она со временем, по мере распространения, становится более легкой: приспосабливается к человеку, а человек к ней. С эволюционной точки зрения убивать хозяина — самоубийство для вируса. Самые высокопатогенные вирусы — каких-нибудь геморрагических лихорадок, птичьего гриппа и тому подобного — имеют смертность не выше 60%, и то только на первых этапах взаимодействия с человеком. Самый лучший вариант для вируса — вызывать какое-то легкое заболевание, сопровождаемое выделением жидкости, чтобы вы, когда чихаете, помогали ему распространяться.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции