Известно что вирус гриппа нарушает синтез фермента

Кирилл Стасевич, биолог

Как показывают опросы, 46% наших соотечественников полагают, что вирусы можно убить антибиотиками.

Какие слабые места антибиотики находят у бактерий?

Во-первых, клеточная стенка. Любой клетке нужна какая-то граница между ней и внешней средой — без этого и клетки-то никакой не будет. Обычно границей служит плазматическая мембрана — двойной слой липидов с белками, которые плавают в этой полужидкой поверхности. Но бактерии пошли дальше: они кроме клеточной мембраны создали так называемую клеточную стенку — довольно мощное сооружение и к тому же весьма сложное по химическому строению. Для формирования клеточной стенки бактерии используют ряд ферментов, и если этот процесс нарушить, бактерия с большой вероятностью погибнет. (Клеточная стенка есть также у грибов, водорослей и высших растений, но у них она создаётся на другой химической основе.)

Во-вторых, бактериям, как и всем живым существам, надо размножаться, а для этого нужно озаботиться второй копией

Третья мишень антибиотиков — это трансляция, или биосинтез белка. Известно, что ДНК хорошо подходит для хранения наследственной информации, но вот считывать с неё информацию для синтеза белка не очень удобно. Поэтому между ДНК и белками существует посредник — матричная РНК. Сначала с ДНК снимается РНК-копия, — этот процесс называется транскрипцией, а потом на РНК происходит синтез белка. Выполняют его рибосомы, представляющие собой сложные и большие комплексы из белков и специальных молекул РНК, а также ряд белков, помогающих рибосомам справляться с их задачей.

Например, клеточная стенка бактерий — мишень для хорошо известного антибиотика пенициллина: он блокирует ферменты, с помощью которых бактерия осуществляет строительство своей внешней оболочки. Если применить эритромицин, гентамицин или тетрациклин, то бактерии перестанут синтезировать белки. Эти антибиотики связываются с рибосомами так, что трансляция прекращается (хотя конкретные способы подействовать на рибосому и синтез белка у эритромицина, гентамицина и тетрациклина разные). Хинолоны подавляют работу бактериальных белков, которые нужны для распутывания нитей ДНК; без этого ДНК невозможно правильно копировать (или реплицировать), а ошибки копирования ведут к гибели бактерий. Сульфаниламидные препараты нарушают синтез веществ, необходимых для производства нуклеотидов, из которых состоит ДНК, так что бактерии опять-таки лишаются возможности воспроизводить свой геном.

Почему же антибиотики не действуют на вирусы?

Что произойдёт, если к клеткам с вирусной инфекцией добавить, например, антибиотик, прерывающий процесс образования клеточной стенки? Никакой клеточной стенки у вирусов нет. И потому антибиотик, который действует на синтез клеточной стенки, ничего вирусу не сделает. Ну а если добавить антибиотик, который подавляет процесс биосинтеза белка? Всё равно не подействует, потому что антибиотик будет искать бактериальную рибосому, а в животной клетке (в том числе человеческой) такой нет, у неё рибосома другая. В том, что белки и белковые комплексы, которые выполняют одни и те же функции, у разных организмов различаются по структуре, ничего необычного нет. Живые организмы должны синтезировать белок, синтезировать РНК, реплицировать свою ДНК, избавляться от мутаций. Эти процессы идут у всех трёх доменов жизни: у архей, у бактерий и у эукариот (к которым относятся и животные, и растения, и грибы), — и задействованы в них схожие молекулы и надмолекулярные комплексы. Схожие — но не одинаковые. Например, рибосомы бактерий отличаются по структуре от рибосом эукариот из-за того, что рибосомная РНК немного по-разному выглядит у тех и других. Такая непохожесть и мешает антибактериальным антибиотикам влиять на молекулярные механизмы эукариот. Это можно сравнить с разными моделями автомобилей: любой из них довезёт вас до места, но конструкция двигателя может у них отличаться и запчасти к ним нужны разные. В случае с рибосомами таких различий достаточно, чтобы антибиотики смогли подействовать только на бактерию.

До какой степени может проявляться специализация антибиотиков? Вообще, антибиотики изначально — это вовсе не искусственные вещества, созданные химиками. Антибиотики — это химическое оружие, которое грибы и бактерии издавна используют друг против друга, чтобы избавляться от конкурентов, претендующих на те же ресурсы окружающей среды. Лишь потом к ним добавились соединения вроде вышеупомянутых сульфаниламидов и хинолонов. Знаменитый пенициллин получили когда-то из грибов рода пенициллиум, а бактерии стрептомицеты синтезируют целый спектр антибиотиков как против бактерий, так и против других грибов. Причём стрептомицеты до сих пор служат источником новых лекарств: не так давно исследователи из Северо-Восточного университета (США) сообщили о новой группе антибиотиков, которые были получены из бактерий Streptomyces hawaiensi, — эти новые средства действуют даже на те бактериальные клетки, которые находятся в состоянии покоя и потому не чувствуют действия обычных лекарств. Грибам и бактериям приходится воевать с каким-то определённым противником, кроме того, необходимо, чтобы их химическое оружие было безопасно для того, кто его использует. Потому-то среди антибиотиков одни обладают самой широкой антимикробной активностью, а другие срабатывают лишь против отдельных групп микроорганизмов, пусть и довольно обширных (как, например, полимиксины, действующие только на грамотрицательные бактерии).

Более того, существуют антибиотики, которые вредят именно эукариотическим клеткам, но совершенно безвредны для бактерий. Например, стрептомицеты синтезируют циклогексимид, который подавляет работу исключительно эукариотических рибосом, и они же производят антибиотики, подавляющие рост раковых клеток. Механизм действия этих противораковых средств может быть разным: они могут встраиваться в клеточную ДНК и мешать синтезировать РНК и новые молекулы ДНК, могут ингибировать работу ферментов, работающих с ДНК, и т. д., — но эффект от них один: раковая клетка перестаёт делиться и погибает.

Возникает вопрос: если вирусы пользуются клеточными молекулярными машинами, то нельзя ли избавиться от вирусов, подействовав на молекулярные процессы в заражённых ими клетках? Но тогда нужно быть уверенными в том, что лекарство попадёт именно в заражённую клетку и минует здоровую. А эта задача весьма нетривиальна: надо научить лекарство отличать заражённые клетки от незаражённых. Похожую проблему пытаются решить (и небезуспешно) в отношении опухолевых клеток: хитроумные технологии, в том числе и с приставкой нано-, разрабатываются для того, чтобы обеспечить адресную доставку лекарств именно в опухоль.

Что же до вирусов, то с ними лучше бороться, используя специфические особенности их биологии. Вирусу можно помешать собраться в частицу, или, например, помешать выйти наружу и тем самым предотвратить заражение соседних клеток (таков механизм работы противовирусного средства занамивира), или, наоборот, помешать ему высвободить свой генетический материал в клеточную цитоплазму (так работает римантадин), или вообще запретить ему взаимодействовать с клеткой.

Вирусы не во всём полагаются на клеточные ферменты. Для синтеза ДНК или РНК они используют собственные белки-полимеразы, которые отличаются от клеточных белков и которые зашифрованы в вирусном геноме. Кроме того, такие вирусные белки могут входить в состав готовой вирусной частицы. И антивирусное вещество может действовать как раз на такие сугубо вирусные белки: например, ацикловир подавляет работу ДНК-полимеразы вируса герпеса. Этот фермент строит молекулу ДНК из молекул-мономеров нуклеотидов, и без него вирус не может умножить свою ДНК. Ацикловир так модифицирует молекулы-мономеры, что они выводят из строя ДНК-полимеразу. Многие РНК-вирусы, в том числе и вирус СПИДа, приходят в клетку со своей РНК и первым делом синтезируют на данной РНК молекулу ДНК, для чего опять же нужен особый белок, называемый обратной транскриптазой. И ряд противовирусных препаратов помогают ослабить вирусную инфекцию, действуя именно на этот специфический белок. На клеточные же молекулы такие противовирусные лекарства не действуют. Ну и наконец, избавить организм от вируса можно, просто активировав иммунитет, который достаточно эффективно опознаёт вирусы и заражённые вирусами клетки.

Итак, антибактериальные антибиотики не помогут нам против вирусов просто потому, что вирусы организованы в принципе иначе, чем бактерии. Мы не можем подействовать ни на вирусную клеточную стенку, ни на рибосомы, потому что у вирусов ни того, ни другого нет. Мы можем лишь подавить работу некоторых вирусных белков и прервать специфические процессы в жизненном цикле вирусов, однако для этого нужны особые вещества, действующие иначе, нежели антибактериальные антибиотики.

Очевидно, различия между бактериальными и эукариотическими молекулами и молекулярными комплексами, участвующими в одних и тех же процессах, для ряда антибиотиков не так уж велики и они могут действовать как на те, так и на другие. Однако это вовсе не значит, что такие вещества могут быть эффективны против вирусов. Тут важно понять, что в случае с вирусами складываются воедино сразу несколько особенностей их биологии и антибиотик против такой суммы обстоятельств оказывается бессилен.

Впрочем, главный побочный эффект от антибиотиков связан как раз с тем, что они вредят мирной желудочно-кишечной микрофлоре. Антибиотики обычно не различают, кто перед ними, мирный симбионт или патогенная бактерия, и убивают всех, кто попадётся на пути. А ведь роль кишечных бактерий трудно переоценить: без них мы бы с трудом переваривали пищу, они поддерживают здоровый обмен веществ, помогают в настройке иммунитета и делают много чего ещё, — функции кишечной микрофлоры исследователи изучают до сих пор. Можно себе представить, как чувствует себя организм, лишённый компаньонов-сожителей из-за лекарственной атаки. Поэтому часто, прописывая сильный антибиотик или интенсивный антибиотический курс, врачи заодно рекомендуют принимать препараты, которые поддерживают нормальную микрофлору в пищеварительном тракте пациента.


Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45


585. При биохимическом исследовании в крови пациента обнаружили резкое повышение активности АСТ и АЛТ. Коэффициент де Ритиса равен 4,25.

1. Какое заболевание можно предположить у обследуемого?

2. Активность каких ещё ферментов в сыворотке крови данного пациента будет повышена?

Ответ:Инфаркт миокарда, так как коэффициент де Ритиса выше нормы. Также будет повышена активность креатинкиназы и изофермента ЛДГ1 .

586. У больного с заболеванием печени содержание мочевины в кровисоставляет 2 мкмоль/л, за сутки с мочой выведено 13 г мочевины.

1. О нарушении какой функции печени идет речь?

2. Какие ферменты нужно исследовать для проверки данного предположения?

Ответ:Речь идет о мочевинообразующей функции печени. Надо посмотреть активность аргиназы или любого другого фермента, участвующего в синтезе мочевины, поскольку этот процесс органоспецифический

587. При тяжелых вирусных гепатитах у больных может развиться печёночная кома, обусловленная, в частности, токсическим действием аммиака на клетки мозга. Какова причина столь значительного накопления аммиака в крови?

Для обоснования ответа вспомните:

1. Что происходит с аммиаком в печени здорового человека?

2. Напишите схему этого процесса.

Ответ:При вирусном гепатите нарушаются функции гепатоцитов. Синтез мочевины тормозится, что приводит к накоплению аммиака.

588. При изготовлении сыра для быстрого створаживания молока к нему добавляют очищенный желудочный сок телят. С какой целью?

1. Назовите ферменты, участвующие в переваривании белков, в каких отделах ЖКТ они вырабатываются?

2. Чем отличается переваривание белков у детей и взрослых?

Ответ:Желудочный сок телят содержит фермент химозин, створаживающий белки молока.

589. Ребенок двухлетнего возраста поступил в больницу с явлениями отсталости умственного развития. При исследовании мочи выявлено наличие фенилпировиноградной кислоты. Какую пищу должен принимать ребенок и почему?

1. Напишите схему обмена соответствующей аминокислоты ферментами.

2. С чем связано появление в мозге ребенка фенилпировиноградной кислоты?

Ответ:У ребенка фенилкетонурия. Назначается диета богатая тирозином, но бедная фенилаланином.

590. При исследовании мочи новорожденного обнаружена фенилпировиноградная кислота. О каком заболевании может идти речь? Возможен ли благоприятный исход при своевременном вмешательстве врача?

1. Напишите схему обмена фенилаланина.

2. Какое заболевание возникает при нарушении обмена фенилаланина?

3. Какова причина данного заболевания?

Ответ:Заболевание фенилкетонурия. Благоприятный исход возможен, при переводе на искусственное вскармливание.

1. Обмен какой аминокислоты нарушен при данном заболевании?

2. Напишите схему соответствующего процесса.

Ответ:Вследствие генетического дефекта гомогентизинотоксидазы происходит накопление гомогентизиновой кислоты, которая полимеризуется в пигмент черного цвета алкаптон.

592. У грудного ребенка наблюдается окрашивание пелёнок в голубой цвет. С чем это может быть связано?

1. Назовите конечные продукты переваривания белков.

2. Как происходит их всасывание?

3. Какова судьба не всосавшихся в тонком кишечнике аминокислот?

Ответ:Голубое окрашивание пелёнки является результатом нарушения всасывания в кишечнике аминокислоты триптофана. Не всосавшийся триптофан превращается кишечной микрофлорой виндикан, который при контакте с воздухом приобретает голубую окраску

593. Новорожденный пятого дня жизни отказывается от пищи, голос становится высокого тона, выявляется утрата сухожильных рефлексов, плавающее движение глаз, моча и слюна ребенка имеют специфический запах. Как называется данная патология? С нарушением каких биохимических процессов она связана?

1. Вспомните, какие аминокислоты с разветвленной цепью вам известны?

2. Напишите схему дезаминирования этих аминокислот.

3. Укажите фермент, дефект которого выявляется при данной патологии.

594. У пациента, перенесшего гепатит, определяли активность АСТ и АЛТ в крови. Активность какого фермента увеличивается в наибольшей степени и почему. Для ответа:

1. Напишите реакции, которые катализируют эти ферменты.

2. Объясните значение этих реакций в метаболизме аминокислот.

3. Перечислите основные принципы, лежащие в основе энзимодиагностики.

Ответ:В большей степени увеличивается активность АЛТ, так как фермент является органоспецифичным.

595. Известно, что вирус гриппа нарушает синтез фермента карбамоилфосфатсинтетазы I. При этом у детей возникает рвота, головокружение, судороги, возможна потеря сознания. Укажите причину наблюдаемых симптомов. Для этого:

1. Напишите схему орнитинового цикла.

2. Какую реакцию катализируеткарбамоилфосфатсинтетаза I?

3. Концентрация каких веществ в крови при этом увеличится?

Ответ:Происходит накопление аммиака, который является токсичным для ЦНС.

596. Известно наследственное заболевание цитруллинемия, которое проявляется у детей тяжелой рвотой, нарушением сознания, судорогами. В крови обнаруживается значительное количество цитруллина. С чем это связано? Для ответа:

1. Напишите схему реакций орнитинового цикла, на схеме укажите место ферментативного блока.

2. Напишите реакцию, которая будет блокирована при данной патологии.

3. Какую диету можно порекомендовать таким больным?

Аргининосукцинат синтет. Лиаза

597. У больного в крови содержание мочевой кислоты составляет 1 ммоль/л, содержание креатинина - 130 мкмоль/л. Какое заболевание можно предположить у данного больного?

Для обоснования ответа вспомните:

1. Что такое мочевая кислота? Из чего она образуется?

2. Что такое креатинин? Из чего он образуется?

3. Сравните данные показатели с нормой.

Ответ:Поскольку содержание мочевой кислоты и креатитина в крови больного значительно выше нормы, можно предположить нарушение почечной фильтрации.

598. Для лечения подагры используется аллопуринол. Почему в результате лечения образуются ксантиновые камни?

Для обоснования ответа вспомните:

1. Что такое подагра?

2. На чем основано применение аллопуринола?

3. Из чего образуется ксантин?

Ответ:Степень растворимости ксантина на порядок выше, чем у мочевой кислоты, но при увеличении его концентрации вследствие торможения активности ксантиноксидазы аллопуринолом могут образовываться ксантиновые камни.

599. При лейкозах, злокачественных новообразованиях, голодании увеличивается содержание мочевой кислоты в крови и моче. Объясните, почему это происходит.

Для ответа вспомните:

1. Продуктом какого процесса является мочевая кислота?

2. Напишите ход реакций данного процесса.

Ответ:Резко повышается уровень свободных пуриновых азотистых оснований, которые в ходе своего катаболизма превращаются в мочевую кислоту.

600. При наследственной оротацидурии за сутки с мочой выводится до 1,5 г оротовой кислоты. С чем это связано?

Для ответа вспомните:

1. Метаболитом какого процесса является оротовая кислота?

2. Недостаточная активность какого фермента приводит к ее накоплению?

Ответ:Уридин, который легко превращается в УМФ и далее в ЦМФ и ТМФ.

601. В клетке имеется несколько десятков разных тРНК и несколько десятков тысяч мРНК. Чем объясняется такое различие в количестве разных типов нуклеиновых кислот?

Для обоснования ответа вспомните:

1. Какие виды РНК вы знаете?

2. Каковы их функции?

Ответ:Количественные различия связаны с разными функциями тРНК и мРНК.

602. В препаратах ДНК, выделенных из двух видов бактерий, содержание аденина составляет, соответственно, 32 и 17% от общего содержания азотистых оснований. Одна из бактерий была выделена из горячего источника (65°С).

1. Какие относительные количества гуанина, тимина и цитозина содержатся в этих препаратах ДНК?

2. Какая из ДНК принадлежит термофильной бактерии?

Ответ: По правилам комплементарности содержание тимина будет равно содержанию аденина, а содержание гуанина и цитозина равно половине оставшихся на их долю нуклеотидов. Термофильной будет та бактерия, в которой больше содержание аденина и тимина.

603. ДНК бактериофага имеет следующий состав: аденин-23%, гуанин-21%, тимин-36%, цитозин-20%. Какой можно сделать вывод о вторичной структуре ДНК?

Для обоснования ответа вспомните:

1. Какие азотистые основания относятся к пуриновым, а какие к пиримидиновым?

2. Какие азотистые основания являются комплементарными?

Ответ:Вирусная ДНК представлена одной цепью, что и подтверждается содержанием нуклеотидов.

604. В процессе эволюции молекула ДНК сформировалась как двойная спираль. Почему?

Для обоснования ответа вспомните:

1. Как построена двойная спираль ДНК?

2. Какие функции выполняет ДНК?

Ответ:Двойная спираль служит дополнительной страховкой для сохранения генетического материала.

При добавлении АТФ к гомогенату мышечной ткани скорость гликолиза снизилась

Если препарат скелетной мышцы обработан йодацетатом, то мышца не сокращается

Будет ли протекать глюконеогенез, если ЦТК и ЦПЭ полностью ингибированы?

В эксперименте к клеточному гомогенату печени добавили авидин

Концентрация лактата в крови не равна нулю даже в состоянии покоя.

В эксперименте изучили превращения глюкозы в рибозо-5-фосфат окислительным путем

У больных гиперлипопротеинемией

У больного длительно нарушен отток желчи

В моче больного обнаружены кетоновые тела.

У мальчика 4 лет снижена способность к выполнению физической работы.

У животного определяли разницу в концентрации жирных кислот в крови

Воздействие токсических веществ может привести к развитию ожирения печени.

при голодании состоянию гипоглекимии сопутствует кетонемия

При атеросклерозе и образование тромба назначают аспирин .

У некоторых людей после аспирина может развиться приступ астмы

Пациент А -высококалорийная пища, пациент Б – низкокалорийная пища

Объясните различия в обмене жиров у двух людей

У людей,болеющих сахарным диабетом, может развиться ацидоз

Диета с пониженным кол-вом углеводов и жиров при гиперхолестеролемии

В крови двух пациентов содержание общего холестерола составляют 260 мг/дл.

Каковы различия в обмене холестерола у вегетарианцев и норм людей

Известно, что вирус гриппа нарушает синтез фермента карбамоилфосфатсинтетазы

При наследственном заболевании аргининосукцинутрии

Объясните, каковы причины повторяющейся рвоты, если высокая концентрация цитруллина

Пациенты с наследственными нарушениями орнитинового цикла

При мегалобластной и других анемиях назначают витамин В 9

Объясните, почему сульфаниламидные п. оказывают антибак. действие

Аминокислота метионин используется как лекарственный препарат

У больного ребенка обнаружили повышенное содержание фенилпирувата в моче

У ребенка наблюдается потемнение мочи при контакте с воздухом

При дефиците витамина В 6 у детей, могут возникнуть поражения нервной системы

Витамин В 6 часто назначают при паркинсонизме, невритах

Пациенту с болезнью Паркинсона назначили препарат ипраниазид

Метотрексат – является эффективным противоопухолевым препаратом

В химиотерапии опухолей применяют аналог глутамина – антибиотик азасерин

У детей с синдромом Леша-Нихена наблюдается тяжелая форма гиперурикемии

аналог Тимина – 5-фторурацил оказывает сильное цитостатическое действие

После серьезной травмы больная не принимала пищу в течении 3 дней.

Больному инсулинзависимым сахарным диабетом была назначена диета

При обследовании больного с подозрением на диабет была определена толерантность к глюкозе

Для лечения инфекционного полиартрита больной получал преднизолон

Турист в жаркий день не мог найти источник питьевой воды

В терапевтическое отделение поступил пациент с жалобами на рвоту и диарею

Суточный объем мочи 4,5 л, относительная плотность 1,004 (норма 1,020

У больного обнаружены гипертензия, пониженная концентрация калия в крови

Больной обратился в мед центр с жалобами на отсутствие аппетита и тошноту

Больной обратился с жалобами на головную боль и повышенное АД

У 4-месячного ребенка явно выражены явления рахита

Гиперпаратиреоидизм – заболевание, в основе которого лежит гиперпродукция паратгормона.

Известно, что интенсивная физическая работа вызывает жажду.

Почему у больных при лечении глюкокортикостероидами развивается гипокортицизм

барбитураты являются индукторами синтеза аминолевулинатсинтетазы и аминолевулинатдегидратазы.

При недостаточности железа развивается железодефицитная анемия

В крови пациента обнаружена повышенная концентрация билирубинглюкуронида.

В крови обнаружена повышенная концентрация неконъюгированного билирубина.

У новорожденного повышено содержание непрямого билирубина

У мальчика 2 лет явления энцефалопатии сопровождает постоянная желтуха

У больного с желтушностью склеры и кожи обнаружен наследственный дефект белков мембраны эритроцитов.

При недостаточности глюкозо-6-фосфатдегидрогеназы прием лекарств вызывает гемолиз эритроцитов.

При генетическом дефекте пируваткиназы(анаэроб глик) у больных наблюдается гемолиз эритроцитов

Дикумарол и варфарин являются аналогами витамина К и применяется как антикоагулянты

В отсутствие ионов Ca 2+ кровь не свертывается

Инфаркт миокарда, травмы и хирургические вмешательства могут сопровождаться тромбозами.

При наследственном дефиците протеина С возможны венозный тромбоз и легочная эмболия

Одно из клинических проявлений цинги – кровоизлияние

Коллагеновые фибриллы укрепляются внутри- и межцепочечными ковалентными сшивками

При сахарном диабете меняется скорость синтеза протеогликанов

В процессе заживления ран образуются соединительнотканные рубцы.

Противовирусные препараты — соединения природного или синтетического происхождения, применяющиеся для лечения и профилактики вирусных инфекций. Действие многих из них избирательно направлено на различные стадии развития вирусной инфекции и жизненного цикла вирусов.

В настоящее время известно более 500 вирусов, возбудителей заболеваний человека. Вирусы содержат одно- или двухцепочечную рибонуклеиновую кислоту (РНК) или дезоксирибонуклеиновую кислоту (ДНК), заключенную в белковую оболочку — капсид. У некоторых из них есть и внешняя оболочка из липопротеидов. Многие вирусы содержат ферменты или гены, обеспечивающие репродукцию в клетке-хозяине. В отличие от бактерий у вирусов нет собственного обмена веществ: они используют метаболические пути клетки-хозяина.

РНК-содержащие вирусы или синтезируют матричную РНК (мРНК), или сама РНК выполняет функцию мРНК. На ней синтезируются вирусные белки, в том числе РНК-полимераза, при участии которой образуется мРНК вируса. Транскрипция генома некоторых РНК-содержащих вирусов осуществляется в ядре клетки-хозяина. Под действием обратной транскриптазы ретровирусов на основе вирусной РНК синтезируется комплементарная ей ДНК (провирус), которая встраивается в геном клетки-хозяина. В дальнейшем при транскрипции образуется как клеточная РНК, так и мРНК вируса, на которой синтезируются вирусные белки для сборки новых вирусов. Вирусы и заболевания, которые ими вызываются, отражены в табл. 1.

На стадии заражения вирус адсорбируется на клеточной мембране и проникает в клетку. В этот период применяются препараты, нарушающие этот процесс: растворимые ложные рецепторы, антитела к мембранным рецепторам, ингибиторы слияния вируса с клеточной мембраной.

На следующем этапе начинается внутриклеточный синтез вирусных компонентов. На этом этапе эффективны ингибиторы вирусных ДНК-полимераз, РНК-полимераз, обратной транскриптазы, геликазы, праймазы, интегразы. На трансляцию вирусных белков действуют интерфероны (ИФН), антисмысловые олигонуклеотиды, рибозимы и ингибиторы регуляторных белков. На протеолитическое расщепление воздействуют ингибиторы протазы.

ИФН и ингибиторы структурных белков активно воздействует на сборку вируса.

Заключительный этап репликационного цикла включает выход дочерних вирионов из клетки и гибель инфицированной клетки-хозяина. На этом этапе эффективны ингибиторы нейраминидазы, противовирусные антитела и цитотоксические лимфоциты.

Существуют различные классификации противовирусных средств. В данной статье представлена классификация по воздействию на тот или иной вирус (табл. 2).

Рассмотрим противогриппозные и противогерпетические препараты.

Классификация противовирусных препаратов, разрешенных к применению на территории России.

  • руппа противогриппозных препаратов:
    – Амантадин;
    – Арбидол;
    – Осельтамивир;
    — Римантадин.
  • Препараты, действующие на герпесвирусы:
    – Алпизарин;
    – Ацикловир;
    – Бонафтон;
    – Валацикловир;
    – Ганцикловир;
    – Глицирризиновая кислота;
    – Идоксуридин;
    – Пенцикловир;
    – Риодоксол;
    – Теброфен;
    – Тромантадин;
    – Фамцикловир;
    – Флореналь.
  • Антиретровирусные препараты:
    – Абакавир;
    – Ампренавир;
    – Атазанавир;
    – Диданозин;
    – Залцитабин;
    – Зидовудин;
    – Индинавира сульфат;
    – Ламивудин;
    – Нелфинавир;
    – Ритонавир;
    – Саквинавир;
    – Ставудин;
    – Фосфазид;
    – Эфавиренз.
  • Другие противовирусные препараты:
    – Инозин пранобекс;
    – Интерферон альфа;
    – Интерферон альфа-2;
    – Интерферон альфа-2b;
    – Интерферон бета-1а;
    – Интерферон бета-1b;
    – Йодантипирин;
    – Рибавирин;
    – Тетраоксо-тетрагидронафталин (Оксолин);
    – Тилорон;
    – Флакозид.

Арбидол — производное индолкарбоновой кислоты. Механизм действия препарата складывается из подавления репродукции вируса гриппа, влияния на синтез ИФН, повышения количества Т-лимфоцитов и функциональной активности макрофагов, а также антиоксидантного эффекта.

Препарат проникает в неизмененном виде как в незараженные, так и в зараженные клетки и определяется в ядерной и цитоплазматической фракциях. Арбидол ингибирует процесс слияния липидной вирусной оболочки с мембранами эндосом (при рН 7,4), приводящий к высвобождению вирусного генома и началу транскрипции. В отличие от амантадина и римантадина, Арбидол ингибирует освобождение самого нуклеокапсида от наружных белков, нейраминидазы и липидной оболочки. Таким образом, Арбидол действует на ранних стадиях вирусной репродукции.

У препарата отсутствует штаммовая специфичность (в культурах клеток он подавляет репродукцию вируса гриппа А на 80%, вируса гриппа В — на 60% и вируса гриппа С — на 20%, а также воздействует и на вирус птичьего гриппа, однако слабее, чем на репродукцию человеческих штаммов вируса гриппа).

Синтез ИФН нарастает, начиная с приема 1 таблетки до 3 таблеток. Однако дальнейшего увеличения уровня ИФН при приеме Арбидола не наблюдается. Быстрое нарастание синтеза ИФН может оказывать профилактическое действие при приеме препарата до начала заболевания гриппом.

Арбидол оказывает иммуномодулирующее действие, приводя к повышению общего количества Т-лимфоцитов и Т-хелперов. Причем нормализация данных показателей наблюдалась у пациентов с исходно сниженным числом CD3- и CD4-клеток, а у лиц с нормальным функционированием клеточного звена иммунитета практически отсутствовали изменения количества Т-лимфоцитов и Т-хелперов. При этом применение Арбидола не ведет к существенному снижению абсолютного числа Т-супрессорных лимфоцитов — таким образом, стимулирующая активность препарата не связана с угнетением функции супрессорных клеток. Арбидол увеличивает общее число макрофагов с поглощенными бактериями и фагоцитарное число. Предполагается, что активирующими стимулами для фагоцитарных клеток явились цитокины и, в частности, ИФН, продукция которого усиливается под воздействием препарата. Увеличивается также содержание натуральных киллеров — NK-клеток, что позволяет характеризовать препарат как индуктор активности естественных киллеров.

Препарат быстро всасывается из желудочно-кишечного тракта (ЖКТ). Т1/2 составляет 16–21 ч. Экскретируется в неизмененном виде с калом (38,9%) и мочой (0,12%). В течение первых суток выводится 90% введенной дозы.

Лекарственные взаимодействия Арби­дола с другими лекарственными препаратами в литературе не описаны.

Практически единственными побочными эффектами препарата являются аллергические реакции. Препарат разрешен к применению с 2-летнего возраста.

Арбидол обладает достаточно широким спектром противовирусного действия и используется для профилактики и лечения гриппа типов А и В, в том числе осложненного бронхитом и пневмонией; острых респираторных заболеваний (ОРВИ); хронического бронхита, пневмонии, рецидивирующей герпетической инфекции; в послеоперационном периоде — для нормализации иммунного статуса и профилактики осложнений.

Амантадин и римантадин — производные адамантана. Оба препарата даже в малых дозах подавляют репродукцию вируса А. Их противовирусная активность обусловлена двумя механизмами.

Во-вторых, они могут действовать и на этапе сборки вируса, по-видимому, за счет изменения процессинга гемагглютинина. Этот механизм возможен у некоторых штаммов вирусов.

Среди диких штаммов устойчивость к препаратам возникает редко, однако от больных, принимающих их, получают устойчивые штаммы. Чувствительность и устойчивость вирусов к амантадину и римантадину перекрестная.

Оба препарата хорошо всасываются при приеме внутрь, имеют большой объем распределения. Большая часть амантадина выводится с мочой в неизмененном виде. Период полувыведения (Т1/2) у молодых людей составляет 12–18 ч, у пожилых возрастает почти вдвое, а при почечной недостаточности увеличивается еще больше. Поэтому дозу препарата необходимо уменьшать даже при незначительном изменении функции почек. Римантадин активно метаболизируется в печени, Т1/2 в среднем составляет 24–36 ч, 60–90% препарата выводится с мочой в виде метаболитов.

При приеме обоих препаратов наиболее часто отмечают незначительные дозозависимые нарушения со стороны ЖКТ (тошнота, снижение аппетита) и центральной нервной системы (ЦНС) (раздражительность, бессонница, нарушение концентрации внимания). При приеме высоких доз амантадина возможно значительное нейротоксическое действие: спутанность сознания, галлюцинации, эпилептические припадки, кома (эти эффекты могут усиливаться при одновременном приеме Н1-блокаторов, М-холиноблокаторов, психотропных средств и этанола). Безопасность применения во время беременности не установлена. Разрешено применение с 7-летнего возраста.

Препараты применяются для профилактики и лечения гриппа А. Их прием во время эпидемий гриппа позволяет избежать инфекции в 70–90% случаев. У лиц с неосложненным гриппом А лечение препаратами в течение 5 дней в возрастных дозировках, начатое на ранней стадии заболевания, на 1–2 сут уменьшает длительность лихорадки и общих симптомов, ускоряет выздоровление и иногда сокращает период выделения вируса.

Осельтамивир является неактивным предшественником, который в организме превращается в активный метаболит — осельтамивира карбоксилат. Он является переходным аналогом сиаловой кислоты и избирательным ингибитором нейраминидазы вирусов гриппа А и В. Кроме того, он подавляет штаммы вируса гриппа А, устойчивые к препаратам — производным адамантана.

Нейраминидаза вируса гриппа отщепляет концевые остатки сиаловых кислот и, таким образом, разрушает рецепторы, находящиеся на поверхности клеток и новых вирусов, т. е. способствует выходу вируса из клетки по окончании репродукции. Активный метаболит осельтамивира вызывает изменения в активном центре нейраминидазы и подавляет ее активность. Происходит агрегация вирусов на поверхности клетки и замедляется их распространение.

Устойчивые штаммы вируса гриппа А обнаруживают у 1–2% больных, принимающих препарат. Устойчивых штаммов вируса гриппа В на сегодняшний день не обнаружено.

При приеме внутрь препарат хорошо всасывается. Прием пищи не влияет на его биодоступность, но снижает риск побочного действия на ЖКТ. Препарат подвергается ферментативному гидролизу в ЖКТ и печени с образованием активного метаболита. Объем распределения препарата приближается к объему жидкости в организме. Т1/2 осельтамивира и его активного метаболита составляет 1–3 и 6–10 ч соответственно. Оба соединения выводятся главным образом почками в неизмененном виде.

При приеме внутрь возможны незначительные неприятные ощущения в животе и тошнота, которые уменьшаются при приеме препарата во время еды. Желудочно-кишечные расстройства обычно проходят через 1–2 сут, даже если больной продолжает прием препарата. Клинически значимых взаимодействий осельтамивира с другими препаратами не выявлено. Препарат применяют у детей старше 1 года.

Осельтамивир применяют для лечения и профилактики гриппа. Профилактический прием осельтамивира в период эпидемий снижает заболеваемость как среди вакцинированных противогриппозной вакциной, так и среди невакцинированных. При лечении гриппа этим препаратом выздоровление наступает на 1–2 сут раньше, а количество бактериальных осложнений снижается на 40–50%.

Прежде чем перейти к обсуждению противогерпетических средств, необходимо вспомнить различные вирусы герпеса и заболевания, вызываемые ими (табл. 4). К сожалению, в арсенале современных противовирусных средств нет препаратов, действующих на все вирусы герпеса одновременно (табл. 5).

Вирус простого герпеса типа 1 вызывает поражение кожи, рта, пищевода и головного мозга, вирус простого герпеса типа 2 — поражение наружных половых органов, прямой кишки, кожи и мозговых оболочек. Первым из допущенных к применению противогерпетических препаратов был видарабин (1977). Однако ввиду высокой токсичности его применяли для лечения заболеваний, вызванных вирусом простого герпеса и Varicella–zostervirus, лишь по жизненным показаниям. С 1982 г. для лечения больных с менее тяжелым течением заболевания стали применять ацикловир.

Ацикловир — ациклический аналог гуанозина, а валацикловир — L-валиновый эфир ацикловира. Ацикловир подавляет синтез вирусной ДНК после фосфорилирования вирусной тимидинкиназой внутри зараженных клеток. Образующийся в клетке ацикловиртрифосфат встраивается в синтезируемую в клетке-хозяине цепь ДНК, что приводит к прекращению роста вирусной цепи ДНК. Молекула ДНК, в состав которой входит ацикловир, связывается с ДНК-полимеразой, необратимо инактивируя ее.

Устойчивость вируса может возникнуть в результате снижения активности вирусной тимидинкиназы и изменения вирусной ДНК-полимеразы. Изменение активности ферментов возникает в результате мутаций.

Биодоступность ацикловира при приеме внутрь составляет всего 10–30% и уменьшается с увеличением дозы. В отличие от ацикловира, биодоступность валацикловира при приеме внутрь достигает 70%. Препарат быстро и почти полностью превращается в ацикловир. Ацикловир проникает во многие биологические жидкости, в том числе в содержимое везикул при ветряной оспе, спинно-мозговую жидкость, накапливается в молоке, околоплодных водах и плаценте. Концентрация его во влагалищном содержимом колеблется в широких пределах. Сывороточная концентрация препарата у матери и новорожденного примерно одинаковы. Через кожу препарат практически не всасывается. Т1/2 ацикловира составляет в среднем у взрослых 2,5 ч, у новорожденных — 4 ч, у больных с почечной недостаточностью может увеличиваться до 20 ч. Препарат практически полностью выводится почками в неизмененном виде. При беременности фармакокинетика препаратов не меняется.

Как правило, ацикловир переносится хорошо. При применении мази на основе полиэтиленгликоля возможно раздражение слизистой половых органов и чувство жжения. При приеме внутрь препарат изредка вызывает головную боль, головокружение, сыпь и диарею. Еще реже отмечаются почечная недостаточность и нейротоксическое действие. Побочные эффекты валацикловира сходны с таковыми у ацикловира — тошнота, диарея, головная боль; высокие дозы могут вызвать спутанность сознания, галлюцинации, поражения почек и — очень редко — тромбоцитопению. При внутривенном введении больших доз ацикловира могут развиться почечная недостаточность и поражения ЦНС.

Фамцикловир сам неактивный, но при первом прохождении через печень быстро превращается в пенцикловир. Пенцикловир — это ациклический аналог гуанозина. Механизм действия препарата сходен с механизмом действия ацикловира. Как и ацикловир, пенцикловир действует главным образом на вирусы простого герпеса и Varicella–zostervirus. Устойчивость к пенциклавиру в клинике встречается редко.

В отличие от пенцикловира, биодоступность которого при приме внутрь составляет лишь 5%, фамцикловир хорошо всасывается. При приеме фамцикловира биодоступность пенцикловира возрастает до 65–77%. Прием пищи совместно с препаратом замедляет всасывание последнего, но в целом биодоступность не снижается. Объем распределения пенцикловира в 2 раза превышает объем жидкости в организме, Т1/21/2 увеличивается до 9,9 ч. Препарат легко удаляется при гемодиализе.

Переносится ацикловир хорошо, но иногда возможно возникновение головной боли, тошноты, диареи, крапивницы, а у пожилых людей — галлюцинаций и спутанности сознания. Препараты для местного применения могут вызвать контактный дерматит и изъязвления.

Безопасность препарата во время беременности, а также взаимодействие его с другими лекарственными средствами не установлена.

Ганцикловир — это ациклический аналог гуанозина. Механизм действия препарата сходен с механизмом действия ацикловира. Активен в отношении всех герпесвирусов, но наиболее эффективен в отношении цитомегаловируса.

Биодоступность ганцикловира при приме внутрь во время еды составляет 6–9% и несколько меньше при приеме натощак. Валганцикловир хорошо всасывается и быстро гидролизуется до ганцикловира, биодоступность которого возрастает до 61%. При приеме валганцикловира во время еды биодоступность ганцикловира повышается еще на 25%. При нормальной функции почек Т1/2 составляет 2–4 ч. Более 90% препарата выводится почками в неизмененном виде. При почечной недостаточности Т1/2 увеличивается до 28–40 ч.

Основной дозалимитирующий побочный эффект ганцикловира — угнетение кроветворения (нейтропения, тромбоцитопения). У 5–15% больных отмечают поражения ЦНС разной степени тяжести (от головной боли до судорог и комы). При внутривенном введении возможны флебиты, азотемия, анемия, сыпи, лихорадка, изменение биохимических показателей печени, тошнота, рвота, эозинофилия.

У лабораторных животных препарат оказывал тератогенное и эмбриотоксическое действие, необратимо нарушал репродуктивную функцию. Цитостатические препараты усиливают побочное действие ганцикловира на костный мозг.

Идоксуридин — йодсодержащий аналог тимидина. Механизм противовирусного действия до конца не изучен. Известно, что фосфорилированные производные препарата встраиваются в вирусную и клеточную ДНК, но ингибируют репликацию только вирусной ДНК. При этом ДНК становится более хрупкой, легко разрушается, при ее транскрипции чаще возникают ошибки. Устойчивые штаммы выделяют от больных герпетическим кератитом, получавших идоксуридин. Препарат разрешен лишь для местного применения. При его использовании возможны боль, зуд, воспаление и отек в области глаз, аллергические реакции.

Успехи антимикробной терапии ХХ столетия привели к почти полному контролю над бактериальными инфекциями. Задачей инфекционистов и фармакологов ХХI века является обеспечение контроля над вирусной инфекцией. Помимо высокой эффективности новые противовирусные препараты должны обладать хорошей переносимостью. В настоящее время разрабатываются новые средства с принципиально новыми механизмами действия. Перспективными могут оказаться средства для подавления патологических иммунных реакций и иммунотерапия моноклональными антителами и вакцинами.

Н. М. Киселева, кандидат медицинских наук, доцент
Л. Г. Кузьменко, доктор медицинских наук, профессор
РГМУ, Москва

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции