Этапы взаимодействия вирусов с чувствительными клетками и факторы способные их нарушить

Блок 1

Особенности биологии вирусов. Принципы классификации вирусов.

Вирусы- мельчайшие неклеточные формы жизни; царство Vira. Вирусная частица – вирион, которая включает в себя генетический материал (ДНК/РНК) и нуклеокапсид, защищающий его, не имеют собственной белоксинтезирующей системы, поэтому являются облигатными внутриклеточными паразитами, размножаются в ядре и ЦП клетки.

Особенности размножения (этапы репродукции):

1. Избирательная адсорбция на клеточных рецепторах (прикрепление)

2. Рецептор-опосредованный эндоцитоз:

Взаимодействие с рецепторами – деполимеризация клатрина – образование пиноцитозного пузырька – вход в ЦП

Ранняя эндосома – поздняя эндосома

3. Раздевание (депротеинизация) (у оболочечных+слияние ЦПМ клетки и суперкапсида): ЭКЛИПС

4. Синтез макромолекул:

· Синтез ранних мРНКнеструктурных белков (полимеразы, вирусные протеазы, регуляторы скорости репликации);

Ø -РНК: достройка до +РНК;

Ø Ретротранскрипция: -РНК –ДНК.

· Синтез структурных белков (белки капсида и суперкапсида, ферменты) и поздних мРНК;

· Посттрансляционная модификация белка.

**Возможна интеграция генетического материала вируса в геном хозяина (гепатит В, герпес, ВИЧ)

Провирус – интегрированная в геном клетки вирусная ДНК

5. Сборка вирионов:

· ДНК-вирусы: в ядре;

· РНК-вирусы: в ЦПМ.

Гликопротеины сложных вирусов транспортируются к ЦПМ или накапливаются в ЭПР

6. Выход вирионов:

· Литический тип репродукции: полиомиелит

· Нелитический тип: путем почкования – гепатит В

Классификация

1. По строению:

Простые вирусы Сложные вирусы (оболочечные)
НК+капсид (белковый футляр)+ферменты и НК-связанные белки = нуклеокапсид Нуклеокапсид+суперкапсид(мембрана клетки-хозяина с глиекпротеинами вируса)
Вирус полиомиелита, аденовирус Вирус гриппа А, вирус бешенства

2. По типу НК:

· РНК (80% всех вирусов) (Ретровирусы, Рабдовирусы, Пикорновирусы, Коронавирусы):

Ø +РНК цепь: используется в качестве мРНК и генома (полиовирус);

Ø -РНК цепь: служит геномом, в качестве мРНК – достраивается комплиментраная +РНК цепь (парагрипп);

· ДНК (у многих бактериофагов) (Аденовирусы, Герпесвирусы, Парвовирусы):

Ø Двуцепочечная (герпес);

Ø Одноцепочечная (првовирусы);

Ø Двунитчатая кольцевая (папилломавирус);

Ø Двунитчатая кольцевая с дефектом одной цепи (геатит В)

3. По размеру вирионов:

4. По форме вирионов:

· Спиральная симметрия (Вирус бешенства);

· Икосаэдрическая симметрия (Аденовирус человека).

Тропность к тканям и клеткам.

6. По механизму передачи:

· Аэрогенный (грипп, ротавирус);

· Фекально – оральный (энтеровирусы, ротавирус);

· Трансмиссивный (лихорадка Западного Нила);

· Контактный (оспа, бешенство, ВИЧ, ЦМВ, гепатит).

7. По классу поражаемых хозяев:

Ø Бруцеллез – свиньи;

Ø Сибирская язва – КРС;

Ø Энцефалит - клещи;

Ø Болезнь Лайма;

Ø Чума (легочная);

Вирусологический метод, основные этапы.

Способ обнаружения и идентификации вирусов посредством культивирования; являет собой выделение вируса из патологического материала на восприимчивой живой системе.

Идентификация: противовирусные препараты или сыворотки.

Этапы

1. Подготовка материала (фекалии, носоглоточные смывы, спинномозговая жидкость, кровь, моча, мазок с конъюнктивы):

· Фильтрация через бактериальные фильтры;

· Обработка антимикробными и антигрибковыми препаратами.

2. Подбор модели:

Живые системы.

· Культура клеток (специально культивированные среды):

*Матрас: сосуд, покрытый соединением (коллаген) для заякоривания клеток на стенке, используются высокочистые марки агара.

v Первичные/неперевиваемые: культура каждый раз получается из исходной ткани.

v Полуперевиваемые (эмбриональные клетки – для производства вакцин), не способы к злокачественному перерождению; способны совершить до 50 делений (лимит Хейфлика); образуют монослой клеток.

· Эмбрионы птиц (малоинформативные);

· Лабораторные животные (наблюдение клинических проявлений).

4. Оценка феноменов присутствия вирусов:

· Цветная проба Солка (для суспензионных культур):

· Феномен Дюльбенко (культура на агаре)

Ø Образование синцития – корь;

Ø Окружности вирионов с полостями – полиомиелит;

Ø Группы вирионов между фибробластами– аденовирус;

Ø Гемадсорбция – грипп

5. Титрование вируса

· Прямое обнаружение АГ вируса: РИФ, ИФА, РНГА

Ø РНЦПД (в монослое)

Ø ТельцпБабеша-Негри (гиппокамп): бешенство;

Ø Совиный глаз: ЦМВ;

Ø Пустое ядрышко: аденовирус.

Этапы взаимодействия вирусов с чувствительными клетками и факторы, способные их нарушить.

1. Адсорбция: взаимодействие специфических рецепторов ЦПМ клетки и адгезинов на поверхности вириона.

Поврежденные клетки могут не иметь специфических рецепторов

2. Пенетрация: слияние суперкапсида с мембраной клетки (для сложных вирусов) или клатрин/кавиолин-зависимый эндоцитоз (для простых)

3. Раздевание (освобождение от нуклеокапсида) и активация НК.

4. Синтез НК и вирусных белков

5. Сборка вириона: ассоциация ген. материала и капсидного белка

6. Выход из клетки и приобретение суперкапсида (для сложных)

Формы вирусной инфекции.

По локализации.

1. Очаговая: короткий инкубационный период, вирусы размножаются в органах, не попадая в кровь и лимфу. Характерен короткий и нестойкий иммунитет. В основном – респираторные инфекции.

2. Генерализованная: длительный инкубационный период; возбудители с кровью и лимфой разносятся по всему организму, поражая восприимчивые ткани. Иммунитет – длительный и стойкий.

По длительности.

1. Острое заболевание (часто): ярко выраженные клинические проявления; как правило, завершается освобождение организма от вирусов и выздоровлением, но возможна хронизация при условии некорректного лечения.

2. Инаппарантная форма: атипичная острая инфекция (отсутствуют характерные для острого процесса симптомокомплексы).

3. Медленные инфекции: многомесячный инкубационный период, после которого проявляются симптомы, всегда заканчивается летально (ВИЧ - инфекция, бешенство, проказа).

4. Хроническая форма (персистенция): протекают в течении нескольких месяцев (бруцеллез);

· Ремиссия: улучшение состояния, незначительное проявление либо отсутствие симптомов;

· Рецидив: обострение патологического процесса, ясное проявление клиники.

По числу возбудителей.

1.Моноинфекция: вызвана патогеном одного вида.

2. Смешанная форма: инфицирование происходит несколькими вирусами; при этом возможны их взаимовлияния, проявляющиеся в подавлении или усилении действия возбудителей на организм.

Дата добавления: 2018-06-01 ; просмотров: 898 ;

Взаимодействие вириона с живой клеткой осуществляется в несколько этапов.

В начальный (подготовительный) период вирион прикрепляется к клетке, проникает внутрь ее, после чего белковая оболочка вириона разрушается, освобождая нуклеиновую к-ту.

Наступает скрытый (латентный) период вирусной инфекции, во время которого присутствие в зараженной клетке вирусных частиц нельзя обнаружить никакими методами — родительский вирион как бы исчезает. В этот период проникшая в клетку вирусная нуклеиновая кислота организует синтез вирусных компонентов потомства, используя для этой цели ферментативную систему хозяина. Цикл размножения заканчивается формированием дочерних вирионов и выходом их из клетки (конечный период).

В результате белковый чехол фага остается на поверхности клетки, а внутрь клетки попадает лишь нуклеиновая кислота.

При гриппе, бешенстве, пситтакозе, оспе такие тельца обнаруживают в цитоплазме клеток, при весенне-летнем энцефалите, желтой лихорадке, герпесе и полиомиелите — в ядре; при некоторых инфекциях тельца включений находили как в ядре, так и в цитоплазме. Исследования последних лет показали, что в подавляющем большинстве случаев эти включения представляют собой колонии вируса, причем их образование закономерно на определенной стадии размножения возбудителей инфекции. Высокая специфичность внутриклеточных включений при вирусных заболеваниях позволяет использовать этот признак для диагностики. Например, обнаруженные в нервных клетках головного мозга цитоплазматические включения (так называемые тельца Негри) являются основным доказательством заболевания бешенством, а специфические образования круглой или овальной формы (так наз. тельца Гварниери), обнаруженные в эпителиальных клетках, указывают на заболевание оспой. Включения описаны также при энцефалите, детском спинномозговом параличе, ящуре и других заболеваниях. Очень своеобразные включения, имеющие кристаллическую форму, образуют вирусы растений. То есть, размножение вирусов происходит особым, ни с чем несравнимым способом. Сначала вирусные частицы проникают внутрь клеток и освобождаются вирусные нуклеиновые к-ты. Затем заготавливаются детали будущих вирусных частиц. Размножение заканчивается сборкой новых вирусных частиц и выходом их в окружающую среду. Выпадение любого из указанных этапов приводит к нарушению нормального цикла и влечет за собой либо полное подавление размножения В., либо появление неполноценного потомства.

Основные этапы взаимодействия вируса с клеткой хозяина.

1. Адсорбция - пусковой механизм, связанный с взаимодействием специфических рецепторов вируса и хозяина (у вируса гриппа- гемагглютинин, у вируса иммунодефицита человека - гликопротеин gp 120).

2. Проникновение - путем слияния суперкапсида с мембраной клетки или путем эндоцитоза (пиноцитоза).

3. Освобождение нуклеиновых кислот - ―раздевание нуклеокапсида и активация нуклеиновой кислоты.

4. Синтез нуклеиновых кислот и вирусных белков, т.е. подчинение систем клетки хозяина и их работа на воспроизводство вируса.

5. Сборка вирионов - ассоциация реплицированных копий вирусной нуклеиновой кислоты с капсидным белком.

6. Выход вирусных частиц из клетки, приобретения суперкапсида оболочечными вирусами.

Формы вирусной инфекции.

На уровне макроорганизма основные формы вирусных поражений принципиально не отличаются от таковых, наблюдаемых при инфицировании вирусами отдельных клеток.

Продуктивная вирусная инфекция с образованием дочерних популяций и характерными клиническими проявлениями возможна лишь при наличии в заражённом организме чувствительных клеток, в которых осуществляется репродуктивный цикл возбудителя. Например, возбудитель полиомиелита может реплицировать только в клетках ЖКТ и ЦНС приматов и человека.

Абортивная инфекция развивается при проникновении возбудителя в нечувствительные клетки (например, при попадании вируса лейкоза коров в организм человека) либо в клетки, не способные обеспечить полный репродуктивный цикл (например, находящиеся в стадии клеточного цикла G0). Способность клеток к поддержанию вирусспецифических репродуктивных процессов также подавляет ИФН, противовирусный эффект которого направлен против самых различных вирусов.

Персистирующая вирусная инфекция возникает при таком взаимодействии между вирусом и заражённой клеткой, когда в последней продолжается выполнение собственных клеточных функций. Если заражённые клетки делятся, образуется инфицированный клон. Таким образом, увеличение числа заражённых клеток способствует увеличению общей популяции возбудителя в организме. Тем не менее персистирующие вирусные инфекции обычно нарушают функции клеток, что в конце концов приводит к клиническим проявлениям. У человека развитие персистирующих инфекций в определённой степени зависит от возраста. Например, внутриутробное заражение вирусом коревой краснухи или цитомегаловирусом (ЦМВ) приводит к ограниченному по времени персистированию возбудителя. Появление симптоматики связано с возможностью плода развивать иммунные реакции на инфекционный агент.

Латентная (скрытая) вирусная инфекция. В то время как персистирующие инфекции сопровождаются постоянным высвобождением дочерних вирусных популяций, при латентных поражениях они образуются спорадически. Репродуктивный цикл подобных возбудителей резко замедляется на поздних стадиях и активируется под влиянием различных факторов.

Латентные инфекции характерны для большинства герпесвирусов, вызывающих рецидивирующие и обычно не прогрессирующие заболевания.

Дремлющая (криптогенная) вирусная инфекция — форма проявления вирусной инфекции при которой возбудитель в неактивном состоянии находится в отдельных очагах (например, в нервных ганглиях). Клинически инфекция проявляется лишь при резком ослаблении защитных сил организма. Например, вирус герпеса 3 типа, вызывающий при первичном заражении ветряную оспу, пожизненно сохраняется в организме. Рецидив заболевания в форме опоясывающего лишая возможен лишь при нарушениях иммунного статуса (наиболее часто в пожилом возрасте).

Медленные вирусная инфекции характеризуются длительным инкубационным периодом (месяцы и годы), в течение которого возбудитель размножается, вызывая всё более явные повреждения тканей. Первоначально возбудитель размножается в ограниченной группе клеток, но постепенно инфицирует всё большее их число. Заболевания заканчиваются развитием тяжёлых поражений и смертью больного. К медленным вирусным инфекциям относят подострый склерозирующий панэнцефалит, ВИЧ-инфекцию и др.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.


Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).


Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Взаимодействие вирусов с клетками может осуществляться:

  • а) с образованием вирусного потомства (продуктивный тип взаимодействия);
  • б) без образования вирусного потомства или с незначительным образованием дочерних вирусов (абортивная инфекция);
  • в) с встраиванием вирусной ДНК (РНК) в геном клетки-хозяина (интегративный тип взаимодействия).

Примечание. Интегрированная нуклеиновая кислота в составе клеточного генома называется провирусом.

Поскольку вирусные инфекции реализуются посредством продуктивного типа взаимодействия вирусов с клетками, остановимся более подробно на процессе репродукции вирусов. В данном процессе выделяют следующие основные этапы: адсорбция вириона на клетке, проникновение вириона в клетку, депротеинизация вириона и освобождение генома вируса, экспрессия вирусного генома и синтез компонентов вирусов: транскрипция, трансляция, репликация, морфогенез (формирование дочерних вирионов), выход нового поколения вирусов из клетки (рис. 7.17).


Рис. 7.17. Взаимодействие вируса с клеткой (объяснения см. в тексте)

Рассмотрим далее эти этапы.

Адсорбция вириона на клетке. Характеризуется высокой специфичностью. Обусловлена взаимодействием белковых рецепторов плазмалеммы чувствительной клетки с прикрепительными белками на поверхности вирусов (у простых вирусов — это белки капсида, у сложных вирусов — эго гликопротеиды суперкаисида). Способность вирусов специфически связываться с определенными клеточными рецепторами называется тропизмом вирусов. Именно этим обстоятельством объясняется избирательное поражение определенными вирусами конкретных биоструктур организма-хозя- ина (клеток, тканей, органов). Например, вирус гепатита В проникает в клетки печени, вирус полиомиелита — в мотонейроны передних рогов спинного мозга.

Проникновение вириона в клетку, депротеинизация вириона и освобождение генома вируса. Проникновение вируса может осуществляться двумя способами: путем впячивания плазмалеммы и образования везикулы, содержащей вирус (рецепторзависимый эндоцитоз) и путем слияния плазматической мембраны клетки с сунеркапсидом вириона (при участии специальных белков слияния), в результате внутренняя часть вируса оказывается в цитоплазме клетки. Затем происходят разрушение капсида (депротеинизация) и освобождение вирусной нуклеиновой кислоты.

Экспрессия вирусного генома и синтез компонентов вирусов. У ДНК-геномных вирусов включает в себя следующие процессы: вирусная ДНК — транскрипция — трансляция. У РНК-геномных вирусов: вирусная РНК — трансляция. У РНК-геномных ретровирусов: синтез комплементарной ДНК на матрице вирусной РНК — транскрипция — трансляция.

Репликация вирусного генома. Сущность: синтез на матрице исходной геномной нуклеиновой кислоты множества копий — будущих вирусных геномов. У большинства вирусов репликация происходит в ядре клетки-хозяина, у некоторых — в цитоплазме.

У ДНК-геномных вирусов при участии клеточной ДНК-поли- меразы осуществляется биосинтез множества ДНК-копий (пример: вирус герпеса).

У некоторых ДНК-геномных вирусов на матрице ДНК при помощи вирусной ДНК-зависимой РНК-полимеразы синтезируется комплементарная РНК-копия (прегеномная РНК). Затем на пре- геномной РНК при участии обратной транскриптазы (РНК-зави- симой ДНК-полимеразы) собирается комплементарная нить ДНК. Последняя с помощью ДНК-полимеразы достраивается до двухцепочечной молекулы. Таким образом происходит тиражирование копий двунитевых ДНК-геномов вирусов (пример: вирус гепатита В).

У РНК-геномных вирусов с помощью вирусной РНК-зависи- мой РНК-полимеразы на матрице геномной РНК синтезируется комплементарная РНК-копия, которая в свою очередь является матрицей для сборки молекул вирусного генома (процесс катализируется тем же ферментом) (пример: вирус гриппа).

У РНК-ретровирусов при участии вирусной обратной транскриптазы (РНК-зависимой ДНК-полимеразы) на геномной РНК синтезируется комплементарная ДНК-цепь, которая достраивается до двухцепочечной молекулы с помощью ДНК-полимеразы. Такая ДНК-коиия вирусного генома интегрируется в ДНК клетки- хозяина, где с нее во множестве копий синтезируется геномная РНК вируса (реакция катализируется ДНК-зависимой РНК-поли- меразой). Примечательно, что обратная транскриптаза отличается невысокой специфичностью при сборке цепи ДНК на матрице РНК. Этим объясняется выраженная изменчивость некоторых вирусов, в частности вируса иммунодефицита человека.

В результате вышеперечисленных процессов (транскрипция, трансляция, репликация вирусного генома) образуются все компоненты вирусного потомства — геном, геномные белки, белки капсида, а также матриксный белок и гликопротеиды (для сложных вирусов).

Процесс формирования дочерних вирионов осуществляется путем самосборки и называется морфогенезом.

Выход нового поколения вирусов из клетки может происходить двумя способами.

  • 1. При инфицировании клетки простыми вирусами вирусное потомство покидает клетку после ее лизиса.
  • 2. При инфицировании клетки сложными вирусами вирусные частицы-предшественники (нуклеиновая кислота + капсид) окружаются модифицированной плазматической мембраной клетки, в которую встроены вирусные белки-гликопротеиды, и отпочковываются. При этом клетка-хозяин, как правило, сразу не погибает, а продолжает выделять новые поколения вирусов до истощения ее пластических и энергетических ресурсов.

Вирусная репродукция, хотя и осуществляется согласно триаде ДНК РНК белок, представляет собой уникальную форму выражения чужеродной (вирусной) информации в клетках человека, животных, насекомых, растений, бактерий. Эта уникальность состоит прежде всего в подчинении клеточных матрично-генетических механизмов вирусной информации.

Поскольку вирусы не имеют собственного метаболизма, они не нуждаются в ферментах, необходимых для многочисленных катаболических и анаболических реакций. Однако у вирусов обнаружено свыше 10 ферментов, разных по своему происхождению и функциональному назначению.

По происхождению вирусные ферменты делятся на три группы:

1. вирионные- входят в состав вирионов;

2. вирусиндуцированные - ферменты, структура которых закодирована в геноме вируса, а синтез происходит на рибосомах клетки-хозяина;

3. клеточные, модифицированные вирусом - это ферменты клетки-хозяина, которые не являются вирусспецифическими и которые участвуют в репродукции вируса.

По функциональному значению вирусные ферменты можно подразделить на 2 группы:

1) ферменты, участвующие в процессе репликации и транскрипции вирусной нуклеиновой кислоты;

2) ферменты, способствующие проникновению вирусной НК в клетку-хозяина и выходу образовавшихся вирионов.

Известны три типа взаимодействия вируса с клеткой:

1) продуктивный тип, завершающийся образованием вирусного потомства;

2) абортивный тип, не завершающийся образованием новых вирусных частиц, поскольку инфекционный процесс прерывается на одном из этапов;

3) интегративный тип(или вирогения), характеризующийся встраиванием вирусной ДНК в хромосому клетки-хозяина.

ПРОДУКТИВНЫЙ ТИП взаимодействия (репродукция вирусов) осуществляется в несколько стадий, последовательно сменяющих друг друга:

1. Адсорбция вируса на клетке, т.е. прикрепление вирусов к поверхности клетки. Вирус адсорбируется на клеточных рецепторах разной химической природы (белки, углеводные компоненты белков и липидов, липиды), число которых на поверхности одной клетки колеблется между 10 4 и 10 5 . Следовательно, на клетке могут адсорбироваться десятки и даже сотни вирусных частиц. Поверхностные структуры вируса, узнающие специфические клеточные рецепторы и взаимодействующие с ними, называются прикрепительными белками. Обычно эту функцию выполняет один из поверхностных белков капсида или суперкапсида. Соответствие (комплементарность) клеточных рецепторов вирусным прикрепительным белкам определяет возможность возникновения инфекционного процесса в клетке; от этого зависят спектр клеток, поражаемых вирусом, или его тропизм, и в ряде случаев, чувствительность организма к данному вирусу.

2. Проникновение вируса в клетку: существует два способа проникновения вирусов животных в клетку: виропексиси слияниевирусной оболочки с клеточной мембраной.

При виропексисе, после адсорбции вирусов, происходит инвагинация (впячивание) участка клеточной мембраны и образование внутриклеточной вакуоли, которая содержит вирусную частицу. Вакуоль с вирусом может транспортироваться в любом направлении в разные участки цитоплазмы или ядро клетки.

Процесс слияния осуществляется одним из поверхностных вирусных белков капсидной или суперкапсидной оболочек.

По-видимому, оба механизма проникновения вируса в клетку не исключают, а дополняют друг друга.

4. Биосинтез компонентов вируса; проникшая в клетку вирусная нуклеиновая кислота несет генетическую информацию, которая успешно конкурирует с генети-ческой информацией клетки. Она дезорганизует работу клеточных систем, подавляет собственный метаболизм клетки и заставляет ее синтезировать новые вирусные белки и нуклеиновые кислоты, идущие на построение вирусного потомства.

Синтез компонентов вируса (белков и нуклеиновых кислот) разобщен во времени и пространстве, т.е. протекает в разных структурах ядра и цитоплазмы клетки. Вот почему этот уникальный способ размножения вирусов называется дизъюнктивным (разобщенным).

5. Формирование (сборка) вирионов: синтезированные вирусные нуклеиновые кислоты и белки обладают способностью специфически узнавать друг друга и при достаточной их концентрации самопроизвольно соединяются в результате гидрофобных, солевых и водородных связей. Сборка просто устроенных вирусов заключается во взаимодействии молекул вирусных нуклеиновых кислот с капсидными белками и образовании нуклеокапсидов (например, вирусы полиомиелита). У сложно устроенных вирусов сначала формируются нуклеокапсиды, с которыми взаимодейст-вуют белки суперкапсидных оболочек (например, вирусы гриппа). Формирование вирусов происходит на ядерных или цитоплазматических мембранах клетки.

6. Выход вирусов из клетки: различают 2 основных типа выхода вирусного потомства из клетки:

а) взрывной - характеризуется одновременным выходом большого количества вирусов. При этом клетка быстро погибает. Такой тип выхода характерен для вирусов, не имеющих суперкапсида.

Время, необходимое для осуществления полного цикла репродукции вирусов, варьирует от 5-6 часов (вирусы гриппа, натуральной оспы) до нескольких суток (вирусы кори, аденовирусы). Образовавшиеся вирусы способны инфицировать новые клетки и проходить в них указанный выше цикл репродукции.

ИНТЕГРАТИВНЫЙ ТИП ВЗАИМОДЕЙСТВИЯ (ВИРОГЕНИЯ) характеризуется встраиванием (интеграцией) нуклеиновой кислоты вируса в хромосому клетки. При этом вирусный геном реплицируется и функционирует как составная часть клеточного генома.

Интеграция вирусного генетического материала с ДНК клетки характерна для определенных групп вирусов: бактериофагов, онкогенных (опухолеродных) вирусов, вируса гепатита В, вирус герпеса, ВИЧ.

Для интеграции с хромосомой клетки необходима кольцевая форма двунитчатой вирусной ДНК. У ДНК-содержащих вирусов (вирус гепатита В) их ДНК обладает свойством встраиваться в геном клетки при участии ряда ферментов. У некоторых РНК-содержащих вирусов (ВИЧ, онкогенные вирусы) сначала на матрице РНК с помощью вирусспецифического фермента синтезируется ДНК-копия, которая затем встраивается в ДНК клетки. ДНК вируса, находящаяся в составе хромосомы клетки, называется ДНК-провирусом.

При делении клетки, сохраняющей свои нормальные функции, ДНК-провирус переходит в геном дочерних клеток, т.е. состояние вирогении наследуется. ДНК-провирус несет дополнительную генетическую информацию, в результате чего клетка приобретает ряд новых свойств. Так, интеграция может явиться причиной возникновения ряда аутоиммунных и хронических заболеваний, разнообразных опухолей. Под воздействием ряда физических и химических факторов ДНК-провирус может вырезаться из клеточной хромосомы и переходить в автономное состояние, включаясь в обычный цикл репродукции.

Дата публикования: 2014-08-30 ; Прочитано: 10141 | Нарушение авторского права страницы

studopedia.org - Студопедия.Орг - 2014-2020 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.002 с) .

Наиболее ча­сто определяют ферменты класса гидролаз и оксидоредуктаз, используя специальные методы и среды.

Для определения протеолитической активности мик­роорганизмы засевают в столбик желатина уколом. Че­рез 3—5 дней посевы просматривают и отмечают харак­тер разжижения желатина. При разложении белка некоторыми бактериями могут выделяться специфические продукты — индол, сероводород, аммиак. Для их опреде­ления служат специальные индикаторные бумажки, ко­торые помещают между горлышком и ватной пробкой в пробирку с МПБ или (и) пептонной водой, засеянными изучаемыми микроорганизмами. Индол (продукт разло­жения триптофана) окрашивает в розовый цвет полоску бумаги, пропитанной насыщенным раствором щавелевой кислоты. Бумага, пропитанная раствором ацетата свинца, в присутствии сероводорода чернеет. Для определения аммиака используют красную лакмусовую бумажку.

Для обнаружения газообра­зования в жидкие среды опускают поплавки или исполь­зуют полужидкие среды с 0,5% агара.

Для того чтобы оп­ределить интенсивное кислотообразование, характерное для брожения смешанного типа, в среду с 1% глюкозы и 0,5% пептона (среда Кларка) добавляют индикатор метиловый красный, который имеет желтый цвет при рН 4,5 и выше, и красный — при более низких значениях рН.

Гидролиз мочевины определяют по выделению ам­миака (лакмусовая бумажка) и подщелачиванию среды.

При идентификации многих микроорганизмов исполь­зуют реакцию Фогеса — Проскауэра на ацетоин — проме­жуточное соединение при образовании бутандиола из пировиноградной кислоты. Положительная реакция свиде­тельствует о наличии бутандиолового брожения.

Обнаружить каталазу можно по пузырькам кислорода, которые начинают выделяться сразу же после смешива­ния микробных клеток с 1 % раствором перекиси водоро­да.

Для определения цитохромоксидазы применяют ре­активы: 1) 1% спиртовый раствор сс-нафтола-1; 2) 1% водный раствор N-диметил-р-фенилендиамина дигидрохлорида. О наличии цитохромоксидазы судят по синему окрашиванию, появ­ляющемуся через 2—5 мин.

Для определения нитритов используют реак­тив Грисса: по­явление красного окрашивания свидетельствует о нали­чии нитритов.

Вопрос 38 Чистые культуры микроорганизмов. Принци

пы и методы выделения.

Чистой культурой называется популяция бактерий од­ного вида или одной разновидности, выращенная на питательной среде. Многие виды бактерий подразделяют по одному признаку на биологические варианты — биовары. Биовары, различающие­ся по биохимическим свойствам, называют хемоварами, по анти­генным свойствам — сероварами, по чувствительности к фагу — фаговарами. Культуры микроорганизмов одного и того же вида, или биовара, выделенные из различных источников или в разное время из одного и того же источника, называют штаммами, которые обычно обозначаются номерами или какими-либо сим­волами. Чистые культуры бактерий в диагностических бактерио­логических лабораториях получают из изолированных колоний, пересевая их петлей в пробирки с твердыми или, реже, жидкими питательными средами.
Колония представляет собой видимое изолированное скоп­ление особей одного вида микроорганизмов, образующееся в результате размножения одной бактериальной клетки на плотной питательной среде (на поверхности или в глубине ее). Колонии бактерий разных видов отличаются друг от друга по своей мор­фологии, цвету и другим признакам.
Чистую культуру бактерий получают для проведения диагно­стических исследований — идентификации,которая достигается путем определения морфологических, культуральных, биохимических и других признаков микроорганизма.

1 Метод последовательных разведений, предложен Л. Пастером, был одним из самых первых, который применялся для механического разъединения микроорганизмов. Он заключается в проведении последовательных серийных разведений материала, который содержит микробов, в стерильной жидкой питательной среде. Этот прием достаточно кропотлив и несовершенный в работе, поскольку не позволяет контролировать количество микробных клеток, которые попадают в пробирки при разведениях.

3 Метод Дригальского - широко применяется в бактериологической практике, при этом исследуемый материал разводят в пробирке стерильным физиологическим раствором или бульоном. Одну каплю материала вносят в первую чашку и стерильным стеклянным шпателем распределяют по поверхности среды. Затем этим же шпателем (не прожигая его в пламени горелки) делают такой же посев во второй и третьей чашках. С каждым посевом бактерий на шпателе остается все меньше и меньше и, при посеве на третью чашку, бактерии будут распределяться по поверхности питательной среды отдельно друг от друга. Через 1-7 сут выдерживания чашек в термостате (в зависимости от скорости роста микроорганизмов) на третьей чашке каждая бактерия дает клон клеток, образуя изолированную колонию, которую пересевают на скошенный агар с целью накопления чистой культуры.

Вопрос 39 Этапы взаимодействия вирусов с чувствительными клетками и факторы, способные их

нарушить. Формы вирусной инфекции.

1 Механизм действия интерферона на репродукцию вирусов еще недостаточно изучен. Известно, что он не препятствует адсорбции вируса на клетке, а для проявления его действия необходимо сохранение целостности клеточных рецепторов. Интерферон не способен непосредственно нейтрализовать биологическую активность вируса.

Получен ряд данных, свидетельствующих о том, что интерферон действует не на одну, а на несколько стадий размножения вируса. Он, по-видимому, препятствует соединению вирусной РНК с рибосомами, что приводит к невозможности синтеза вирусных белков. Эти изменения, надо полагать, вызываются антивирусным белком, образующимся в обработанных интерфероном клетках.

Выраженная способность к подавлению размножении вирусов позволяет отнести интерферон к активным факторам неспецифической резистентности к вирусам. Ему принадлежит существенная роль в процессе выздоровления организма.

2 Механизм действия вирусных ингибиторов на вирусы во многом сходен с действием на них антител. Вступая в свизь с вирусом, ингибиторы лишают их гемагглютинирующей и вируснейтрализующей активности. Вируснейтрализующая активность сывороточных ингибиторов в отношении некоторых вирусов не уступает активности иммунных сывороток, нейтрализуя (в опытах на куриных эмбрионах и мышах) тысячи инфекционных доз вируса. Активность их более высока в отношении авирулентных штаммов, чем вирулентных.

Отмечено, что ингибиторочувствительные штаммы исчезают из организма, в сыворотке которого содержатся большие количества ингибиторов, через несколько часов, а ингибиторорезистентные штаммы сохраняются в кров: в течение 3-4 суток.

Обнаружение вируснейтрализующих ингибиторов (гамма- и бетаингибиторов) в носовом секрете, мокроте, слюне явилось основанием, чтобы отнести их к факторам противогриппозного иммунитета.

3 1) мукопротеиды и липопротеиды биол. жидкостей, блокирующие процесс прикрепления вирусов к клеточным мембранам – вирусные ингибиторы

Принципы рациональный аб терапии:

1. точная этиологическая диагностика заболевания

2. определение необходимости аб

3. правильная оценка состояния больного (возраст ,пол ..)

4. определение чувствительности до начала лечения

5. правильный выбор препарата с учетом его кинетики и динамики

6. правильное определение дозы

7. конроль концентрации препарата в биологических субстратах во время лечения

8. контроль чувствительности возбудителя во время лечения

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции