Для чего в медицине применяются вирусы


Вирусы имеют важное значение для исследований в молекулярной и клеточной биологии, поскольку они представляют собой простые системы, которые можно использовать для управления и изучения функционирования клеток. Изучение и использование вирусов дало ценную информацию о различных аспектах клеточной биологии. К примеру, вирусы применялись в генетических исследованиях, и они помогли нам прийти к пониманию ключевых механизмов молекулярной генетики, как то: репликация ДНК, транскрипция, процессинг РНК, трансляция, транспорт белков.

Генетики зачастую используют вирусы как векторы для ввода генов в изучаемые клетки. Это даёт возможность заставить клетку производить чуждые вещества, и кроме этого изучить эффект от ввода нового гена в геном. Аналогично в виротерапии вирусы используют как векторы для лечения различных болезней, поскольку они избирательно действуют на клетки и ДНК. Это даёт надежды, что вирусы смогут помочь в борьбе с раком и найдут своё применение в генотерапии. Некоторое время восточноевропейские учёные прибегали к фаговой терапии как к альтернативе антибиотикам, и интерес к таким методам возрастает, поскольку сегодня у некоторых патогенных бактерий обнаружена высокая устойчивость к антибиотикам.

Биосинтез заражёнными клетками чужеродных белков лежит в основе некоторых современных промышленных способов получения белков, к примеру, антигенов. Не так давно промышленным способом были получены некоторые вирусные векторы и лекарственные белки, сегодня они проходят клинические и доклинические испытания.

Из-за своих размеров, формы и хорошо изученной химической структуры вирусы использовали как шаблоны для организации материалов на наноуровне. Примером такой недавней работы могут служить исследования, проведённые Исследовательской лабораторией Наваля в Вашингтоне (округ Колумбия) с использованием вируса мозаики коровьего гороха (англ. Cowpea Mosaic Virus (CPMV) ) для усиления сигналов в сенсорах с ДНК-микрочипами. В данном случае вирусные частицы разделяли частицы флуоресцентных красителей, которые использовались для передачи сигнала, предотвращая, таким образом, скопление нефлуоресцентных димеров, выступающих как гасители сигнала. Другим примером использования CPMV является применение его как наноразмерного образца для молекулярной электроники.

Многие вирусы могут быть получены de novo, то есть с нуля, а первый искусственный вирус был получен в 2002 году. Несмотря на некоторые неправильные трактовки, помимо этого синтезируется не сам вирус как таковой, а его геномная ДНК (в случае ДНК-вирусов) или комплементарная копия ДНК его генома (в случае РНК-вирусов). У вирусов многих семейств искусственная ДНК или РНК (последняя получается путём обратной транскрипции синтетической комплементарной ДНК), будучи введённой в клетку, проявляет инфекционные свойства. Иными словами, они содержат всю необходимую информацию для образования новых вирусов. Эту технологию в настоящее время используют для разработки вакцин нового типа. Возможность создавать искусственные вирусы имеет далеко идущие последствия, поскольку вирус не может вымереть, пока известна его геномная последовательность и имеются чувствительные к нему клетки. В наши дни полные геномные последовательности 2408 различных вирусов (в том числе оспы) находятся в публичном доступе в онлайн-базе данных, поддерживаемой Национальными институтами здравоохранения США.

Есть другая статья: Биологическое оружие

Способность вирусов вызывать опустошительные эпидемии среди людей порождает беспокойство, что вирусы могут использоваться как Биологическое оружие. Дополнительные опасения вызвало успешное воссоздание вредоносного вируса испанского гриппа в лаборатории. Другим примером может служить вирус оспы. Он на всём протяжении истории опустошал множество стран вплоть до его окончательного искоренения. Официально образцы вируса оспы хранятся лишь в двух местах в мире — в двух лабораториях в России и США. Опасения, что он может быть использован как оружие, не совсем беспочвенны; вакцина против оспы в некоторых случаях имеет тяжёлые побочные эффекты — в последние годы до официально объявленного искоренения вируса больше людей серьёзно заболели из-за вакцины, чем от вируса, поэтому вакцинация против оспы больше не практикуется повсеместно. По этой причине большая часть современного населения Земли практически не имеет устойчивости к оспе.


В 1901 американский военный хирург У.Рид и его коллеги установили, что возбудитель желтой лихорадки также является фильтрующимся вирусом. Желтая лихорадка была первым заболеванием человека, опознанным как вирусное, однако потребовалось еще 26 лет, чтобы ее вирусное происхождение было окончательно доказано.

Свойства и происхождение вирусов.

Наиболее просто устроенные вирусы состоят из нуклеиновой кислоты, являющейся генетическим материалом (геномом) вируса, и покрывающего нуклеиновую кислоту белкового чехла. В состав некоторых вирусов входят также углеводы и жиры (липиды). Таким образом, вирусы можно рассматривать просто как мобильные наборы генетической информации. Вирусы лишены некоторых ферментов, необходимых для репродукции, и могут размножаться только внутри живой клетки, метаболизм которой после заражения перестраивается на воспроизводство вирусных, а не клеточных компонентов. Это свойство вирусов позволяет отнести их к облигатным (обязательным) клеточным паразитам. После синтеза отдельных компонентов формируются новые вирусные частицы. Симптомы вирусного заболевания развиваются как следствие повреждения вирусами отдельных клеток.


Принято считать, что вирусы произошли в результате обособления (автономизации) отдельных генетических элементов клетки, получивших, кроме того, способность передаваться от организма к организму. В нормальной клетке происходят перемещения нескольких типов генетических структур, например матричной, или информационной, РНК (мРНК), транспозонов, интронов, плазмид. Такие мобильные элементы, возможно, были предшественниками, или прародителями, вирусов.

Являются ли вирусы живыми организмами?

В 1935 американский биохимик У.Стэнли выделил в кристаллической форме вирус табачной мозаики, доказав тем самым его молекулярную природу. Полученные результаты вызвали бурные дискуссии о природе вирусов: являются ли они живыми организмами или просто активированными молекулами? Действительно, внутри зараженной клетки вирусы проявляют себя как интегральные компоненты более сложных живых систем, но вне клетки представляют собой метаболически инертные нуклеопротеины. Вирусы содержат генетическую информацию, но не могут самостоятельно реализовать ее, не обладая собственным механизмом синтеза белка. Когда особенности строения и репродукции вирусов оказались выясненными, вопрос о том, являются ли они живыми, постепенно утратил свое значение.

Размеры вирусов.

Величина вирусов варьирует от 20 до 300 нм (1 нм = 10 -9 м). Практически все вирусы по своим размерам мельче, чем бактерии (см. БАКТЕРИИ). Однако наиболее крупные вирусы, например вирус коровьей оспы, имеют такие же размеры, как и наиболее мелкие бактерии (хламидии и риккетсии), которые тоже являются облигатными паразитами и размножаются только в живых клетках. Поэтому отличительными чертами вирусов по сравнению с другими микроскопическими возбудителями инфекций служат не размеры или обязательный паразитизм, а особенности строения и уникальные механизмы репликации (воспроизведения самих себя).

СТРОЕНИЕ ВИРУСОВ

Вирионы со спиральным типом симметрии, как у вируса табачной мозаики, имеют форму удлиненного цилиндра; внутри белкового чехла, состоящего из отдельных субъединиц – капсомеров, находится свернутая спираль нуклеиновой кислоты (РНК). Вирионы с икосаэдрическим типом симметрии (от греч. eikosi – двадцать, hedra – поверхность), как у полиовируса, имеют сферическую, а точнее, многогранную форму; их капсиды построены из 20 правильных треугольных фасеток (поверхностей) и похожи на геодезический купол.

Встречаются вирусы с еще более сложным строением. Вирионы поксвирусов (вирусы группы оспы) не имеют правильного, типичного капсида: между сердцевиной и наружной оболочкой у них располагаются трубчатые и мембранные структуры.

РЕПЛИКАЦИЯ ВИРУСОВ

ДНК обычно существует в виде двухцепочечных структур: две полинуклеотидные цепочки соединены водородными связями и закручены таким образом, что образуется двойная спираль. РНК, напротив, обычно существует в виде одноцепочечных структур. Однако геном отдельных вирусов представляет собой одноцепочечную ДНК или двухцепочечную РНК. Нити (цепочки) вирусной нуклеиновой кислоты, двойные или одинарные, могут иметь линейную форму или замыкаться в кольцо.

У некоторых ДНК-содержащих вирусов сам цикл репродукции в клетке не связан с немедленной репликацией вирусной ДНК; вместо этого вирусная ДНК встраивается (интегрируется) в ДНК клетки-хозяина. На этой стадии вирус как единое структурное образование исчезает: его геном становится частью генетического аппарата клетки и даже реплицируется в составе клеточной ДНК во время деления клетки. Однако впоследствии, иногда через много лет, вирус может появиться вновь – запускается механизм синтеза вирусных белков, которые, объединяясь с вирусной ДНК, формируют новые вирионы.

Так называемые ретровирусы содержат в качестве генома РНК и имеют необычный способ транскрипции генетического материала: вместо транскрипции ДНК в РНК, как это происходит в клетке и характерно для ДНК-содержащих вирусов, их РНК транскрибируется в ДНК. Двухцепочечная ДНК вируса затем встраивается в хромосомную ДНК клетки. На матрице такой вирусной ДНК синтезируется новая вирусная РНК, которая, как и другие, определяет синтез вирусных белков. См. также РЕТРОВИРУСЫ.

КЛАССИФИКАЦИЯ ВИРУСОВ

Тем не менее система классификации вирусов необходима в практической работе, и попытки ее создания предпринимались неоднократно. Наиболее продуктивным оказался подход, основанный на структурно-функциональной характеристике вирусов: чтобы отличить разные группы вирусов друг от друга, описывают тип их нуклеиновой кислоты (ДНК или РНК, каждая из которых может быть одноцепочечной или двухцепочечной), ее размеры (число нуклеотидов в цепочке нуклеиновой кислоты), число молекул нуклеиновой кислоты в одном вирионе, геометрию вириона и особенности строения капсида и наружной оболочки вириона, тип хозяина (растения, бактерии, насекомые, млекопитающие и т.д.), особенности вызываемой вирусами патологии (симптомы и характер заболевания), антигенные свойства вирусных белков и особенности реакции иммунной системы организма на внедрение вируса.

В систему классификации вирусов не вполне укладывается группа микроскопических возбудителей болезней, называемая вироидами (т.е. вирусоподобными частицами). Вироиды вызывают многие распространенные среди растений болезни. Это мельчайшие инфекционные агенты, лишенные даже простейшего белкового чехла (имеющегося у всех вирусов); они состоят только из замкнутой в кольцо одноцепочечной РНК.

ВИРУСНЫЕ ЗАБОЛЕВАНИЯ

Хотя вирусы не являются полноценными живыми организмами, их эволюционное развитие имеет много общего с эволюцией других патогенных организмов. Для того чтобы сохраниться как вид, ни один паразит не может быть слишком опасным для своего основного хозяина, в котором размножается. В противном случае это привело бы к полному исчезновению хозяина как биологического вида, а вместе с ним и самого возбудителя. В то же время любой патогенный организм не сможет существовать как биологический вид, если у его основного хозяина слишком быстро и эффективно развивается иммунитет, позволяющий подавлять репродукцию возбудителя. Поэтому вирус, вызывающий острое и тяжелое заболевание у какого-либо вида животных, обычно имеет еще и другого хозяина. Размножаясь в последнем, вирус не наносит ему (как виду) существенного вреда, однако такое относительно безвредное сосуществование поддерживает циркуляцию вируса в природе. Так, например, вирус бешенства в природе сохраняется среди грызунов, для которых заражение этим вирусом не является смертельным.


Природным резервуаром для вирусов лошадиных энцефалитов, особо опасных для лошадей и в несколько меньшей степени для человека, являются птицы. Эти вирусы переносятся кровососущими комарами, в которых вирус размножается без существенного вреда для комара. Иногда вирусы могут передаваться насекомыми пассивно (без размножения в них), однако чаще всего они репродуцируются в переносчиках.

Для многих вирусов, например кори, герпеса и отчасти гриппа, основным природным резервуаром является человек. Передача этих вирусов происходит воздушно-капельным или контактным путем.

Распространение некоторых вирусных заболеваний, как и других инфекций, полно неожиданностей. Например, в группах людей, проживающих в антисанитарных условиях, практически все дети в раннем возрасте переносят полиомиелит, обычно протекающий в легкой форме, и приобретают иммунитет. Если же условия жизни в этих группах улучшаются, дети младшего возраста обычно полиомиелитом не болеют, но заболевание может возникнуть в более старшем возрасте, и тогда оно часто протекает в тяжелой форме.

Возбудители некоторых болезней, в том числе очень тяжелых, не укладываются ни в одну из вышеперечисленных категорий. К особой группе медленных вирусных инфекций еще недавно относили, например, болезнь Крейтцфельда – Якоба и куру – дегенеративные заболевания головного мозга, имеющие очень продолжительный инкубационный период. Однако оказалось, что они вызываются не вирусами, а мельчайшими инфекционными агентами белковой природы – прионами (см. ПРИОН).

Репродукция вирусов тесно переплетается с механизмами синтеза белка и нуклеиновых кислот клетки в зараженном организме. Поэтому создать лекарства, избирательно подавляющие вирус, но не наносящие вреда организму, – задача чрезвычайно трудная. Все же оказалось, что у наиболее крупных вирусов герпеса и оспы геномные ДНК кодируют большое число ферментов, отличающихся по свойствам от сходных клеточных ферментов, и это послужило основой для разработки противовирусных препаратов. Действительно, создано несколько препаратов, механизм действия которых основан на подавлении синтеза вирусных ДНК. Некоторые соединения, слишком токсичные для общего применения (внутривенно или через рот), годятся для местного использования, например при поражении глаз вирусом герпеса.

Известно, что в организме человека вырабатываются особые белки – интерфероны. Они подавляют трансляцию вирусных нуклеиновых кислот и таким образом угнетают размножение вируса. Благодаря генной инженерии стали доступны и проходят проверку в медицинской практике интерфероны, производимые бактериями (см. ГЕННАЯ ИНЖЕНЕРИЯ).

К самым действенным элементам естественной защиты организма относятся специфические антитела (специальные белки, вырабатываемые иммунной системой), которые взаимодействуют с соответствующим вирусом и тем самым эффективно препятствуют развитию болезни; однако они не могут нейтрализовать вирус, уже проникший в клетку. Примером может служить герпетическая инфекция: вирус герпеса сохраняется в клетках нервных узлов (ганглиев), где антитела не могут его достичь. Время от времени вирус активируется и вызывает рецидивы заболевания.

Обычно специфические антитела образуются в организме в результате проникновения в него возбудителя инфекции. Организму можно помочь, усиливая выработку антител искусственно, в том числе создавая иммунитет заранее, с помощью вакцинации. Именно таким способом, путем массовой вакцинации, заболевание натуральной оспой было практически ликвидировано во всем мире. См. также ВАКЦИНАЦИЯ И ИММУНИЗАЦИЯ.

Для приготовления вакцинных препаратов необходимо накопить вирус. С этой целью часто используют развивающиеся куриные эмбрионы, которых заражают данным вирусом. После инкубирования зараженных эмбрионов в течение определенного времени накопившийся в них вследствие размножения вирус собирают, очищают (центрифугированием или другим способом) и, если нужно, инактивируют. Очень важно удалить из препаратов вируса все балластные примеси, которые могут вызывать серьезные осложнения при вакцинации. Конечно, не менее важно убедиться, что в препаратах не осталось неинактивированного патогенного вируса. В последние годы для накопления вирусов широко используют различные типы клеточных культур.

МЕТОДЫ ИЗУЧЕНИЯ ВИРУСОВ

Работы с бактериофагами способствовали расширению методического арсенала в изучении вирусов животных. До этого исследования вирусов позвоночных выполнялись в основном на лабораторных животных; такие опыты были очень трудоемки, дороги и не очень информативны. Впоследствии появились новые методы, основанные на применении тканевых культур; бактериальные клетки, использовавшиеся в экспериментах с фагами, были заменены на клетки позвоночных. Однако для изучения механизмов развития вирусных заболеваний эксперименты на лабораторных животных очень важны и продолжают проводиться в настоящее время.

Природа создала множество биологических наноустройств и наномашин, элементы которых могут быть перепрограммированы для решения задач современной биологии и медицины. Одна из областей их применения – биофармацевтика. Молекулы белка, ДНК, РНК и их комплексы успешно применяются для конструирования терапевтических препаратов и вакцин. Это основа медицины будущего, которая будет базироваться на применении интеллектуальных лекарств, избирательно действующих на инфекционные агенты или на биополимеры, определяющие функционирование клеток человека

Широкое использование вирусов обусловлено их уникальным строением и образом жизни: они полностью инертны вне организма хозяина и не имеют клеточного строения. Структура их генома очень разнообразна: вирусы могут содержать одну или несколько молекул РНК или ДНК, которые могут принимать линейную, кольцевую или сегментированную форму.

Роль клеточного ядра, защищающего геном вируса, выполняет капсид, состоящий из структурных белков и ферментов. Более сложно организованные вирусные частицы могут иметь дополнительные оболочки – ​суперкапсиды. Эти липопротеидные структуры включают в себя гликопротеины – ​белки, взаимодействующие с поверхностными клеточными рецепторами, что обеспечивает проникновение вирусов внутрь заражаемой клетки. Вирус может содержать более одного типа гликопротеинов, например, у вируса гриппа их два: гемагглютинины и нейраминидаза.


Природные наноконтейнеры

Так возникла идея решить эту проблему с помощью виросом – ​вирусных частиц, освобожденных от генетического материала, но содержащих поверхностные гликопротеины. Подобные частицы обладают важным свойством: сохраняют способность избирательно связываться с определенными клетками, доставляя в них свое содержимое.


Возможность доставки лекарственных средств с помощью виросом была показана на примере подавления синтеза белков вируса гепатита С в организме животных. В виросомы, сделанные на основе вируса Сендай, заключили короткие шпилечные РНК, способные ингибировать наработку белка вируса гепатита С в зараженных клетках. В результате внутривенного введения такого препарата удалось эффективно снизить количество исследуемого вирусного белка в клетках печени больных мышей (Subramanian et. al., 2009).

Безопасные вакцины


Виросомы могут применяться в качестве вакцин не только против вирусов, но и других патогенов. Так, у мышей происходит наработка антител против возбудителя малярии после введения им виросом на основе вируса гриппа, несущих на поверхности синтетические пептиды, соответствующие фрагментам белков плазмодия (Okitsu et al., 2008). Эффективные вакцинирующие препараты были разработаны на основе виросом, содержащих дифтерийный и столбнячный токсины. Сравнение действия таких препаратов и анатоксинов (токсинов, вызывающих иммунный ответ, но не проявляющих токсикологических свойств и служащих традиционными вакцинами против дифтерии и столбняка) показало, что в первом случае антитела нарабатываются более эффективно (Zubrrigen & Gluck, 1999).


Виросомы можно использовать и для иммунотерапии онкологических заболеваний – ​доставки в опухоль ассоциированных с раком антигенов в виде плазмидной ДНК или коротких пептидов. Такие виросомы способны активировать клетки иммунной системы даже более эффективно, чем антиген в нативном виде. В экспериментах на животных было показано, что антиген, специфичный для клеток меланомы Melan-A, доставляемый в виросомах на основе вируса гриппа, успешно проникает в плазматические дендритные клетки иммунной системы (популяция антигенпрезентирующих клеток крови). В результате происходит более эффективная активация Т-клеток, способных уничтожить раковые клетки, чем при введении свободного пептида. Этот эффект, по-видимому, обусловлен хорошей защищенностью антигена, находящегося в виросомах (Angel et al., 2007).

Использование виросом в терапии болезней человека и животных имеет существенные достоинства, главные из которых – ​нетоксичность и совместимость с большинством лекарственных средств. Кроме того, липидная оболочка обеспечивает надежную защиту заключенного в виросомах материала от преждевременной деградации. С помощью виросом-опосредованной терапии уже удалось добиться весьма многообещающих результатов. Некоторые созданные на их основе препараты, в основном вакцины, находятся на разных стадиях доклинических и клинических испытаний. К их числу относятся интраназальные вакцины против вируса гриппа, вакцина против РСВ-вируса, ВИЧ-инфекции.

Примером коммерчески доступных виросомных вакцин является препарат Инфлексал производства Швейцарии, который представляет собой виросомы, содержащие антигены против вирусов гриппа типов А и В. В последнее десятилетие именно Швейцария занимает лидирующие позиции по числу средств, вкладываемых в исследование и разработку препаратов на основе виросом.

На сегодняшний день в мире можно выделить несколько групп, занимающихся доставкой терапевтических нуклеиновых кислот, в том числе и малых интерферирующих РНК (siRNA), в клетки млекопитающих с помощью вирососм (de Jonge et al., 2006). Основные затруднения, с которыми приходится сталкиваться при приготовлении таких виросомных препаратов, связаны с эффективностью включения препарата в состав виросом, а также адресной доставкой в определенные типы клеток. Сегодня в Институте химической биологии и фундаментальной медицины СО РАН (Новосибирск) ведутся работы по получению виросом стандартного качества со стабильными свойствами, в том числе обладающих способностью к адресной доставке терапевтических нуклеиновых кислот. Уже разработаны методы включения этих макромолекул в оболочки вируса (Власов и др., 1988, 1989). В дальнейшем планируется создать виросомные препараты, содержащие терапевтические нуклеиновые кислоты, и оценить их воздействие на различные типы раковых клеток человека.

Власов В. В., Иванова Е. М., Кренделев Ю. Д. и др. Оболочки вируса Сендай и тени эритроцитов – мембранные переносчики для введения реакционноспособных производных олигонуклеотидов в клетки // Биополимеры и клетка. 1989. Т. 5. № 4. Р. 52—58.

Власов В. В., Кренделев Ю. Д., Овандер М. Н. и др. Эффективный метод включения ДНК в реконструированные оболочки вируса Сендай // Биополимеры и клетка. 1988. Т. 4. № 5. Р. 250—254.

Шамшева О. В., Ртищев А. Ю.. Ультрикс – отечественная вакцина нового поколения // Педиатрия. 2014. Т. 93. № 6. P. 121—124.

Angel J., Chaperot L., Molens J. et al. Virosome-mediated delivery of tumor antigen to plasmacytoid dendritic cells // Vaccine. 2007. V. 25. P. 3913—3921.

de Jonge J., Holtrop M., Wilschut J. et al. Reconstituted influenza virus envelopes as an efficient carrier system for cellular delivery of small-interfering RNAs // Gene Therapy. 2006. V. 13. P. 400—411.

Okitsu S. L., Mueller M. S., Amacker M. et al. Preclinical profiling of the immunogenicity of a two-component subunit malaria vaccine candidate based on virosome technology // Human Vaccines. 2008. V. 4 N. 2. Р. 106—114.


Недалёкое будущее. Высшее руководство одной из крупнейших стран мира собралось на экстренное совещание. Высокопоставленные чиновники заметно встревожены: группа террористов захватила на одной из военных баз новейшее оружие – настолько секретное, что даже первые лица страны называют его только кодовым обозначением.

Как выяснилось, эта жидкость содержит опасный вирус, способный за считанные часы уничтожить половину человечества. К бойцам подбегают люди в специальных защитных скафандрах – учёные-вирусологи.

Они забирают опасный груз, тщательно укладывают его в металлические контейнеры и увозят для деактивации в недрах своих зашифрованных лабораторий.

Ещё одна трактовка: вирусы – внутриклеточные паразиты, которые не могут сами ничего синтезировать, и имеют, в зависимости от семейства, различные системы репликации и транскрипции. И это далеко не полный спектр определений, предложенных учёными для вируса.

Почему же для такого крошечного и, казалось бы, такого простого объекта не существует единого универсального определения? Наверное, потому, что вирус до сих пор остается одной из самых больших загадок для исследователей.

Вирусы присутствуют как зависимые паразиты в любой форме земной жизни – в бактериях, археях, простейших, растениях, грибах и животных. Несмотря на то, что они более чем доступны для исследования, учёные до сих пор спорят даже об их роли в эволюции.


Например, существует теория о том, что вирусы участвовали в появлении клеточного ядра и других компонентов эукариотической клетки. А вот эволюционное влияние вирусов на живые организмы на более поздних этапах эволюции уже доказано.

Есть основания предполагать, что интеграция генома ретровирусов в ДНК предка человека вблизи гена PRODH сыграла важную роль в развитии умственных способностей homo sapiens. Кроме того, вирусы являются важным природным средством обмена генетической информации между разными видами, что приводит к появлению генетическое разнообразие и направляет эволюцию.

Они играют определяющую роль в регуляции численности популяций некоторых видов живых организмов. В некоторых случаях вирусы образуют со своими хозяевами симбиоз. Вирусы имеют генетические связи с представителями флоры и фауны Земли.

Согласно последним исследованиям, геном человека более чем на 32% состоит из вирусоподобных элементов и транспозонов. Так, в геноме высших приматов существует ген, кодирующий белок синцитин, который считают, был привнесен ретровирусом.

На данный момент вирусы являются одним из крупнейших живых хранилищ неисследованного генетического разнообразия на Земле.

Таким образом, вирусы были и остаются важнейшей составляющей земной жизни на всех этапах эволюции. Однако, человечество начало изучать этот удивительный инфекционный агент совсем недавно. Более того – о самом факте его существования учёные узнали чуть больше века назад, хотя представления о заразности таких болезней, как оспа, корь и многих других, зародились еще у древних народов. Конечно, эти отрывочные наблюдения и догадки были очень далеки от настоящих научных знаний, и к концу XVIII века понимание природы инфекций было относительно примитивным.


Дмитрий Иосифович Ивановский
(1864-1920)

Настоящая революция в изучении вирусов произошла в 1892 г., когда выдающийся естествоиспытатель Дмитрий Иосифович Ивановский отправился в командировку на юг Украины для изучения мозаичной болезни табака. Исследуя эту болезнь, которая наносила огромный ущерб табачным плантациям, молодой учёный обнаружил, что возбудитель этой болезни проходит сквозь бактериальные фильтры.

После Ивановского и Бейеринка открытия совершались одно за другим. В 1898 г. Леффлер и Фрош открыли первый вирус животных – вирус ящура, а Род и Кэрролл в 1901-1902 гг. – первый вирус человека (вирус жёлтой лихорадки).

В том же 1902 г. были открыты вирусы чумы крупного рогатого скота, оспы коз, оспы овец; в 1905 г. – вирусы чумы собак, оспы коров; в 1907 г. – вирус натуральной оспы, вирус денге; в 1908 г. – вирусы полиомиелита, лейкоза кур и др.

И хотя царство вирусов было открыто ещё в конце XIX в., их глубокое изучение стало возможным лишь во второй половине XX века после изобретения электронного микроскопа и адекватных моделей для культивирования.


Мартин Бейеринк (1851—1931)

В настоящее время вирусологию определяют как медико-биологическую науку, изучающую вирусы и субвирусные агенты (вироиды, сателлиты и прионы): их строение, генетику, систематику, эволюцию, их способы заражать и эксплуатировать клетку-хозяина для размножения, их взаимодействие с иммунитетом организма-хозяина, болезни, которые они вызывают, методы их выделения и культивирования, а также использование вирусов в научных исследованиях и терапии.

Вирусы могут быть классифицированы в соответствии с теми хозяевами, которых они поражают: вирусы животных, вирусы растений, вирусы бактерий и др.

Наиболее распространённой является классификация вирусов в соответствии с типом их генетического материала и способа размножения (репликации) в клетке-хозяине. Классификация вирусов обновляется каждые пять лет по решению Международного комитета по таксономии вирусов (МКТВ).

Этот комитет предлагает классифицировать все известные вирусы по четырём иерархическими уровнями: вид, род, семья (иногда подсемейство) и порядок. Сейчас реестр классифицированных вирусов и вироидов включает 3704 вида, входящих в состав 609 родов, 27 подсемейств, 111 семей и 7 порядков.

Основной причиной изучения вирусов является их реальная угроза для человечества. Вирусы являются причиной острых массовых инфекций, на их долю приходится 90% всех инфекционных заболеваний.

Только от острых кишечных и респираторных вирусных инфекций в мире погибает 10-14 млн. человек. Кроме того, вирусы могут быть причиной развития злокачественных заболеваний и вызвать обострение хронических болезней.

Сегодня известно более 2 тысяч различных болезней человека, спектр которых постоянно пополняется за счёт ранее неизвестных: вирусные лихорадки Ласса, Эбола, Марбург, Зика, ВИЧ-инфекция, ряд вирусных кишечных болезней, вирусные гепатиты C, D, E и G, хантавирусная легочный синдром, ТОРС-коронавирус, болезни нервной системы, вызванные прионами.

Одновременно расширение спектра вирусных болезней происходит за счёт установления природы заболеваний, которые ранее считались неинфекционными (хронические гепатиты, лимфома Беркитта, саркома Капоши, Т-клеточные лейкозы и другие опухоли). Некоторые вирусные варианты онкопатологий так же отнесли к инфекционным болезням.

Давно обсуждается вопрос об инфекционной природе некоторых психических расстройств. Сегодня доказано, что в структуре причин самоубийств определённое место занимает инфекционный фактор – вирус Борна.

Также определена вирусная природа многих аутоиммунных (рассеянный склероз, сахарный диабет I типа) и аллергических (сенная лихорадка) болезней человека и животных.

Не менее 300 известных вирусов способны вызывать пандемии (грипп А, оспа, ВИЧ-инфекция, полиомиелит), эпидемии (лихорадка денге, жёлтая лихорадка, Западного Нила, Эбола, Зика), эпидемические вспышки (гепатит Е, вирус Нипа и др.) и спорадические заболевания.

Вирусы имеют большое значение для исследований в молекулярной и клеточной биологии. Поскольку они являются простыми системами, их используют для управления и изучения функционирования клеток.

Например, вирусы применяются в генетических исследованиях. Именно благодаря изучению вирусов были описаны ключевые механизмы молекулярной генетики, такие как: репликация ДНК, транскрипция, процессинг РНК, трансляция, транспорт белков, функционирования рибозимов.

Вирусы могут быть использованы как векторы для введения нужных генов в исследуемые клетки. Это дает возможность заставить клетку производить необходимые чужеродные вещества и изучать последствия введения нового гена в геном. Весьма вероятно, что вирусы найдут широкое применение в генотерапии.

Кроме того, вирусы используют с диагностической целью, для лечения бактериальных болезней, для борьбы с насекомыми-вредителями, и даже для регуляции численности популяции нежелательных животных (например – ограничение численности кроликов в Австралии).

Многие вирусы могут быть получены de novo, то есть с нуля. Первый искусственный вирус был получен в 2002 году.

Сегодня в свободном доступе в специализированных онлайновых базах данных опубликованы полные геномные последовательности 2408 различных вирусов (в том числе вируса натуральной оспы).

Вирусы являются самой распространенной формой существования органической материи на планете, оказывающей огромное влияние на другие формы жизни. Включая так называемых Homo sapiens, т.е. нас с вами. Их изучение и использование в интересах человечества – одна из важнейших задач для учёных.

В Украине развитие вирусологической науки исторически связано с Киевским национальным университетом. Так сложилось, что вот уже более 100 лет, наше учебное заведение занимает лидирующие позиции в этой области науки.

В 1962 г. в Киевском государственном университете имени Т. Г. Шевченко была открыта первая во всем СССР кафедра вирусологии, которая начала подготовку специалистов-вирусологов.

Организатором и первым заведующим кафедрой вирусологии была известный вирусолог и эпидемиолог, профессор, доктор медицинских наук Нина Петровна Корнюшенко. С декабря 2003 кафедру возглавляет профессор, доктор биологических наук, академик Высшей школы Украины, лауреат премии Украины в области науки и техники, премии НАНУ имени Д.К. Заболотного – Валерий Петрович Полищук.

Студенты, специализирующиеся на кафедре, получают основательную теоретическую и практическую подготовку по целому ряду научных направлений современной вирусологической науки, включая фитовирусологию, бактериофагию, медицинскую и ветеринарную вирусологию.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции