Что такое титр вируса и как его определить

Титр вируса — это количество вируса, содержащееся в единице объема материала. Поскольку количество вируса невозможно выразить в обычно применяемых (объем, масса и т. п.) единицах, прибегают к измерению в единицах действия или единицах активности. Вирусы обладают инфекционным и гемагглютинирующим действием. Отсюда и единицы количества вирусов инфекционные и гемагглютинирующие.

Размерность этих единиц зивисит от соотношения полноценных и неполноценных вирионов в используемой суспензии, объекта, способа титрования и других факторов. В практике нашли применение три типа единиц количества вируса: 1-й — инфекционные единицы локальных повреждений, вызываемых вирусами и оцениваемых по единичному эффекту; 2-й — инфекционные единицы 50%-ного действия вирусов на чувствительные живые объекты, оцениваемые статистически; 3-й — гемагглютинирующие единицы.

Наиболее универсален метод определения титра вируса в единицах 50%-ного инфекционного действия. По этому методу за единицу количества вируса принимается такая его доза, которая способна вызывать инфекционный эффект у 50 % зараженных тест-объектов. Она обозначается как ЭД50— эффективная 50%-ная доза. Число таких доз вируса в единице объема материала и будет выражать титр вируса в этом материале.

В качестве тест-объектов в лабораториях обычно используют белых мышей, куриные эмбрионы и культуры клеток, у которых инфекционное действие вируса может проявляться гибелью, клиническими симптомами, патологоанатомическими изменениями и цитопатическим эффектом. Для каждого вируса подбирают чувствительный к нему тест-объект и форму учета его инфекционного действия, по которой оценивают эффект заражения. В зависимости от вида тест-объекта и формы проявления инфекционного действия ЭД50 принимает один из следующих видов, приведенных в таблице 6.

1 ЛД50—это доза вируса, убивающая 50 % лабораторных животных (обычно белых мышей);

1 ИД50—доза вируса, вызывающая клинические симптомы или патологоанатомические изменения у 50 % зараженных лабораторных животных;

1 ЭЛД — доза вируса, убивающая 50 % куриных эмбрионов;

1 ЭИД50—доза вируса, вызывающая патологоанатомические изменения у 50 % зараженных куриных эмбрионов;

1 ЦПД50— доза вируса, вызывающая цитопатический эффект у 50 % зараженных культур клеток (обычно пробирок с культурами клеток).

Количество ЭД50 (ЛД50, ИД ЭЛД50, ЭИД50 или ЦПД50) вируса, содержащееся в единице объема вируссодержащего материала, и будет выражением титра (Т) вируса в этом материале. Например, Т=103,48 ЦПД50/0,1 мл означает, что в каждой 0,1 мл вируссодержащего материала содержится 103'48 доз вируса (т. е. более 1000, но менее 10 000, а именно 103,48=3020), каждая из которых способна вызвать цитопатический эффект в 50 % пробирок с культурой клеток.

Названные единицы 50%-ного инфекционного действия вируса (ЛД50, ИД50, ЭЛД50, ЭИД50, ЦПД50) используются в случаях оценки инфекционного действия вируса со статистически оцениваемым эффектом, имеющим место, когда учет инфекционного действия вируса ведется по летальному действию, клиническим симптомам, патологоанатомическим изменениям или цитопатическому действию.

Титрование вирусов по 50%-ному инфекционному действию — наиболее универсальный прием, пригодный для титрования практически любого вируса, если подобрать чувствительную к нему живую систему (текст-объект). Однако этот метод титрования вирусов довольно трудоемкий, длительный и требует статистических расчетов.

Задача определения титра вируса в единицах 50%-ного инфекционного действия (ЛД50, ИД50, ЭЛД50, ЭИД50, ЦПД50) сводится к тому, чтобы найти такое разведение испытуемого вируссодержащего материала, в объеме заражающей дозы которого содержалась бы одна ЭД50, а затем рассчитать, сколько таких единиц вируса содержится в таком же объеме вируссодержащего материала, что и будет показателем титра вируса в этом материале.

Чтобы решить эту задачу, сначала из исследуемого вируссодержащего материала готовят ряд последовательных 10-кратных разведений. 10-кратные разведения берут по двум причинам:

во-первых, как видно из графика зависимости инфекционного эффекта от дозы вируса (рис. 35), кривая этой зависимости вблизи точки, соответствующей ЭД50, на значительном отрезке приближается к прямой.

Это означает, что в определенных пределах, центр которых в точке ЭД50, между логарифмом дозы (разведения) вируса и инфекционным эффектом существует прямолинейная зависимость, т. е. величина инфекционного эффекта пропорциональна логарифму дозы вируса (или его разведения), в области малых и особенно больших доз эта зависимость нарушается;

во-вторых, при 10-кратном разведении облегчаются последующие расчеты.

Одинаковыми объемами каждого из 10-кратных разведений исследуемого вируссодержащего материала заражают равные группы чувствительных к данному вирусу живых тест-объектов (мышей, куриных эмбрионов или культур клеток). При этом в каждой группе должно быть не менее 4—6 тест-объектов, так как при меньшем количестве статистически рассчитываемая величина титра вируса будет иметь слишком большую погрешность (статистическая величина тем точнее, чем на большем количестве исходных данных она основана).После заражения учитывают результат действия вируса (гибель, клинические симптомы, патологоанатомические изменения или ЦПЭ) на зараженные объекты и определяют, в каком разведении вирус проявил свое действие на 50 % чувствительных объектов. Разведение, дающее 50%-ный эффект, рассчитывают методом прямолинейной интерполяции. Когда такое разведение нашли, то считают, что в заражающем объеме вируса, разведенного в найденное (соответствующее 50%-ному эффекту) число раз, содержится 1 ЭД50. В таком же объеме исходного (неразведенного) вируссодержащего материала таких доз (ЭД50) содержится больше во столько раз, во сколько был разведен материал, давший 1 ЭД50. Затем пересчитывают, сколько таких единиц 50%-ного инфекционного действия вируса содержится в единице объема (мл) вируссодержащего материала, что и будет выражением титра вируса в данном материале

Аннотация научной статьи по ветеринарным наукам, автор научной работы — Неминущая Л.А., Скотникова Т.А., Токарик Э.Ф., Ковальский И.В., Еремец Н.К.

На модели вирусвакцины против ньюкаслской болезни проведена автоматизация процесса статистической обработки экспериментальных результатов определения инфекционной активности вирусвакцины с помощью специализированных программных сред. Методологические подходы могут быть применены для автоматизации статистической обработки других вирусологических и микробиологических исследований.

Похожие темы научных работ по ветеринарным наукам , автор научной работы — Неминущая Л.А., Скотникова Т.А., Токарик Э.Ф., Ковальский И.В., Еремец Н.К.

ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ ПРОИЗВОДСТВА

Л. А. Неминущая, Т. А. Скотникова, Э. Ф. Токарик, И. В. Ковальский, Н. К. Еремец, Ю. Д. Фролов, В. И. Смоленский, З. А. Канарская

ПРИМЕНЕНИЕ СТАТИСТИЧЕСКИХ МЕТОДОВ В БИОТЕХНОЛОГИЧЕСКИХ ИССЛЕДОВАНИЯХ

ЧАСТЬ 2. СТАНДАРТИЗАЦИЯ УСЛОВИЙ ОПРЕДЕЛЕНИЯ ТИТРА ИНФЕКЦИОННОСТИ ВИРУСА

Ключевые слова: вакцина, культивирование вируса, титр, реакция гемагглютинации, метод Кербера, стандартизация,

На модели вирусвакцины против ньюкаслской болезни проведена автоматизация процесса статистической обработки экспериментальных результатов определения инфекционной активности вирусвакцины с помощью специализированных программных сред. Методологические подходы могут быть применены для автоматизации статистической обработки других вирусологических и микробиологических исследований.

Keywords: a vaccine, virus cultivation, titre, hemagglutination, hemagglutination reaction, a method of Kerbera, standardization, the

On model virusvaccine against Newcastle disease automation of process of statistical processing of experimental results of definition of infectious activity ND virus by means of specialised program environments is spent. Methodological approaches can be applied to automation of statistical processing of other virologic and microbiological researches.

Актуальность. Вакцины - это препараты, содержащие живые или инактивированные микроорганизмы (вирусы или бактерии), являющиеся возбудителями инфекционной болезни. Путем введения в организм человека или животного ослабленных или инактивированных

микроорганизмов в количестве, которое не может вызвать заболевание, но достаточном, чтобы организм начал реагировать на них, вырабатывается невосприимчивость организма, то есть иммунитет. При повторной встрече, но уже с настоящим (живым) возбудителем болезни организм человека или животного в состоянии предупредить заражение или ослабить последствия заболевания.

Живые вакцины содержат ослабленные живые микроорганизмы. Они способны размножаться в организме и вызывать выработку защитных факторов, которые обеспечивают невосприимчивость человека и животного к данному патогену [1]. Живые вакцины готовят, в основном, в сухом виде. Это связано с тем, что живые вакцинные штаммы микроорганизмов (вирусов и бактерий) весьма чувствительны к неблагоприятным факторам, возникающим при хранении, транспортировке и применении, особенно в условиях повышенных температур. Поэтому жидкие живые вакцины имеют короткие сроки годности и узкий температурный интервал (плюс 8 -10 °С) хранения и транспортировки

Традиционная технология изготовления сухих живых вирусных вакцин включает следующие основные этапы:

- размножение вируса в чувствительной к нему биологической системе (культуры клеток и тканей, эмбрионы птиц, организмы животных);

- приготовление вируссодержащих суспензий;

- смешивание с защитной средой;

- укупорка и этикетирование;

- контроль готовой формы вакцины по основным показателям качества [2, 3, 4, 5].

Согласно международным требованиям качество вирусных вакцин обеспечивается тремя основными показателями: безопасность,

эффективность и стабильность [6, 7].

Для культивирования вирусов предложены различные методы, однако для получения их в больших количествах, для целей изготовления противовирусных специфических препаратов с 30-х годов XX в. применяется размножение в организме восприимчивых животных, в частности, в развивающемся курином эмбрионе (КЭ), а также в тканевых культурах. Большинство известных вирусов, в том числе вирус ньюкаслской болезни (НБ), обладают способностью размножаться в курином эмбрионе. По сравнению с культурами клеток КЭ значительно реже контаминированы вирусами и микоплазмами, а также обладают сравнительно высокой жизнеспособностью и устойчивостью к различным воздействиям. Однако нельзя полностью гарантировать стерильность этой живой системы, так как эмбрионы могут нести в своем содержимом вирусы и другие патогенные агенты (вирусы инфекционного бронхита кур, ньюкаслской болезни, гриппа, лейкоза, хламидии и микоплазмы), которые могут искажать результаты исследования. Поэтому в настоящее время используют СПФ-эмбрионы (СПФ - свободные от патогенного фактора), для получения которых используют специальные технологии выращивания и контроля [1, 6, 8].

Согласно требованиям ВОЗ [9] при тестировании любого материала (объекта) необходимо использование эталонной серии (ЭС) -образца для сравнения, который предварительно должен быть охарактеризован для получения статуса эталонного. Это особенно важно, когда для контроля используют тест-системы биологической природы (например, культуры клеток и тканей, куриные эмбрионы, лабораторные животные), нестандартность которых может привести к получению ошибочных результатов.

По рекомендациям ВОЗ ЭС применяется для следующих целей:

- определение биологической активности при серийном производстве препаратов;

- комиссионное испытание препарата в случае возникновения спорных ситуаций;

- испытание нового биологического препарата;

- сравнение результатов научных исследований.

В производстве фармацевтических лекарственных средств используются хорошо поддающиеся стандартизации химико-

фармацевтические субстанции, химические и физические методы, обеспечивающие высокую степень стабильности качества самих лекарств и технологических процессов их изготовления. В отличие от них производство иммунобиологических препаратов (ИБП), в частности, вакцин, связано с биологическими материалами и сложными многооперационными процессами, и подвержено влиянию различных факторов (качество питательных сред, растворов и вирусного сырья, методов сушки, способов оценки биологических свойств полученных препаратов и т.д.). Это приводит к непостоянству спектра и природы конечных продуктов. Поэтому необходимо применение статистических методов анализа, сбора, систематизации данных для всех показателей качества [10, 11].

Контроль качества в данной отрасли относится к разрушающим видам контроля, это определяет его выборочный характер, который характеризуется применением статистических методов обработки результатов [12, 13]. Обязательной частью процесса производства является анализ характера разброса данных, количественная характеристика величины разброса и сравнение с нормативными показателями. Эталонные серии препаратов используют для стандартизации условий определения: титра инфекционности вируса, безвредности и иммуногенности образцов вакцины. В качестве эталонной серии используют часть серии вакцины, приготовленной в соответствии с нормативной документации в стандартных условиях. Образцы эталонной серии хранят при температуре Не можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Формула расчета дозы (титра) вируса по методу Кербера:

ЬяЭИД50/мл = - с(ЕЬ1 - 0.5), (1)

где - максимальное разведение вирус

содержащего материала, с - логарифм кратности разведения, Ь1 - отношение числа эмбрионов, которые при введении данного разведения вируса дали положительную реакцию ГА, к общему числу эмбрионов, инокулированных данным разведением вируса, ЕЫ - сумма значений Ь1, найденных для всех испытанных разведений. Для каждого значения титра вычисляется стандартная ошибка, которая впоследствии повлияет на значение стандартизации эксперимента.

Стандартная ошибка вычисляется по формуле:

(8эид50)2 = ^(^(1 - рО/(т - 1)), (2)

где И - интервал между разведениями (десятикратный), Р1 - вероятность положительного ответа в РГА, п1 - количество эмбрионов в одном разведении, используется при расчете доверительного интервала.

Результаты обсчета экспериментальных данных методом Кербера можно обрабатывать статистически. Однако в доступной нам литературе не найдено конкретных рекомендаций по автоматизации этого процесса.

Цель представленной работы - на модели вирусвакцины против ньюкаслской болезни

стандартизовать метод определения активности вакцинного вируса и автоматизировать процесс статистической обработки экспериментальных результатов, используя специализированные программные среды.

Стандартизацию титра инфекционности вируса НБ проводили путем многократного титрования образцов эталонной серии вакцины на различных партиях РКЭ в течение 3,5 лет. В результате получена матрица из 135 значений титра инфекционности вируса эталонной серии.

Анализ результатов многократного (n = 135) определения титра инфекционности ЭС складывается из:

- определения характера статистического распределения вероятностей экспериментальных данных;

- определения вариабельности данных по наличию "временного дрейфа";

- определения вариабельности данных по наличию сезонной изменчивости чувствительности КЭ к вирусу НБ;

- определения среднего значения титра ЭС и его доверительного интервала.

Предобработку результатов экспериментов по методу Кербера в модификации Ашмарина проводили с использованием приложения MS Excel из пакета офисных программ компании Microsoft -MS Office. В результате получены следующие базы данных (с разбивкой по сезонам).

Таблица 1 - Исходные данные

(титры вируса эталонной серии, ^ЭИД5(/мл)

зима весна лето осень

01.09* 9,8 03.09 9,1 06.10 9,1 09.10 8,7

8,8 9,3 07.10 9,1 9,5

02.09 8,6 8,4 9,4 10.10 8,9

12.10 9,3 04.09 9,6 08.10 8.5 9,4

8,7 8,6 8,6 11.10 8,9

9,4 9,1 9,3 09.11 9,2

01.11 8,9 05.09 9,0 06.11 9.4 8,5

02.11 9,0 8,9 8,7 10.11 8,8

9,0 03.11 9,1 9,6 8,8

9,1 8,7 07.11 9,4 11.11 8,2

12.11 9,3 8,9 9,0 09.12 9,0

01.12 8,4 04.11 9,4 08.11 8,6 9,9

8,8 9,0 8,8 10.12 9,5

9,5 8,9 06.12 8,8 11.12 9,3

02.12 9,2 05.11 8,5 9,2

Примечание. *01.09 - январь 2009 и так далее.

Поскольку получение экспериментальных данных данных связано с биообъектами, на которые

влияет множество факторов, характер распределения данных не определен. Это говорит о том, что данные носят статистический характер взаимосвязи и работа с ними требует использования статистической модели [18].

Алгоритм обработки представленной базы данных был следующим:

1. Описание материала.

1.1. Расчет выборочных характеристик распределения.

1.2. Построение гистограмм и полигонов частот.

2. Оценивание. Непараметрические оценки плотности и функции распределения.

3. Проверки гипотез.

3.1 Параметрические задачи проверки гипотез.

- Проверка равенства математических ожиданий для двух нормальных совокупностей.

- Проверка равенства дисперсий для двух нормальных совокупностей.

3.2 Непараметрические задачи проверки гипотез.

- Проверка гипотезы согласия с нормальным семейством распределений по критерию типа Колмогорова-Смирнова.

- Проверка гипотезы однородности выборок с помощью критерия Уилкоксона.

Первой ступенью статистического анализа является проверка распределения на близость к нормальному распределению, поскольку она является необходимой предпосылкой для корректного применения большинства классических методов математической статистики [19].

Алгоритм оценки нормальности

складывается из анализа гистограммы распределения, графика Р-Р и обобщенных показателей (асимметрия и эксцесс). Если же эти методы не дают четкого описания нормальности распределения, то проводится проверка нормальности по критериям согласия, например, Колмогорова-Смирнова или Шапиро-Вилкса. Выбор критерия зависит от объема выборки [20].

В соответствии с поставленными задачами, в работе использованы следующие статистические модели их решения:

- Построение гистограммы и вычисление обобщенных показателей выборки; - Анализ данных на наличие сезонной изменчивости;

- Проверка на наличие временного дрейфа титра инфекционности вируса ЛРЭС;

- Расчет доверительного интервала.

Статистические критерии, примененные в этой работе, подробно описаны в статье [21].

Построение гистограммы и вычисление обобщенных показателей выборки. Для того чтобы проанализировать распределение по гистограмме, на ней выводится кривая распределения (графическое представление общей закономерности изменения ряда данных). Если эта линия имеет колоколообразную симметричную форму, то можно сделать предположение, что распределение считается нормальным.

По графику Р-Р можно сделать предположение о близости распределения к

нормальному: чем ближе к прямой нормальности расположены точки на графике, тем распределение ближе к нормальному.

График 0-0 используется для поиска в определенном семействе распределений того распределения, которое наилучшим образом описывает имеющиеся данные.

Анализ гистограммы распределения и графика 0-0 позволяет судить о нормальности распределения выборки, а также вычислить основные обобщенные показатели: выборочное среднее, выборочную дисперсию и стандартное отклонение; моду и медиану; асимметрию и эксцесс.

При реализации этого шага получены следующие результаты, отображенные на рис. 3, 4

Рис. 3 - Гистограмма распределения значений титра вируса ЭС (К=135;среднее значение = 9,0 ^ЭИД50/мл; стандартное отклонение = 356 ^ЭИД5о/мл)

Рис. 4 - График для ЭС с прямой

Исходя из изображений можно сделать предположение о нормальности распределения, т.к. гистограмма имеет колоколообразную форму, а на графике большинство точек располагается

очень близко к прямой.

По значениям асимметрии и эксцесса можно сделать предположение о близости распределения значений к нормальному

распределению, т. к. их значения имеют один ранг и близки к нулю.

Поскольку объем выборки п = 135 (> 50) для подтверждения предположения о нормальности выборки применен критерий Колмогорова-Смирнова.

Таблица 2 - Обобщенные статистические показатели титра инфекционности вируса ЭС

Статистический показатель Значение Стандартная ошибка

Титр Среднее 8,999 0,4308

95% доверительный интервал для среднего Нижняя граница 8,938

Верхняя граница 9,059

Стандартное отклонение 0,3976

Асимметрия 0,083 0,209

Эксцесс 0,034 0,414

Для выборки размером N=135 критическое значение = 0,117. Из неравенства Вэксп Не можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Методологические подходы могут быть применены для автоматизации статистической обработки данных других вирусологических и микробиологических исследований.

Перспективность внедрения на

промышленных биотехнологических предприятиях средств автоматизации статистической обработки результатов, полученных в ходе МБИ, особенно важна в связи с необходимостью соответствия системы обеспечения качества

иммунобиологических препаратов международным и национальным требованиям.

1. Сергеев В.А., Непоклонов Е.А., Алипер Т.И. Вирусы и вирусные вакцины. Библионика. М. 524 с. (2007).

2. Самуйленко А.Я., Василевич Ф.И., Воронин Е.С. Биотехнология: Уч. РАСХН. М. 746 с. (2012).

3. Скотникова Т.А. Авт. дисс. д-ра биол. наук, Щелково. 48с. (2010).

4. Школьников Е.Э., Еремец Н.К., Павленко И.В., Неминущая Л.А., Скотникова Т.А., Токарик Э.Ф., Бобровская И.В., Филимонов Д.Н., Гаврилов В.В., Ковальский И.В., Канарская З.А., Хусаинов И.А. Вест. Казан. технол. унив. Т. 17. № 13. с. 255 - 263 (2014).

5. Неминущая Л.А., Скотникова Т.А., Титова Е.И., Провоторова О.В., Еремец Н.К., Бобровская И.В., Канарская З.А. Вест. Казан. технол. унив. Т. 15. № 4, с. 69 - 74. (2012).

6. Скотникова Т.А., Неминущая Л.А., Еремец Н.К., Самуйленко А.Я., Кржижановская Е.В., Чулков А.К. III Межд. вет. Конг. по птицеводству. М. с.58 - 59. (2007).

7. Смоленский В.И., Зуев Ю.В., Руденко Т.В., Горева И.П. Ветеринария. № 1. с 44 - 47. (2011).

8. Самуйленко А.Я., Соловьев Б.В, Непоклонов Е.А., Воронин Е.С., Фомина Н.В., Гринь С.А., Белоусов В.И., Мельник Н.В., Рубан Е.А., Еремец В.И., Сапегина Е.П., Ямникова С. С., Цыбанов С. Ж. Инфекционная патология животных. Т. 2. ИкЦ Академкнига. М. 8007с. (2006).

9. Комитет экспертов ВОЗ по стандартизации биологических препаратов. 41 доклад. Женева. С. 22 -24. (1994).

10. Неминущая Л.А., Еремец О.В., Скотникова Т.А., Еремец Н.К., Токарик Э.Ф., Еремец В.И, Самуйленко А.Я., Безгин В.М., Егоров В.Е., Ганяев А.М. Ветеринарный врач. № 5, с. 29 - 32. (2010).

11. Неминущая Л.А., Скотникова Т.А., Токарик Э.Ф., Еремец Н.К., Люлькова Л.С., Бобровская И.В., Еремец О.В., Малышева М.А., Метод. пособие по применению статистических методов для оценки стабильности технологического процесса производства лекарственных средств для ветеринарии. Утв. РАСХН. М. 28с. (2011).

12. Белоусова Р.В., Троценко Н.И., Преображенская Э.А.. Практикум по ветеринарной вирусологии. Колос. М. 248 с. (2006).

13. Белоусова Р.В., Преображенская Э.А., Третьякова И.В.. Ветеринарная вирусология, Колос. М. 424 с. (2007).

14. Стандартизация результатов по титрованию инфекционности вирусов. Комитет экспертов ВОЗ по стандартизации биологических препаратов, СТД ВОЗ. № 658 (31-й доклад). Женева. С. 157-173. (1981).

15. ТУ 10-19-212-86. Вирусвакцина сухая против ньюкаслской болезни птиц, штамм Ла-Сота.

16. Метод. указания по определению по определению уровня антител к вирусу ньюкаслской болезни в РТГА. № 13-7-2/988. (1997)

17. Реброва О. Ю. Статистический анализ медицинских данных. Применение пакета прикладных программ ВТАТКТГСА, М. 79с. (2003).

18. Стентон Г. Медико-биологическая статистика. Практика. М. 459 с. (1999).

19. Гмурман В.Е. Теория вероятностей и математическая статистика. Высшая школа. М. 480 с. 1997.

21. Павленко И.В., Самуйленко А.Я., Еремец В.И., Бобровская И.В., Нежута А.А., Канарский А.В., Канарская З.А. Вест. Казан. технол. унив. Т. 16. № 8 (3). с. 226-232. (2013).

22. Павленко И.В., Самуйленко А.Я., Раевский А.А., Еремец В. И., Нежута А. А., Канарский А. В., Канарская З.А. Вест. Казан. технол. унив. Т. 16. № 8 (3). с. 220-226. (2013).

23. Самуйленко А.Я., Раевский А.А., Павленко И.В., Еремец Н.К., Бобровская И.В., Канарский А.В., Канарская З.А. Вест. Казан. технол. унив. Т. 16. № 9. с. 165-171. (2013).

24. Павленко И.В., Самуйленко А.Я, Еремец В.И., Нежута А.А., Канарский А. В., Канарская З. А. Вест. Казан. технол. унив. Т. 16. № 9. с. 171 - 176. (2013).

25. Павленко И.В., Самуйленко А.Я, Еремец В.И., Нежута А.А., Канарский А.В. Вест. Казан. технол. унив. Т. 16. № 9. с. 176 - 181. (2013).

Ознакомление с методикой титрования вирусов.

Оборудование и материалы

Задачи на определение титра вируса в ЭД50 по фактическим данным, выписанным на карточки (на каждого студента по одной карточке, всего не менее 10 вариантов задач); аллантоисная жидкость куриных эмбрионов, зараженных вирусом ньюкаслской болезни; 1- процентная суспензия отмытых эритроцитов кур; физиологический раствор (изотонический раствор NaCl); плексигласовые панели с лунками; градуированные пипетки на 1 мл; резиновые груши; сосуды с дезраствором; карандаши для записи по стеклу, калькуляторы, логарифмические таблицы, мультимедийное оборудование, презентации MS Office Power Point по теме занятия.

Методика проведения занятия и методические указания по теме.

В лабораторных работах с вирусами, биофабричном производстве и в ветеринарной практике постоянно возникает необходимость определения количества вирусов в том или ином материале. Без такого определения невозможны экспериментальное заражение вирусами живых лабораторных систем, производство живых и инактивированных противовирусных вакцин и диагностических препаратов, оценка активности живых противовирусных вакцин, получение иммунных сывороток и многие другие работы.

Количество вируса в каком-либо материале определяют по титру вируса в этом материале. Под титром вируса понимают выражение его концентрации в материале.

Титр вируса - это количество вируса, содержащееся в единице объема материала

Поскольку количество вируса невозможно выразить в обычно применяемых (объем, масса и т. и.) единицах, прибегают к измерению в единицах действия или единицах активности. Вирусы обладают инфекционным и гемагглютинирующим действием. Отсюда и единицы количества вирусов инфекционные и гемагглютинирующие.

Размерность этих единиц зивисит от соотношения полноценных и неполноценных вирионов в используемой суспензии, объекта, способа титрования и других факторов. В практике нашли применение три типа единиц количества вируса: 1-й - инфекционные единицы локальных повреждений, вызываемых вирусами и оцениваемых по единичному эффекту; 2-й - инфекционные единицы 50-процентного действия вирусов на чувствительные живые объекты, оцениваемые статистически; 3-й - гемагглютинирующие единицы.

Из локальных повреждений, вызываемых вирусами, наиболее известны бляшки в зараженных культурах клеток (островки мертвых клеток в слое живых) и оспины (некротические узелки) на ХАО куриных эмбрионов, зараженных оспенными и некоторыми другими вирусами. В случаях такого проявления инфекционной активности вирусов количество вируса может быть измерено в бляшкообразующих единицах (БОЕ) или оспообразующих единицах (ООЕ). Одна БОЕ равна дозе вируса, способной вызвать образование одной бляшки, а одна ООЕ - одной оспины.

Наиболее универсален метод определения титра вируса в единицах 50-процентного инфекционного действия. По этому методу за единицу количества вируса принимается такая его доза, которая способна вызывать инфекционный эффект у 50 % зараженных тест-объектов. Она обозначается как ЭД50 - эффективная 50-процентная доза.

Число таких доз вируса в единице объема материала и будет выражать титр вируса в этом материале.

Таблица 6 - Виды единиц количества вирусов при определении _ по 50-процентному инфекционному действию_

Виды инфекционного действия вирусов

Единицы количества вирусов

50-процентная летальная доза

Клинические симптомы или патологоанатомические изменения

50-процентная эмбриональная летальная доза

В качестве тест-объектов в лабораториях обычно используют белых мышей, куриные эмбрионы и культуры клеток, у которых инфекционное действие вируса может проявляться гибелью, клиническими симптомами, патологоанатомическими изменениями и цитопа- тическим эффектом. Для каждого вируса подбирают чувствительный к нему тест-объект и форму учета его инфекционного действия, по которой оценивают эффект заражения. В зависимости от вида тест- объекта и формы проявления инфекционного действия ЭД50 принимает один из следующих видов, приведенных в таблице 6.

  • 1 ЛД50 - это доза вируса, убивающая 50 % лабораторных животных (обычно белых мышей);
  • 1 ИД50 — доза вируса, вызывающая клинические симптомы или патологоанатомические изменения у 50 % зараженных лабораторных животных;
  • 1 ЭЛД — доза вируса, убивающая 50 % куриных эмбрионов;
  • 1 ЭИД5о — доза вируса, вызывающая патологоанатомические изменения у 50 % зараженных куриных эмбрионов;
  • 1 ЦПД50 — доза вируса, вызывающая цитопатический эффект у 50 % зараженных культур клеток (обычно пробирок с культурами клеток).

Количество ЭД50 (ЛД50, ИД ЭЛД50, ЭИД50 или ЦПД50) вируса, содержащееся в единице объема вируссодержащего материала, и будет выражением титра (Т) вируса в этом материале. Например, Т=10 3,4 ЦПД5о/0,1 мл означает, что в каждой 0,1 мл вируссодержащего материала содержится 10 3 ’ 48 доз вируса (т. е. более 1000, но менее 10 000, а именно 10 3 ’ 48 = 3020), каждая из которых способна вызвать цитопатический эффект в 50 % пробирок с культурой клеток.

Названные единицы 50-процентного инфекционного действия вируса (ЛД50, ИД50, ЭЛД50, ЭИД50, ЦПД50) используются в случаях оценки инфекционного действия вируса со статистически оцениваемым эффектом, имеющим место, когда учет инфекционного действия вируса ведется по летальному действию, клиническим симптомам, патологоанатомическим изменениям или цитопатическому действию.

Титрование вирусов по 50-процентному инфекционному действию - наиболее универсальный прием, пригодный для титрования практически любого вируса, если подобрать чувствительную к нему живую систему (текст-объект). Однако этот метод титрования вирусов довольно трудоемкий, длительный и требует статистических расчетов.

Задача определения титра вируса в единицах 50-процентного инфекционного действия (ЛД50, ИД50, ЭЛД50, ЭИД50, ЦПД50) сводится к тому, чтобы найти такое разведение испытуемого вируссодержащего материала, в объеме заражающей дозы которого содержалась бы одна ЭД50, а затем рассчитать, сколько таких единиц вируса содержится в таком же объеме вируссодержащего материала, что и будет показателем титра вируса в этом материале.

Чтобы решить эту задачу, сначала из исследуемого вируссодержащего материала готовят ряд последовательных 10-кратных разведений. 10-кратные разведения берут по двум причинам:

во-первых, как видно из графика зависимости инфекционного эффекта от дозы вируса (рис. 36), кривая этой зависимости вблизи точки, соответствующей ЭД5о, на значительном отрезке приближается к прямой.


Рисунок 36 - График зависимости инфекционного эффекта от дозы вируса

Это означает, что в определенных пределах, центр которых в точке ЭД50, между логарифмом дозы (разведения) вируса и инфекционным эффектом существует прямолинейная зависимость, т. е. величина инфекционного эффекта пропорциональна логарифму дозы вируса (или его разведения), в области малых и особенно больших доз эта зависимость нарушается;

во-вторых, при 10-кратном разведении облегчаются последующие расчеты.

Одинаковыми объемами каждого из 10-кратных разведений исследуемого вируссодержащего материала заражают равные группы чувствительных к данному вирусу живых тест-объектов (мышей, куриных эмбрионов или культур клеток). При этом в каждой группе должно быть не менее 4-6 тест-объектов, так как при меньшем количестве статистически рассчитываемая величина титра вируса будет иметь слишком большую погрешность (статистическая величина тем точнее, чем на большем количестве исходных данных она основана).

После заражения учитывают результат действия вируса (гибель, клинические симптомы, патологоанатомические изменения или ЦПЭ) на зараженные объекты и определяют, в каком разведении вирус проявил свое действие на 50 % чувствительных объектов. Разведение, дающее 50-процентный эффект, рассчитывают методом прямолинейной интерполяции. Когда такое разведение нашли, то считают, что в заражающем объеме вируса, разведенного в найденное (соответствующее 50-процентному эффекту) число раз, содержится 1 ЭД50. В таком же объеме исходного (неразведенного) вируссодержащего материала таких доз (ЭД5о) содержится больше во столько раз, во сколько был разведен материал, давший 1 ЭД50. Затем пересчитывают, сколько таких единиц 50-процентного инфекционного действия вируса содержится в единице объема (мл) вируссодержащего материала, что и будет выражением титра вируса в данном материале.

  • 1 Рассчитать титр вируса в единицах 50-процентного инфекционного действия по предложенным фактическим данным.
  • 20пределить титр вируса ньюкаслской болезни в аллантоисной жидкости в единицах гемагглютинирующего действия.

Самостоятельная работа студентов

  • а) подготовка панелей, пипеток и материала;
  • б) получение последовательных 2-кратных разведений вируса по 0,5 мл или по 0,2 мл;
  • в) добавление 1-процентной суспензии эритроцитов;
  • г) учет результатов и их интерпретация. Во время экспозиции переписывание в тетрадь (с доски или таблицы) схемы титрования антител к вирусу ньюкаслской болезни в РТГА.

Подведение итогов занятия Задание к следующему занятию Контрольные вопросы

  • 1 Что такое титр вируса?
  • 2 Каковы единицы измерения количества вируса?
  • 3 Каков принцип определения титра вируса в БОЕ и ООЕ?
  • 4 В чем принцип определения титра вируса в единицах 50- процентного инфекционного действия?
  • 5 Какова методика расчета титра вируса в единицах 50- процентного инфекционного действия?
  • 6 В чем принцип определения титра вируса в ГАЕ?
  • 7 Каковы достоинства и недостатки разных методов титрования вирусов?

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции