Кишечная палочка имеет рибосомы

Структура бактериальной клетки

Бактериальная клетка состоит из клеточной стенки, цитоплазматической мембраны, цитоплазмы с включениями и ядерного аппарата, называемого нуклеоидом. Имеются другие структуры: мезосома, хроматофоры, тилакоиды, вакуоли, включения полисахаридов, жировые капельки, капсула (микрокапсула, слизь), жгутики, пили. Некоторые бактерии способны образовывать споры.
Структуру и морфологию бактерий изучают с помощью различных методов микроскопии: световой, фазово-контрастной, интерференционной, темнопольной, люминесцентной и электронной.

Обозначения:

1-гранулы поли-β-оксимасляной кислоты;
2-жировые капельки;
3-включения серы;
4-трубчатые тилакоиды;
5-пластинчатые тилакоиды;
6-пузырьки;
7-хроматофоры;
8-нуклеоид;
9-рибосомы;
10-цитоплазма;
11-клеточная стенка;
12-цитоплазматическая мембрана;
13-мезосома;
14-вакуоли;
15ламелярные структуры;
16гранулы полисахарида;
17гранулы полифосфата.


Цитоплазматическая мембрана при электронной микроскопии ультратонких срезов представляет собой трехслойную мембрану (2 темных слоя толщиной по 2,5 нм разделены светлым - промежуточным). По структуре она похожа на плазмалемму клеток животных и состоит из двойного слоя фосфолипидов с внедренными поверхностными, а также интегральными белками, как бы пронизывающими насквозь структуру мембраны. При избыточном росте (по сравнению с ростом клеточной стенки) цитоплазматическая мембрана образует инвагинаты — впячивания в виде сложно закрученных мембранных структур, называемые мезосомами. Менее сложно закрученные структуры называются внутрицитоплазматическими мембранами.


Нуклеоид — эквивалент ядра у бактерий. Он расположен в центральной зоне бактерий в виде двунитевой ДНК, замкнутой в кольцо и плотно уложенной наподобие клубка. Ядро бактерий, в отличие от эукариот, не имеет ядерной оболочки, ядрышка и основных белков (гистонов). Обычно в бактериальной клетке содержится одна хромосома, представленная замкнутой в кольцо молекулой ДНК.
Кроме нуклеоида, представленного одной хромосомой, в бактериальной клетке имеются внехромосомные факторы наследственности - плазмиды, представляющие собой ковалентно замкнутые кольца ДНК.

Капсула - слизистая структура толщиной более 0,2мкм, прочно связанная с клеточной стенкой бактерий и имеющая четко очерченные внешние границы. Капсула различима в мазках-отпечатках из патологического материала. В чистых культурах бактерий капсула образуется реже. Она выявляется при специальных методах окраски мазка (например, по Бурри-Гинсу), создающих негативное контрастирование веществ капсулы: тушь создает темный фон вокруг капсулы. Капсула состоит из полисахаридов (экзополисахаридов), иногда из полипептидов, например, у сибиреязвенной бациллы она состоит из полимеров D-глутаминовой кислоты. Капсула гидрофильна, препятствует фагоцитозу бактерий. Капсула антигенна: антитела против капсулы вызывают ее увеличение (реакция набухания капсулы).
Многие бактерии образуют микрокапсулу - слизистое образование толщиной менее 0,2мкм, выявляемое лишь при электронной микроскопии. От капсулы следует отличать слиэь - мукоидные экзополисахариды, не имеющие четких границ. Слизь растворима в воде.
Бактериальные экзополисахариды участвуют в адгезии (прилипании к субстратам), их еще называют гликокаликсом. Кроме синтеза
экзополисахаридов бактериями, существует и другой механизм их образования: путем действия внеклеточных ферментов бактерий на дисахариды. В результате этого образуются декстраны и леваны.

Жгутики бактерий определяют подвижность бактериальной клетки. Жгутики представляют собой тонкие нити, берущие начало от цитоплазматической мембраны, имеют большую длину, чем сама клетка. Толщина жгутиков 12-20 нм, длина 3-15 мкм. Они состоят из 3 частей: спиралевидной нити, крюка и базального тельца, содержащего стержень со специальными дисками (1 пара дисков - у грамположительных и 2 пары дисков - у грамотрицательных бактерий). Дисками жгутики прикреплены к цитоплазматической мембране и клеточной стенке. При этом создается эффект электромотора со стержнем-мотором, вращающим жгутик. Жгутики состоят из белка - флагеллина (от flagellum - жгутик); является Н-антигеном. Субъединицы флагеллина закручены в виде спирали.
Число жгутиков у бактерий различных видов варьирует от одного (монотрих) у холерного вибриона до десятка и сотен жгутиков, отходящих по периметру бактерии (перитрих) у кишечной палочки, протея и др. Лофотрихи имеют пучок жгутиков на одном из концов клетки. Амфитрихи имеют по одному жгутику или пучку жгутиков на противоположных концах клетки.


Пили (фимбрии, ворсинки) - нитевидные образования, более тонкие и короткие (3-10нм х 0, 3-10мкм) , чем жгутики. Пили отходят от поверхности клетки и состоят из белка пилина, обладающего антигенной активностью. Различают пили, ответственные за адгезию, то есть за прикрепление бактерий к поражаемой клетке, а также пили, ответственные за питание, водносолевой обмен и половые (F-пили), или конъюгационные пили. Пили многочисленны - несколько сотен на клетку. Однако, половых пилей обычно бывает 1-3 на клетку: они образуются так называемыми "мужскими" клетками-донорами, содержащими трансмиссивные плазмиды (F-, R-, Col-плазмиды). Отличительной особенностью половых пилей является взаимодействие с особыми "мужскими" сферическими бактериофагами, которые интенсивно адсорбируются на половых пилях.

Споры - своебразная форма покоящихся фирмикутных бактерий, т.е. бактерий
с грамположительным типом строения клеточной стенки. Споры образуются при неблагоприятных условиях существования бактерий (высушивание, дефицит питательных веществ и др.. Внутри бактериальной клетки образуется одна спора (эндоспора). Образование спор способствует сохранению вида и не является способом размножения, как у грибов. Спорообразующие бактерии рода Bacillus имеют споры, не превышающие диаметр клетки. Бактерии, у которых размер споры превышает диаметр клетки, называются клостридиями, например, бактерии рода Clostridium (лат. Clostridium - веретено). Споры кислотоустойчивы, поэтому окрашиваются по методу Ауески или по методу Циля-Нильсена в красный, а вегетативная клетка в синий цвет.

Форма спор может быть овальной, шаровидной; расположение в клетке -терминальное, т.е. на конце палочки (у возбудителя столбняка), субтерминальное - ближе к концу палочки (у возбудителей ботулиэма, газовой гангрены) и центральное (у сибиреязвенной бациллы). Спора долго сохраняется из-за наличия многослойной оболочки, дипиколината кальция, низкого содержания воды и вялых процессов метаболизмов. В благоприятных условиях споры прорастают, проходя три последовательные стадии: активация, инициация, прорастание.

Вопрос 1. Какое строение имеет бактериальная клетка?
Бактерии были описаны в 1676 г. голландским натуралистом Антони ван Левенгуком. Размеры бактериальных клеток колеблются в среднем от 0,1 до 10 мкм. Тело бактерий состоит из одной клетки, однако бактерии могут образовывать колонии в виде шариков, нитей, пленок. Многоклеточные представители встречаются среди цианобактерий (синезеленых водорослей). В клетках бактерий нет оформленного ядра. Генетический аппарат бактерий представлен одной кольцевой молекулой ДНК (бактериальной хромосомой), которая присоединена в определенном месте к клеточной мембране и занимает в цитоплазме пространство, называемое нуклеоидом. У бактерий отсутствуют мембранные органеллы, характерные для клеток эукариот: эндоплазматическая сеть, аппарат Гольджи, митохондрии, пластиды и ряд других. В цитоплазме бактериальных клеток имеются рибосомы, на которых происходит синтез белка. Рибосомы бактерий мельче рибосом эукариот. Бактериальная клетка от внешней среды отграничена плазматической мембраной типичного строения. Снаружи от мембраны клетка бактерий покрыта жесткой клеточной стенкой, в состав которой входит полисахарид муреин. Клеточная стенка проницаема для воды, ионов и низкомолекулярных соединений, но непроницаема для крупных полимерных молекул. Поверх клеточной стенки у бактерий может располагаться капсула или слои слизи. Эти образования служат дополнительной защитой для клеток и участвуют в формировании колоний. Плазматическая мембрана образует впячивания внутрь клетки, которые называются мезосомами; на их поверхности локализованы ферменты, принимающие участие в дыхательных процессах. У фотосинтезирующих бактерий во впячиваниях плазматической мембраны встроены фотосинтетические пигменты. Существуют неподвижные и подвижные бактерии. У подвижных бактерий имеется один или несколько жгутиков. Жгутики бактерий устроены иначе, чем у эукариот. Они представляют собой полый цилиндр из особых белков и не покрыты цитоплазматической мембраной (рис. 2).

По форме клетки бактерий можно разделить на 4 основных типа:
1) бациллы имеют форму палочек. Среди них есть как одиночные (кишечная палочка), так и собранные в цепочки (возбудитель сибирской язвы);
2) кокки имеют форму шариков. Если они располагаются попарно — это диплококки (возбудитель пневмонии), если образуют цепочки клеток — то стрептококки (возбудители ангины, скарлатины), если они сгруппированы в комочки, напоминающие виноградную кисть, — то это стафилококки (вызывают пищевые отравления);
3) вибрионы — это бактерии, имеющие изогнутую форму и напоминающие запятую (возбудитель холеры);
4) спириллы — это нитевидные или закрученные по спирали клетки. На них похожи спирохеты. Спириллы и спирохеты отличаются друг от друга по способу перемещения.

Вопрос 2. Чем отличается бактериальная клетка от растительной?
Бактериальная клетка отличается от растительной по составу и строению клеточной оболочки. В бактериальной клетке нет ядра, отделенного от цитоплазмы оболочкой. В растительной клетке ядро есть. Для растительной клетки характерны пластиды, митохондрии, эндоплазматическая сеть в бактериальной они отсутствуют, хотя некоторые из них имеют пигменты. Снаружи от мембраны клетка бактерий покрыта жесткой клеточной стенкой, в состав которой входит полисахарид муреин, а стенка растительной клетки состоит из целлюлозы.

Вопрос 3. Какие бактерии называют сапротрофами, а какие - паразитами?
Для получения необходимой энергии бактерии могут использовать готовые органические вещества; такие бактерии называют гетеротрофами. Они получают энергию при окислении органических веществ кислородом или при сбраживании (без участия кислорода). В зависимости от субстрата, на котором они развиваются, различают сапрофитные бактерии (питаются мертвым органическим веществом, например, бактерии гниения, молочнокислые бактерии); бактерии-паразиты (развиваются только на живых организмах, например, менингококки, гонококки).

Вопрос 4. Как бактерии размножаются?
Размножаются бактерии вегетативно, простым делением клетки пополам (бинарное деление). Перед делением клетки у них происходит удвоение молекулы ДНК. У некоторых бактерий деление может происходить каждые 20 минут. Почкование – на материнской клетке образуется небольшой бугорок, содержащий дочернее нуклеоид. Почка растет до материнских размеров и отделяется от нее. Помимо вегетативного размножения у бактерий может происходить обмен генетическим материалом. Этот процесс называется генетической рекомбинацией.

Вопрос 5. Что происходит с бактериями при наступлении неблагоприятных условий?
При наступлении неблагоприятных (при недостатке пищи, влаги, резких изменениях температуры) условий некоторые бактерии образуют толстостенные споры. Споры эндогенного происхождения, то есть формируются внутри клеток, и служат не для размножения, а для перенесения неблагоприятных условий и распространения. Споры способны выдерживать нагревание, переохлаждение, облучение и могут сохраняться живыми десятки лет.

Митохондриальная рибосомных белков L31
Идентификаторы
Условное обозначение L31
Pfam PF09784
InterPro IPR016340
PROSITE PDOC00880
СКОП 1m90
СУПЕРСЕМЕЙСТВА 1m90
Доступные белковые структуры:
Pfam сооружения
PDB RCSB PDB ; PDBe ; PDBj
PDBsum краткое описание структуры

Рибосомных белков (г-белок или rProtein) является любой из белков , которые, в сочетании с рРНК , входящих в состав рибосомных субъединиц , участвующих в клеточном процессе перевода . Большая часть знаний об этих органических молекулах пришла из исследования кишечной палочки рибосом. Все рибосомные белки были выделены и многие специфические антитела были произведены. Они, вместе с электронной микроскопией и использованием определенных реактивов, позволили для определения топографии белков в рибосоме. Кишечная палочка , другие бактерии и археи имеют 30S малой субъединицы и 50S большой субъединицу, тогда как люди и дрожжи имеют 40S малой субъединицы и 60S большой субъединицу. Эквивалентные субъединицы часто пронумерованы по- разному между бактериями, Archaea, дрожжами и человеком. Совсем недавно, почти полная (около) атомной картины рибосомных белков складывается из последних данных крио-ЭМ высокого разрешения (включая PDB ID: 5AFI).

содержание

Сохранение рибосомных белков

РИБОСОМНЫЕ белки являются одними из наиболее консервативных белков во всех формах жизни. Среди 40 белков , обнаруженных в различных небольших субъединицами рибосом , 15 субъединиц повсеместно сохраняется через прокариот и эукариот. Тем не менее, 7 субъединиц можно найти только у бактерий (S21, S6, S16, S18, S20, S21, и THX), в то время как 17 субъединиц можно найти только в архей и эукариот. Как правило , 22 белки обнаружены в бактериальных 30S субъединиц и 32 у дрожжей, человека и скорее всего большинство других видов эукариот. Двадцать семь (из 32) белков в эукариотических небольших рибосомной субъединицы белков также присутствуют в архебактерий (не рибосомных белков не только найдены в архебактерий), подтверждая , что они более тесно связаны с эукариот , чем эубактерий.

Среди большой субъединицы рибосомы , 18 белки являются универсальными, т.е. встречаются как бактерии, эукариот и архей. 14 белки можно найти только у бактерий, в то время как 27 белки можно найти только в архей и эукариот. Опять же , Archea нет белков , уникальных для них

существенность

Несмотря на их высокое сохранение за миллиарды лет эволюции, отсутствие нескольких рибосомных белков в определенных видах показывает , что были добавлены и потеряли в течение эволюции рибосом субъединиц. Это также отражает тот факт , что несколько рибосомных белков не кажутся существенным при удалении. Так , например, в E.coli , девять рибосомных белков (L15, L21, L24, L27, L29, L30, L34, S9, S17 и) несущественны для выживания , когда удалены. В совокупности с предыдущими результатами, 22 из 54 E.coli , рибосомных генов белков могут быть индивидуально удалено из генома. Аналогичным образом , 16 рибосомных белков (L1, L9, L15, L22, L23, L28, L29, L32, L33.1, L33.2, L34, L35, L36, S6, S20 и S21) были успешно удалены в Сенная палочка . В сочетании с предыдущими сообщениями, 22 рибосомных белки были показаны, что несущественными в В. зиЫШзе , по крайней мере , для пролиферации клеток.

Белки в E.coli , рибосом

Рибосома кишечной палочки имеет около 22 белков в малой субъединицы (помеченными от S1 до S22) и 33 белков в большой субъединицы (несколько контр-интуитивно называемые L1-L36). Все они отличаются с тремя исключениями: один белок содержится в обеих субъединиц (S20 и L26), L7 и L12 являются ацетилированные и метилированные формы одного и того же белка, и L8 представляет собой комплекс L7 / L12 и L10. Кроме того, L31 , как известно, существует в двух формах, по всей длине на 7,9 килодальтон (кДа) и фрагментирован на 7,0 кДа. Именно поэтому количество белков в рибосоме имеет 56 для S1 (с молекулярной массой 61,2 кДа) , за исключением, другие белки варьируются в весе от 4,4 до 29,7 кДа.

Планировка в небольшой субъединицы рибосомы

В небольшом (30S) субъединицы E.coli , рибосом, белки обозначается S4, S7, S8, S15, S17, S20 связываются независимо друг от друга к 16S рРНК. После сборки этих первичных связывающих белков, S5, S6 , S9, S12, S13, S16, S18, S19 и связывают с растущей рибосомы. Эти белки также потенцируют добавление S2, S3, S10, S11, S14, S21 и. Белок связывание с винтовыми переходов имеет важное значение для инициирования правильной третичной складку РНК и организовать общую структуру. Почти все белки содержат один или несколько глобулярных доменов. Кроме того, почти все они содержат длинные расширения , которые могут контактировать с РНК в далеко идущие регионы [ссылки необходимо]. Дополнительная стабилизация вытекает из основных остатков белков, так как они нейтрализуют заряд отталкивание РНК - цепи. Белок-белковые взаимодействия также существуют для хранения структуры вместе с помощью электростатических и водородных связывающих взаимодействий. Теоретические исследования указывают на коррелированных воздействия белка связывания с аффинностью связывания в процессе сборки

Таблица из E.coli малых 30S рибосомных субъединиц белки

Подгруппа No. имя субъединиц E.coli белок Pfam семья с E.coli белка UniProt присоединение E.coli белка
1 S1 RS1_ECOLI PF00575 P0AG67
2 S2 RS2_ECOLI PF00318 P0A7V0
3 S3 RS3_ECOLI PF00189, PF07650 P0A7V3
4 S4 RS4_ECOLI PF00163, PF01479 P0A7V8
5 S5 RS5_ECOLI PF00333, PF03719 P0A7W1
6 S6 RS6_ECOLI PF01250 P02358
7 S7 RS7_ECOLI PF00177 P02359
8 S8 RS8_ECOLI PF00410 P0A7W7
9 S9 RS9_ECOLI PF00380 P0A7X3
10 S10 RS10_ECOLI PF00338 P0A7R5
11 S11 RS11_ECOLI PF00411 P0A7R9
12 S12 RS12_ECOLI PF00164 P0A7S3
13 S13 RS13_ECOLI PF00416 P0A7S9
14 S14 RS14_ECOLI PF00253 P0AG59
15 S15 RS15_ECOLI PF00312 P0ADZ4
16 S16 RS16_ECOLI PF00886 P0A7T3
27 S17 RS17_ECOLI PF00366 P0AG63
28 S18 RS18_ECOLI PF01084 P0A7T7
29 S19 RS19_ECOLI PF00203 P0A7U3
20 S20 RS20_ECOLI PF01649 P0A7U7
21 S21 RS21_ECOLI PF01165 P68681
22 S22 RS22_ECOLI PF08136 C8U8F3

Сборка рибосом эукариот

Рибосомы, которые синтезируют протеые клетки, являются сложными рибонуклеопротеидами , что в эукариоте, содержащие 79-80 белок и четыре рибосомального РНК (рРНК). Общие или специализированные наставники солюбилизации рибосомные белки и способствуют их импорта в ядро . Сборка эукариотической рибосомы , как представляется, обусловлена рибосомными белками в естественных условиях , когда сборка также способствовала наставникам. Большинство рибосомных белки собирают с рРНКом ко-транскрипционны, став связан более стабильно , как сборочные средства, а также активные участки обоего субъединиц построены в прошлом.

Откуда ты взялась?

Митохондрия когда-то была бактерией, но примерно 2 500 миллионов лет назад ее проглотил предок эукариотической (то есть содержащей ядро) клетки, и с тех пор они живут с нами. Точнее — в нас. Так гласит теория симбиогенеза, которой в прошлом году исполнилось 50 лет. Ее подтверждают многие особенности строения митохондрий — например, у них две мембраны разного состава (снаружи — клеточная, а под ней еще одна — бактериальная). А если забраться под них, то внутри можно найти характерные для бактерий рибосомы (они меньше, чем эукариотические) и свернутую в кольцо ДНК. Впрочем, никто не знает точно, как именно и зачем бактерия — будущая митохондрия — оказалась внутри клетки. Возможно, такое сожительство было чем-то выгодно для обеих.

Недавно ученые взяли дрожжи (эукариот) и кишечную палочку (прокариот) и заставили первых проглотить вторую. Правда, для этого пришлось сделать так, чтобы они не могли выжить друг без друга. Бактерий лишили гена, отвечающего за производство витаминов, а дрожжам удалили митохондрии, чтобы они не могли получать энергию. Гибридные клетки, образовавшиеся после поглощения бактерий, были вполне жизнеспособны. Однако это лишь модель, и мы все еще не знаем, каким путем двигалась эволюция на самом деле.

Куда ты подевала гены?

За то время, что эукариотическая клетка и митохондрия живут вместе, они окончательно лишились своей автономности. И если без энергии, поставляемой митохондриями, клетка существовать может (хотя полностью безмитохондриальных эукариот все равно мало), то бывшая бактерия превратилась в полностью зависимое от хозяина существо. В геноме наших, человеческих, митохондрий, осталось всего 37 генов, остальные же либо потерялись за ненадобностью, либо перекочевали в ядро. Как именно гены перемещались по клетке, точно никто не знает — мы можем только догадываться.

Не ты ли меня старишь?

Теорий старения люди успели придумать несколько сотен, из них множество так или иначе связаны с митохондриями. Одни полагают, что митохондрии изнашиваются с годами, поэтому клетки получают все меньше и меньше энергии. Другие, напротив, утверждают, что митохондрии в течение жизни работают слишком активно. При этом они потребляют слишком много кислорода, а он уже, в свою очередь, вызывает образование свободных радикалов и повреждения внутриклеточных молекул. Третьи же винят во всем апоптоз — программу клеточной гибели: мол, ее запускают белки из внутренней мембраны митохондрий. Этот способ умереть в нашу жизнь тоже привнесла предковая симбиотическая бактерия. У них есть собственные программы апоптоза и белки, похожие на наши. Со временем гены апоптоза переселились в наше ядро, а программа стала работать на уровне целой клетки. Правда, подробности этого перехода все еще неизвестны.

Зачем тебе теломераза?

Теломераза — еще один белок, популярный среди исследователей старения. Ее основная функция — достраивать концы ДНК, которые укорачиваются при каждом делении клетки. У человека теломераза активна только в стволовых клетках, поэтому многие винят именно ее в том, что с возрастом ткани обновляются хуже. Однако не так давно теломеразу обнаружили и в митохондриях, причем не отдельные молекулы, а 20% всей теломеразы клетки. Что она там делает — большая загадка, ведь митохондриальная ДНК свернута в кольцо, концов не имеет и потому теломеразе там заняться, казалось бы, нечем. Тем не менее под действием теломеразы митохондрии расходуют кислород экономнее и меньше повреждаются. А мыши, у которых теломеразы в митохондриях много, лучше восстанавливаются после инфаркта.

Кому ты достанешься?

До этого дня официально считалось, что митохондрии наследуются только по материнской линии. Это связано с тем, что при оплодотворении яйцеклетка превращается в зародыш целиком, вместе со всеми органеллами, а сперматозоид привносит только генетический материал и одну из центриолей (часть клеточного скелета, образующую полюс делящейся клетки). Вместе с митохондриями зародыш наследует и мутации в их ДНК — отсюда ряд генетических заболеваний, передающихся только от матери, например синдром Лея (проявляющийся в основном в нервной системе) или диабет и глухота. Но в свежей статье, появившейся в журнале PNAS, описаны несколько случаев наследования митохондрий от отца.

Все началось с ребенка, который попал в генетическую клинику с подозрением на митохондриальное заболевание. Он страдал хронической усталостью, слабостью и мышечными болями. Эти симптомы нередко указывают на то, что митохондрии в мышцах не производят достаточно энергии. Однако его мать ничего подобным не болела. В процессе секвенирования митохондриальной ДНК выяснилось, что в клетках ребенка одновременно живут два типа митохондрий, материнские и отцовские. Это явление называют гетероплазмией, и его удалось обнаружить еще в нескольких семьях.

Вас много — как вы уживаетесь вместе?

В каждой клетке человека митохондрий очень много. Их могут быть сотни и тысячи. Если они все генетически идентичны, то никакой конкуренции между ними нет. Но при оплодотворении какая-то часть из этих тысяч митохондрий сперматозоида все же оказывается внутри яйцеклетки. И здесь начинается настоящая битва. К сожалению, мы до сих пор не знаем, как именно материнским митохондриям человека удается одержать верх над отцовскими. У большинства живых организмов это тоже так, но победы куются разными способами. В одних клетках отцовские митохондрии поглощаются пищеварительными вакуолями, в других — разрушаются путем аутофагии.

Тем не менее можно предположить, что ядерные гены, ответственные за этот процесс, могут мутировать, и тогда в зародыше отцовские митохондрии будут выживать. Правда, одной мутацией здесь, скорее всего, не обойтись. Отцовских митохондрий, даже если они избегают уничтожения, в оплодотворенной яйцеклетке все равно очень мало (около 0,1% от всего количества). Но раз их повреждения проявляются у ребенка и оказывают серьезное влияние на здоровье, значит, они должны были как-то размножиться. То есть в самой митохондриальной ДНК отца должны быть еще какие-то мутации, которые позволяют этим органеллам избирательно размножаться и захватывать все больше клеточного пространства.

Можно ли от тебя избавиться?

Информация

Добавить в ЗАКЛАДКИ
Поделиться:

кишечная палочка

Фаги кишечных палочек как более устойчивые, чем БГК.П, к ряду физико-химических воздействий рассматриваются как показатели энтеровирусного загрязнения водоемов. Наличие фагов кишечных палочек более 1000 БОЕ в 1 л свидетельствует о возможном присутствии в воде источников водоснабжения кишечных вирусов.[ . ]

Наличие кишечных палочек само по себе безвредно, но оно ■свидетельствует о загрязнении воды хозяйственно-фекальными стоками и поэтому дает основание предполагать возможность заражения воды болезнетворными бактериями. Объем воды см3), в котором содержится одна кишечная палочка, называемая титром кишечной палочки (коли-титр). Титр кишечной палочки в питьевой воде должен быть не менее 300.[ . ]

Преимущество кишечной палочки как показателя фекального загрязнения состоит в полном соответствии основным требованиям, предъявляемым к санитарно-показательному микроорганизму. Кишечная палочка постоянно обитает в кишечнике человека и теплокровных животных, в больших количествах выделяется в окружающую среду; ее выживаемость и устойчивость близка, но несколько превышает таковую патогенных кишечных бактерий. Как правило, кишечные палочки не размножаются до значительных количеств в воде в экспериментальных и натурных условиях. Описаны отдельные случаи размножения кишечных палочек в воде при благоприятной температуре и наличии большого количества легкоусвояемых органических веществ, при изменении естественного биоценоза водоема (в стерильной или обеззараженной воде), в присутствии некоторых химических веществ (например, алкилсульфата). Однако аналогичные условия способствуют более длительному выживанию и увеличению численности патогенных бактерий, в частности, сальмонелл (Е. А. Можаев и др., 1972). При этом кишечная палочка ведет себя так же, как и патогенные энтеробактерии, и сохраняет санитарно-показательное значение.[ . ]

Примечание: (+) рост кишечной палочки на среде Эндо, кислоте и газообразование во второй бродильной пробе, (—) отсутствие роста на среде Эндо и отсутствие газообразования во второй бродильной пробе.[ . ]

Согласно ГОСТ 2874-73 под кишечной палочкой следует понимать все разновидности граммотрицательных палочек, сбраживающих лактозу с образованием газа при 37°С в течение 27—48 ч или глюкозу при 37°С в течение 27 ч, и негативных по хромоксидазному тесту.[ . ]

Наличие в исследуемой воде кишечной палочки и ее разновидностей определяется методом мембранных фильтров - или методом ¿родильных проб, предусмотренных ГОСТом 5216-50-55.[ . ]

З. Уменьшение концентрации кишечной палочки в воде в зависимости от поглощенной дозы излучения.

В случае более крупных бактерий кишечной палочки сильный эффект стерилизации достигается уже при относительно малых дозах ”0,3 кГр (рис. 3 [7]).[ . ]

Коли-индекс показывает количество кишечных палочек (коли) в 1 мл воды. Коли-титр - это наименьшее количество воды, в котором обнаруживается хотя бы одна кишечная палочка. Многолетний опыт показал, что вода безопасна в эпидемическом отношении, если ее коли-индекс не выше 3.[ . ]

Мнение бактериологов в отношении преимущества кишечных палочек нашло отражение в официальных нормативных документах, в последних изданиях которых нормируется именно этот показатель. Кишечные палочки являются основным критерием при оценке качества питьевой воды, воды источников водоснабжения, пресной и морской воды плавательных бассейнов, воды в районах морского водопользования, при определении эффективности очистки и обеззараживания сточных вод.[ . ]

Изучение соотношения Е. coli и цитратположительных кишечных палочек в водоемах в летний период показало, что Е. coli очень быстро отмирала в сточных водах и при сбросе их в водоем составляла только 30% от числа лактозоположительных штаммов. В реках и особенно в вог дохранилищах Е. coli была редкой находкой. Обнаружение в этих же пробах воды сальмонелл и кишечных вирусов показало, что оценка качества воды водоемов тодько по Е. coli недостаточно надежна как с эпидемиологической точки зрения, так и в отношении фекального загрязнения. Более надежным тестом является учет всей группы кишечных палочек (Т. 3. Артемова и др., 1972).[ . ]

Бактерицидное действие различных препаратов на кишечную палочку

Одной из наиболее изученных бактерий рода Bacterium является кишечная палочка Bacterium coli (в ряде определителей описывается под другим названием — Escherichia coli). Эта палочка всегда содержится в кишечнике людей и животных. Поэтому обнаружение ее в воде и пищевых продуктах свидетельствует об их загрязнении. Некоторые штаммы (разновидности) Bacterium coli вызывают заболевания у людей.[ . ]

Токоферол (витамин Е) при добавлении в элективные среды ускоряет рост кишечных, брюшнотифозных и дизентерийных бактерий. По данным Л. С. Корецкой с со-авт. (1960), время развития кишечной палочки на среде Эндо с витамином Е сокращается на треть.[ . ]

Присутствие в воде патогенной микрофлоры оцён Р1 вается по наличию бактерий кишечной палочки (коли-J тест). Коли-тест позволяет определить зпидемиологиче-’ скую опасность воды, поскольку наряду с бактериями Coli в ней могут присутствовать возбудители брюшного тифа, паратифа, холеры и др. Наличие бактерий Coli в воде считается показателем фекальных загрязнений.[ . ]

Вопрос доброкачественности питьевой воды решают путем определения количества кишечной палочки в 1 л воды. Кишечная палочка — это микроб, постоянно обитающий в кишечнике человека и животных и, следовательно, безвредный. Однако ее присутствие в воде свидетельствует о наличии в ней выделений людей или животных и о возможности загрязнения воды болезнетворными бактериями. Согласно нормам, в 1 л питьевой воды может содержаться не более трех бактерий группы кишечной палочки (БГКП). Это число называется коли-индексом воды; обратная величина, т! е. количество миллилитров воды, в котором находится одна кишечная палочка, называется коли-титром. Питьевая вода, безупречная в бактериальном отношении, должна иметь коли-титр не менее 333.[ . ]

Минимальная токсическая концентрация нитрата уранила (на уран) составляла: для кишечной палочки 1,7—2,2 мг/л, для дафний 13 мг/л, для сине-зеленых водорослей — 22 мг/л и для простейших 28 мг/л 10. Для гольяна средняя смертельная концентрация в мягкой воде при длительности опыта 96 ч составляла: сульфата уранила — 2,8 мг/л, нитрата уранила — 3,1 мг/л, ацетата уранила — 3,7. мг/л; минимальная смертельная концентрация (на металл) составляет 11 мг/л при экспозиции 96 ч [8].[ . ]

Особо важным показателем санитарного состояния водоема считают концентрацию в воде кишечной палочки (£. Coli), поскольку ее присутствие говорит о загрязненности воды фекальными стоками.[ . ]

Таким образом, для очищенных водопроводных вод требуемое нашим стандартом количество кишечных палочек является вполне надежным показателем освобождения питьевой воды от патогенных микробов, и кишечная палочка, с этой точки зрения, может считаться не только косвенным, но и прямым бактериологическим индикатором на загрязнение питьевой воды.[ . ]

Обнаружение яиц паразитических червей (гельминтов) человека и животных во внешней среде наряду с кишечной палочкой является прямым показателем ее фекального загрязнения и может служить критерием эффективности проводимых санитарных мероприятий.[ . ]

Засеянные чашки помещают в термостат на 16—24 часа при температуре 37°С. При отсутствии роста колоний кишечной палочки дается окончательный отрицательный (—) ответ, и дальнейшее исследование прекращается.[ . ]

Основными показателями загрязнения морской воды являются плавающие вещества, содержание бактерий и кишечной палочки; повышение окисляемости и ВПК сказывается в сравнительно небольшой степени, поэтому необходимость механической очистки и обезвреживания сточных вод в аналогичных условиях .можно считать доказанной.[ . ]

Бактериологическое исследование сточных вод состоит в определении общего числа бактерий в 1 мл, числа кишечных палочек в 1 л (показателя фекального загрязнения) и характерной микрофлоры.[ . ]

Наиболее признанным и распространенным во всем мире санитарно-показательным микроорганизмом является кишечная палочка, открытая в 1885 г. Escherich. Масе (1888) впервые предложил использовать кишечную палочку в качестве показателя фекального загрязнения воды.[ . ]

Дополнительные сведения о происхождении загрязнения можно получить путем определения энтерококков и фагов кишечных палочек как более устойчивых к действию обеззараживающих агентов, нежели БГКП.[ . ]

Показателями загрязненности воды служат коли-титр и коли-индекс. Наименьший объем воды в миллилитрах, содержащий одну кишечную палочку, называют коли-титром, количество кишечных палочек в 1 л воды — коли-индексом.[ . ]

Кол и-т и т р - наименьшее количество грунта, почвы или воды (выраженное, соответственно, в г или мл), в котором обнаруживается кишечная палочка. Чем больше величина коли-титра данного грунта, тем чище грунт в отношении кишечной палочки (Escherichia coli). Его определяют бродильным методом, заключающимся в посеве определенных объемов исследуемого субстрата в среды накопления, которые выдерживают при 37 °С. В качестве сред накопления используют глюкозопептонную или лактозопептонную среду с индикатором. Затем из сред накопления делают высевы на среду Эндо с последующей идентификацией выросших колоний.[ . ]

Присутствие в водопроводной воде болезнетворных бактерий является недопустимым. Показателем бактериального загрязнения могут служить кишечные палочки (бактерии коли), которые сравнительно легко обнаружить при анализе и которые попадают в воду тем «ли иным путем из кишечника животных и людей.[ . ]

Вторичная бродильная проба позволяет установить, действительно ли выделенный на фуксин-сульфитной среде микроорганизм относится к группе кишечной палочки или он является непоказательным в санитарном отношении (кишечная палочка холоднокровных).[ . ]

Токсичен для водных организмов: токсическая концентрация для водорослей сценедесмус 4 мг/л при 24 °С через 4 сут, для дафний—100 мг/л при 23 °С через 2 сут. На кишечную палочку не оказывает действия концентрация 1000 мг/л [2]. Пескари в хорошо аэрированной воде при 15°С, переносят концентрацию 70 мг/л, но погибают при 100 мг/л.[ . ]

Нафтеновые кислоты обладают высокими дезинфицирующими свойствами по отношению к холерным вибрионам, стафилококкам, бактериям сибирской язвы, тифа и к кишечной палочке [18].[ . ]

Наряду с нормативами, приведенными в табл. 34, Правила предусматривают, что в местах водозаборов плавательных бассейнов с морской водой количество бактерий группы кишечных палочек и энтерококков не должно превышать 100/л и 50/л соответственно. В местах массового купания дополнительным показателем загрязнения является содержание стафилококков в воде. Сигнальное значение для регламентации нагрузки на пляжи имеет количество стафилококков более 100/л. Коли-ин-декс морской воды на границе I и II поясов зоны санитарной охраны не должен превышать 1 млн.[ . ]

Процесс синтеза белка является очень сложным многоступенчатым процессом. Совершается он в специальных органеллах — рибосомах. В клетке содержится большое количество рибосом. Например, у кишечной палочки их около 20 000.[ . ]

Нитроанилины очень токсичны для людей и теплокровных животных 1. Минимальная средняя токсическая концентрация для рыб 24 мг/л 16, для дафний — 24 мг/л, для водорослей Сценедесмус — 20 мг/л, для кишечной палочки — более 100 мг/л [1].[ . ]

Для рыб летальная концентрация хлорида тория—18 мг/л при экспозиции в 1 сут [1]. Нитрат тория оказывает губительное действие на водоросли Сценедесмус в концентрации 0,4—0,8 мг/л через 4 сут при 24 °С, на кишечную палочку — 0,8 мг/л, на простейших Микрорегма — 25 мг/л 14, на рыб — 18 мг/л 4.[ . ]

Вызывает гибель гольяна при 200 мг/л через 26 ч, оказывает токсическое действие на рыб при 65,7 мг/л, водоросли сценедесмус погибают при 240 мг/л через 4 сут при 24 °С, дафнии при 88 мг/л через 2 сут при 23 °С, но кишечная палочка выживает при 1000 мг/л [2].[ . ]

В чашку со средой Эндо вносят 1 мл воды из каждого разведения и распределяют равномерно шпаделем по поверхности среды. Посевы инкубируют при 43°С в течение 24 часов. Затем учитывают наличие на поверхности среды Эндо типичных для кишечной палочки колоний, без их подсчета. Наличие или отсутствие роста кишечной палочки отмечают в протоколе анализа соответствующим знаком (+ или —).[ . ]

Так как в фекалиях человека термофилы присутствуют в очень незначительных количествах, обильное обнаружение их в почве при большом количестве коли-бактерий свидетельствует о загрязнении почвы навозом, а не фекалиями. Напротив, обилие кишечной палочки при малом числе термофилов — показатель фекального загрязнения.[ . ]

В отдельных случаях производился высев проб воды на элективные среды: среду Чапека, сроду Красильникова и суо-ло-агар. Для анализа отбирали 1 и 10 мл воды, а в случае определения бактерий на среде Эндо - 333 мл.[ . ]

Основными источниками микробиологического загрязнения являются сточные воды предприятий пищевой и кожевенной промышленности, бытовые и промышленные свалки, кладбища, канализационная сеть и др. Загрязняются почвы, горные породы, поверхностная и подземная гидросфера. Патогенные кишечные палочки обнаруживаются в подземных водах на глубине до 300 м от поверхности земли.[ . ]

Согласно другому стандарту обязательным при контроле почвы санитарнозащитной зоны предприятия независимо от его профиля является определение pH почвы и содержания в ней канцерогенных и радиоактивных веществ, а из санитарно-бактериологических показателей - определение бактерий группы кишечной палочки и титра Clostridium perfringers. Ряд загрязняющих почву химических веществ подлежит определению только при наличии известного источника загрязнения - это аммонийный и нитратный азот, хлориды, пестициды, тяжелые металлы в валовых и подвижных формах, нефть и нефтепродукты, летучие фенолы, сернистые соединения, детергенты, мышьяк, цианиды, полихлоридные бифенилы.[ . ]

Более надежными являются почвенные методы биологической очистки (на полях орошения и полях фильтрации), которые при условии нормальной нагрузки на поля обеспечивают высокий эффект (до 99,9%) бактериальной очистки. Работами С. Н. Черкинского и Л. Б. Доливо-Добровольского доказано, что патогенные бактерии кишечной группы обнаруживаются в очищенной воде даже тогда, когда кишечная палочка отмирает на 99%. Поэтому после механической и искусственной биологической очистки сточные воды до спуска их в водоем, безусловно, необходимо обеззараживать. В случаях почвенной очистки сточных вод на полях-орошения или полях фильтрации дезинфекция, как правило, не требуется.[ . ]

При обнаружении в водопроводной воде бактериального загрязнения выше допустимых норм следует производить повторный отбор проб, в которых качественно устанавливают наличие или отсутствие показателей свежего фекального загрязнения. В качестве таких показателей в настоящее время приняты бактерии группы кишечных палочек (преимущественно E. coli), способных образовывать газ на лактозном бульоне с бриллиантовым зеленым при 44,5°С или с борной кислотой при 43°С (ГОСТ 18963-73).[ . ]

Эффективность очистки воды была изучена при ее коагулировании и пропускании через контактный осветитель. Воду с исходной мутностью 4,5 мг/л коагулировали АЬОз в концентрации 6,75 мг/л; при мутности воды 35 мг/л доза коагулянта увеличивалась до 12,6 мг/л. При последующем пропускании воды через контактный осветлитель содержание фага в воде снижалось в среднем на 99,7%, содержание кишечной палочки — на 90% (при дозе 6,75 мг/л) и 99% (при дозах 11,6 и 12,6 мг/л) и содержание вируса — на 99%. В воде, взятой сразу у выхода из контактного осветлителя, содержание кишечной палочки снижалось менее значительно, чем содержание вируса полиомиелита. Таким образом, при данном методе обработки степень очистки воды от вируса и кишечной палочки можно считать одинаковой. Уменьшению содержания в воде микроорганизмов во всех случаях сопутствовало снижение мутности и цветности воды.[ . ]

Исследование вирусной суспензии. Ни один из обнаруженных вирусов не может быть использован как имитатор всех типов вирусов [13, 14]. Однако бактериофаг E. coli Т объединяет многие типы вирусов, найденные в бытовых сточных водах, и его довольно легко определить (Т — является двадцатигранным фагом размером приблизительно 500—100 нм). Поэтому с ним и проводили эксперименты. Связь вирусов с кишечной палочкой зависит от типа и концентрации катионов в растворе.[ . ]

При биологическом окислении идут окислительно-восстановительные реакции, сопровождающиеся отнятием атомов водорода от одних соединений (доноров) и передачей его другим (акцепторам), или реакции, связанные с переносом электронов от донора к акцептору. Эти процессы осуществляются при участии ферментов, относящихся к классу оксиредуктаз. Процессы дыхания, в которых акцептором водорода или электронов является молекулярный кислород, называются аэробными. Если же акцепторами будут другие неорганические или органические соединения, то такой тип дыхания называется анаэробным. По типу дыхания выделяют две группы микроорганизмов: аэробы (оксибиотические формы), которым для дыхания необходим кислород, и анаэробы (аноксибиотические формы), развивающиеся в отсутствие кислорода. Между ними нет резкого различия. Наряду со строгими (облигатными) аэробами и анаэробами есть микроорганизмы, которые могут жить в присутствии кислорода и без него. Это микроаэрофилы, оптимум содержания кислорода в воздухе для которых составляет 0,5—1%, и факультативные анаэробы. Так, кишечная палочка является факультативным анаэробом.[ . ]

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции