Что такое хромосомы и паразиты


Здесь нужно сказать несколько слов о носителях вирусных генов. У всех организмов, от бактерии до человека, есть два вещества, способных нести генетическую информацию, — ДНК и РНК, причем основным носителем является именно ДНК, а РНК служит только для недолго живущих рабочих копий. У вирусов же полная свобода выбора: у одних гены представлены цепочками ДНК, у других — РНК.

Когда эти цепочки проникают сквозь мембрану, они могут работать прямо в цитоплазме, заставляя клеточный аппарат для синтеза белка (рибосомы) производить вирусные белки. Но у клетки в цитоплазме обычно нет ферментов, удваивающих ДНК или РНК, и пока вирусные гены будут находиться здесь, их количество не прибавится. Наоборот, оно может уменьшиться, ведь в цитоплазме их окружают ферменты-нуклеазы, способные быстро порезать чужака на куски. Поэтому обычно вирусные гены мигрируют в ядро и встраиваются в собственные хромосомы клетки. Неважно, куда именно, в любое случайное место — лишь бы побыстрее.

Если клетку посетил ДНК-вирус, проблем нет: вставка маленького кусочка ДНК в большую молекулу для клеточных ферментов — дело обычное. РНК-вирусам приходится сложнее: их гены вставить напрямую в ДНК невозможно. Поэтому они снимают с себя ДНК-копии, которые уже и внедряются в хромосомы клетки. Для этого у РНК-вирусов есть специальный фермент — ревертаза, или обратная транскриптаза.

Об уязвимости получателя



Приданое в виде вируса

Выжить любым способом

У тех вирусов, которые не отказались от самостоятельного существования, жизнь не столь легка и беззаботна: между ними и заветной клеткой, где они могут ожить, стоит целый ряд барьеров. Прежде всего вирус должен найти организм-хозяин, что само по себе непростая задача для того, у кого нет ни органов чувств, ни средств передвижения. В этом деле вирусы полагаются на случай и огромную численность: если выбрасывать в пространство бесчисленное множество собственных копий, какой-нибудь из них обязательно повезет.

Убийцы и снабженцы

Некоторые вирусы пришивают к краям своих белков какие-нибудь необычные группы атомов, тогда эти белки становятся неузнаваемыми для ферментов, которые должны их расщепить. Но самое радикальное решение нашли возбудители иммунодефицитов, в том числе уже упоминавшийся ВИЧ: лучшая защита — это нападение.

Защита и противостояние

Впрочем, ВИЧ — это все-таки исключение. Прочие вирусы, как уже говорилось, преодолевают иммунный барьер с помощью всякого рода маскировки. Чтобы с неудовольствием обнаружить, что препятствия еще не кончились: атакованная клетка вырабатывает особый белок интерферон. Под его действием и она сама, и соседние клетки вырабатывают специальные белки, подавляющие синтез вирусных белков.

Столь сложная и эшелонированная защита показывает, что многоклеточные организмы и вирусы прошли долгий путь совместной эволюции. Был период, когда вирусы считали самой древней, доклеточной формой жизни. Однако эта теория плохо состыковалась с тем, что вирус, находящийся вне клетки, неспособен к самостоятельной жизнедеятельности.

Некоторые ученые предполагают даже, что вирусы поддерживают генетическое единство жизни: с их помощью разные, часто даже неродственные виды регулярно обмениваются генами, а заодно — и эволюционными новинками. Во всяком случае, для бактерий подобная роль вирусов доказана. Видимо, нам еще предстоит в полной мере оценить роль этих странных образований в функционировании и развитии биосферы.

Что касается борьбы с вирусами как возбудителями заболеваний, то совершенно ясно, что каждый из них требует индивидуального подхода. Их патогенность никак не связана с формой, размером или способом размножения, что осложняет лечение пациентов. Ведь даже вирусы, сходные между собой, могут стать причиной различных заболеваний. Так, пикорновирус является причиной столь непохожих заболеваний, как миокардит, конъюнктивит, гепатит или ящур. И единственно эффективным методом борьбы с ними можно считать лишь профилактические меры — вакцинацию.

Понимая всю серьезность данной проблемы, ЕС приступил к реализации Пятой рамочной программы, значительная часть исследований которой отводится вопросам, связанным с медициной. На разработку усовершенствованных или новых вакцин, в частности против вирусных заболеваний, включая некоторые виды рака, а также на совершенствование методов борьбы с инфекционными заболеваниями выделено 300 миллионов евро.



Unique functions of repetitive transcriptomes. Schumann GG, Gogvadze EV, Osanai-Futahashi M, Kuroki A, Münk C, Fujiwara H, Ivics Z, Buzdin AA. Int Rev Cell Mol Biol. 2010

Бороться с таки размножением можно разными способами. Например, увеличивая количество копий собственных генов. Например, этим путем идут, возможно, растения, для которых характерна полиплоидия — явление, в ходе которого количество идентичных друг другу хромосом увеличивается кратно. Например, вместо 20 хромосом их становится 40, 60. При этом мобильные элементы, которые могут прыгать и портить гены, делая это, все же не портят некий критический минимальный, необходимый для жизнедеятельности организма набор генов.


The reverse transcription inhibitor abacavir shows anticancer activity in prostate cancer cell lines. Carlini F, Ridolfi B, Molinari A, Parisi C, Bozzuto G, Toccacieli L, Formisano G, De Orsi D, Paradisi S, Grober OM, Ravo M, Weisz A, Arcieri R, Vella S, Gaudi S. PLoS One. 2010 Dec 3; 5(12): e14221.

Это генное семейство, называемое APOBEC-3, в ходе эволюции приматов очень сильно эволюционировало у предков человека. Вот, например, если у мыши, у которой активность мобильных элементов в сотни раз (если не в тысячи) превышает таковую у человека, имеется только одна копия такого гена, то у человека их уже девять. Интересно, что в ходе эволюции приматов от низших приматов к высшим, увеличилось количество копий генов этого семейства, что, по-видимому, было связано с усилением контроля хозяйской клетки над мобильными элементами. Таким образом, у человека активность мобильных элементов существенно подавлена по сравнению с большинством других млекопитающих. И наш геном гораздо более сохранен от таких нежелательных вторжений, нежели геном большинства других млекопитающих. Таким образом, мы находимся в некотором привилегированном положении и имеем больше шансов сохраниться в том виде, в каком есть, в ходе эволюции по сравнению с большинством других организмов родственных нам.


All y’all need to know 'bout retroelements in cancer. Belancio VP, Roy-Engel AM, Deininger PL. Semin Cancer Biol. 2010 Aug; 20(4): 200-10.

Если мобильные элементы активно размножаются в геноме, то это, в том числе, может увеличить количество стареющих или раковых клеток в организме, что является одной из причин рака в более раннем возрасте или, соответственно, появления большого количества клеток, которые не справляются со своей функций. Поэтому контроль над мобильными элементами, возможно, является одной из функций увеличения продолжительности жизни. При этом следует иметь в виду, что эволюционный отбор наших предков шел наиболее продолжительное время исключительно по продолжительности и качеству жизни во время репродуктивного периода и во время выращивания своего потомства.

В настоящее время, хотя многое уже открыто, остается много тайн. Например, целиком пока не понятно, каким образом организм умеет распознавать наиболее опасные последовательности генетических паразитов, то есть мобильных элементов, и как именно в них вносятся мутации, которые инактивируют их. Причем таких механизмов (как уже сейчас показано) несколько. Но известные сегодня механизмы не позволяют понять, на чем базируется многообразие ответов организма на генетических паразитов. В будущем, скорее всего уже до 2017 года, многие новые такие механизмы будут открыты и можно будет уже, наверное, с полной уверенностью утверждать как именно геном контролирует своих паразитов у разных видов живых организмов. Кроме того, будут разработаны блокаторы размножения мобильных элементов, которые позволят понять, может ли подавление активности мобильных элементов увеличивать продолжительность жизни организмов или отдельно взятых клеток. То есть, возможно, с этой стороны придет одно из средств для борьбы со старением и для увеличения продолжительности жизни человека.

PIWI-interacting small RNAs: the vanguard of genome defence. Siomi MC, Sato K, Pezic D, Aravin AA. Nat Rev Mol Cell Biol. 2011 Apr; 12(4): 246-58

Выжимка из книги Р. Докинза "Расширенный фенотип. Дальнее влияние гена" №11.

Спокойно! Фотографий не будет.

Паразитические и симбиотические отношения можно классифицировать очень по разному в зависимости целей классификации. Классификации, выработанные паразитологами и медиками, без сомнения эффективны в рамках их задач, но они основаны на взгляде, что хозяин - это отдельный организм, паразит - отдельный организм, и взаимодействие между ними происходит как между организмами.

Докинз же предлагает взгляд с иной стороны: есть геном хозяина, есть геном паразита, и вот они-то и являются основой взаимодействия. Исходя из этого взгляда предлагаются следующие аспекты классификации.

1. По методу выхода из хозяев и методов распространения генов хозяина и паразита.

На одном полюсе ряда будут паразиты, использующие пропагулы (пропагула -и семя, и спора, и пара особей животных разного пола, и даже одна оплодотворенная самка, т. е. все то, что впоследствии в соответствующих условиях может превратиться в популяцию) хозяина для своего собственного воспроизводства.

Такие паразиты заинтересованы в том, чтобы хозяин был жив и плодовит. И по большей части интересы хозяина совпадают с интересами паразита. Такой паразит с большой долей вероятности через какое-то время может стать симбионтом.

На другом полюсе – паразиты, гены которых распространяются не через репродуктивные пропагулы хозяина, а, к примеру – через выдыхаемый им воздух, или через мёртвое тело хозяина. В этом случае между хозяином и паразитом идёт "гонка вооружений".

2. По времени действия генов паразита в ходе развития хозяина. Ген – будь то ген хозяина или паразита, проявляет более фундаментальное влияние на конечный фенотип хозяина, если он работает на ранней фазе развития эмбриона хозяина, и менее – если включается поздно. Радикальные изменения – вроде развития двух голов, могли бы происходить в результате единственной мутации (в геноме хозяина или паразита), которая действовала бы достаточно рано в эмбриональном развитии хозяина. Позднодействующая мутация (опять же – в геноме хозяина или паразита) – мутация, которая не начинает действовать, пока тело хозяина не станет взрослым, будет вероятно, иметь лишь небольшой эффект, так как общая архитектура тела будет к тому времени уже сформирована. Поэтому паразит, который входит в своего хозяина когда тот уже взрослый – с меньшей вероятностью окажет радикальный эффект на фенотип хозяина, нежели паразит, входящий рано.

3. По "дальнодействию" генов паразита на гены хозяина.

Все гены проявляют свою силу, прежде всего – служа матрицами для синтеза белков. Поэтому локус первичной власти гена – клетка, в особенности – цитоплазма, окружающая ядро, где расположен этот ген. Потоки транспортных РНК сквозь ядерную мембрану и осуществляют генетический контроль над биохимией цитоплазмы. Тогда фенотипическая экспрессия гена – во-первых, его влияние на биохимию цитоплазмы. В свою очередь, она влияет на форму и структуру всей клетки, характер её химического и физического взаимодействия с соседними клетками. Далее этим затрагивается строение многоклеточных тканей, и в свою очередь – дифференциацию разнообразия тканей в развивающемся теле. Наконец, это проявляется в атрибутах всего организма, которые анатомы и этологи идентифицируют на их уровне – как фенотипические экспрессии генов.

Совместное влияние генов паразита и хозяина на один и тот же фенотипический признак хозяина может иметь место в любом звене только что описанной пространственной цепи. И гены улитки, и гены трематоды, паразитирующей на ней, проявляют свою власть на отдельном клеточном и даже тканевом уровне. Они влияют на химию цитоплазмы своих клеток по отдельности, потому что у них нет общих клеток. Они влияют на формирование тканей по отдельности, потому что ткани улитки не пронизаны тканями трематоды так глубоко, как например тесно пронизаны ткани водоросли и гриба в лишайниках. Гены улитки и гены трематоды влияют на развитие своих органов и систем, и более того – всех организмов по отдельности, потому что все клетки трематоды в большей степени образуют единый массив, чем нечто распределённое среди клеток улитки.

Но есть паразиты и симбионты, глубже пронизывающие ткани хозяина. Крайний случай – плазмиды и другие фрагменты ДНК, которые буквально вставляют себя в хромосомы хозяина. Более тесного паразита просто невозможно вообразить.

У вирусов есть свой белковый чехол, но они вводят свою ДНК в клетку хозяина. Поэтому они имеют возможность влиять на клеточную химию хозяина на очень низком уровне, разве что менее низком, чем уровень вставок в хозяйские хромосомы. Предполагается, что внутриклеточные паразиты в цитоплазме также могут иметь возможность проявлять значительную власть над фенотипами хозяина.

Но мы еще не достигли другого полюса нашего континуума дальнодействия. Не все паразиты физически живут внутри их хозяев. Они даже могут редко входить в контакт со своими хозяевами, или не входить вовсе. Кукушка – точно такой же паразит, как и трематода. Оба – паразиты всего организма – это не тканевые и не клеточные паразиты. Если гены трематоды могут иметь фенотипическую экспрессию в теле улитки, то нет разумных причин полагать, что гены кукушки не могут иметь фенотипическую экспрессию в теле тростниковой камышовки. Различие между ними практическое, и оно явно меньше, чем различие между клеточным паразитом и тканевым. Практическое различие в том, что кукушка не живёт внутри тела тростниковой камышовки, и поэтому имеет меньше возможностей по управлению внутренней биохимией хозяина. Она должна полагаться на другие манипулятивные среды, – например звуковые или световые волны. Кукушонок использует сверхъестественно яркий зев, чтобы осуществлять управление камышовки с помощью её нервной системы, посредством её зрения. Он применяет особенно громкий просящий крик, чтобы управлять камышовкой с помощью её нервной системы через уши. Генам кукушки, проявляя своё влияние на фенотипы хозяина, приходится полагаться на дистанционное воздействие.

СТАТЬИ КНИГИ ФОРУМ ГОСТЕВАЯ КНИГА ССЫЛКИ ОБ АВТОРЕ

Об авторе : Михаил Васильевич Супотницкий - кандидат биологических наук.

РНК неустойчива в агрессивной химической среде. Поэтому с момента появления первых таких молекул, параллельно шел процесс стабилизации их свойств через переход в ДНК посредством примитивной обратной транскрипции. Роль обратных транскриптаз играли сами молекулы РНК. А так как такие ферменты неспецифичны, копии ДНК делались и с других молекул РНК — так формировались устойчивые полимерные агломераты — предтечи будущих хромосом. Обладая выраженной полярностью и значительным электрическим зарядом за счет поляризованных фосфатных групп, крупные молекулы ДНК в слабосолевых растворах формировали вокруг себя упорядоченные двухслойные оболочки из амфипатических органических соединений — деструктивное влияние внешней среды на новые макромолекулярные структуры снижалось. Естественный отбор сохранял только наиболее прочные из них. Для удержания оболочки такой протоклетке требовалось увеличить электрический заряд ДНК, что самым простым способом можно было достичь, наращивая ее массу. Преимущества в этом процессе получили РНК, протяженностью 80 – 130 пар нуклеотидов, ДНК-копии которых были способны образовывать устойчивые структуры за счет водородных связей и гидрофобных взаимодействий — это и были первые ретротранспозоны .

Процесс усложнения протоклеток в клетки, способные формировать уже многоклеточные организмы, занял не менее 3 млрд. лет. Разрастание генома за счет ретротранспозонов послужило толчком к эволюции многоклеточных организмов. На этом этапе их эволюции появились ретровирусы.

Отдельные протоклеточные конгломераты приобрели селективные преимущества перед другими. Давление естественного отбора установило свои правила и ограничения для их для размеров, структуры и функции. Здесь мы должны снова вспомнить про то, что мир РНК самостоятелен и хаотичен. Естественный отбор дал преимущества проторетровирусам, включающим две и более цепей РНК, тем самым, увеличивая стабильность передаваемой между клетками информации. Впоследствии такая система поддержания целостности генетической информации закрепилась у организмов, размножающихся половым путем, и стала еще более консервативной исключив любые этапы, на которых могло иметь место копирование РНК для сохранения наследственной информации в последующих поколениях.

Для самих же ретровирусов естественный отбор сохранил только две цепи РНК, являющиеся производными от одного родительского провируса. После вытеснения клетками, способными к автономной репликации других протоклеточных структур, часть из них либо исчезла, либо вошла в состав этих клеток на правах органел-симбионтов (митохондрии, пластиды и др.). Естественный отбор избавил протореторетровирусы от крупных нуклеотидных последовательностей уже не дававших им никаких селективных преимуществ в самостоятельно реплицирующихся клетках; и из симбионтов они превратились в паразитов ими же созданных геномов .

Ретротранспозоны поддерживались миллиарды лет естественным отбором и остались как составная часть генома всех эукариотических видов. Процесс эволюции генома человека не закончился. Число Alu-последовательностей в геноме человека достигло уже 1,4 млн. копий и продолжает расти. Они встраиваются в новые сайты с частотой примерно одно новое встраивание на каждые 100—200 новорожденных, повышая кодирующий потенциал генов вида Homo sapiens 6 . Следовательно, такие ретроэлементы можно рассматривать как симбионты генома человека . Их роль в эволюции жизни, закрепленная естественным отбором, по меньшей мере, заключается: а) в постепенном наращивании генома вида-хозяина путем образования новых собственных копий; б) в образовании новых экзонов из интронов вследствие точковых мутаций в собственном геноме; в) и вызванном обоими процессами увеличении количества генов, подвергающихся альтернативному сплайсингу .

Роль же ретровирусов в эволюции жизни заключается в увеличении биологического разнообразия в природе через терминацию эволюции отдельных видов. Иными словами, если ретротранспозоны способствуют видообразованию посредством обогащения генетического материала исходного вида, когда ведущим фактором видообразования является естественный отбор, а эволюция идет по пути трансформации вида, либо его расщепления на дочерние виды; то ретровирусы сами являются фактором естественного отбора, способствуя инадаптивной эволюции в природе. В этом случае увеличение темпов видообразования происходит уже после массовых вымираний видов и снижения степени заполненности ими экологических ниш. Несомненно и то, что ретровирусы и ретротранспозоны первичны по отношению к одно- и многоклеточным организмам, фактически бессмертны, а вызываемые ими процессы происходят вне нашего ощущения времени 7 .

Из этих общих положений следует и частный вывод для эпидемиологов — ВИЧ/СПИД-пандемия это эволюционный процесс, проявляющийся в форме инфекционного. Отсюда нам и нужно строить свои противоэпидемические мероприятия, не ожидая легкого успеха от простых и понятных мер, выработанных наукой совсем против других эпидемических процессов.

Супотницкий М.В. Возможные механизмы формирования генома, генетических паразитов и симбионтов // Универсум. — 2006. — № 2 – 3. — С. 43 – 48.

1 Универсум. – 2006. № 1., С. 18 – 25.

2 Тарантул В.З. Геном человека. Энциклопедия, написанная четырьмя буквами. — М., 2003.

3 Стил Э., Линдли Р., Бланден Р. Что, если Ламарк прав? Иммуногенетика и эволюция. — М., 2002.; Гладилин К.Л., Суворов А. Н. Проблема происхождения жизни: теоретическое о практическое значение // Прикладная биохимия и микробиология. — 1995. — Т. 31, № 1. — С. 60 — 69.

4 Пашутин С. Возможные механизмы перехода химической эволюции в биологическую// Универсум. – 2006. - № 1. – С. 18 – 25; Яблоков А.В., Юсуфов А.Г. Эволюционное учение. — М., 1998.

5 Пашутин С. Возможные механизмы перехода химической эволюции в биологическую// Универсум. – 2006. - № 1. – С. 18 – 25.

6 Аст Г. Альтернативный геном // В мире науки. — 2005. — № 7. — С. 37 — 43.

7 Супотницкий М.В. ВИЧ/СПИД- пандемия как природное явление // Универсум. — 2005. — № 6. — С. 23-27.

Круглый червь прожил 18 млн лет без преимуществ полноценного полового размножения.

Половое размножение гораздо выгодней с точки зрения эволюции, чем бесполое, поэтому обычно, если есть такая возможность, живые организмы спешат научиться именно половому размножению. Известно (и в том числе из экспериментов), что животные, которые размножаются бесполым способом, гораздо хуже приспосабливаются и обычно довольно быстро вымирают.

Но тут, как обычно, есть исключения, и одно из самых примечательных – круглый червь Diploscapter pachys, геном которого секвенировали исследователи из Нью-Йоркского университета и описали в статье в Current Biology.

На протяжении 18 млн лет – именно столько существует этот вид – черви себя клонировали, размножаясь партеногенетическим способом. Тут стоит заметить, что партеногенез, строго говоря, считается половым размножением, т. к. здесь начало организму дают начало настоящие половые клетки. Однако при партеногенезе не работают те механизмы, которые дают генетическую изменчивость популяции. То, что черви не вымерли, означает, что им удавалось как-то поддерживать изменчивость среди себя.

В случае полового размножения генетическая изменчивость получается благодаря особому способу формирования половых клеток. Их клетки-предшественники делятся не так, как обычные клетки. Как мы знаем, у нас (и у большинства животных) в каждой клетке находится по два гомологичных варианта каждой хромосомы, один вариант от матери, другой от отца – они объединились в зародыше при оплодотворении. Когда делится обычная клетка, она сначала удваивает каждый вариант, и при делении дочерним клеткам достается по одной копии отцовского и материнского вариантов каждой хромосомы (или, иначе говоря, от каждой гомологичной хромосомы) – такое деление называют митозом.

Когда же делится клетка-предшественник половой клетки, то деление происходит в два этапа. На первом этапе дочерним клеткам достаются либо обе копии материнской хромосомы, либо обе копии отцовской. И так с каждой хромосомой – то есть дочерней клетке отходят обе копии материнской первой хромосомы, потом, например, снова обе копии материнской второй, а потом – обе копии отцовской третьей, и т. д. Набор их в каждой клетке может быть разным, главное, чтобы количество совпадало.

Распределение хромосом во время формирования половых клеток – важный источник изменчивости: отцовские и материнские варианты расходятся случайным образом. Добавочную изменчивость придает молекулярный процесс, который называется кроссинговер. Суть его в том, что перед тем, как разойтись, отцовские и материнские варианты сближаются и обмениваются кусками ДНК: гены с отцовской хромосомы переходят на материнскую, и наоборот. Понятно, что при оплодотворении, когда встречаются половые клетки разных особей, у нас получается организм с новой, доселе невиданной комбинацией генов.

Но если организм размножается клонированием самого себя, как черви D. pachys, его клетки ни с кем чужим не встречаются. Между тем при партеногенезе у него формируются половые клетки (яйцеклетки), из которых потом развивается взрослый червь. Если бы все те манипуляции с хромосомами, которые происходят при формировании половых клеток, происходили и в этом случае, то все черви приобрели бы абсолютно одинаковые гены.

Но у D. pachys есть две особенности. Во-первых, клетки-предшественники яйцеклеток делятся у него только одним делением, а не двумя. Они пропускают то деление, во время которого гомологичные хромосомы сближаются и обмениваются генами. Такую уловку используют и другие организмы, которые решили попытать счастья в бесполом размножении.

И во-вторых, у D. pachys всего одна пара хромосом, образовавшаяся когда-то давно при объединении шести других хромосомных пар, которые были у предков этого червя. Одна-единственная хромосомная пара – редчайший случай среди животных, и до сих было известен только один вид муравьев и один вид паразитических круглых червей, у которых тоже по одной паре хромосом.

То, что у червя всего одна пара хромосом и отсутствует обмен генами (кроссинговер), помогает ему поддерживать генетическое разнообразие в потомках. Перемешивание генов хорошо тогда, когда после перемешивания хромосомы находят гомологичную пару откуда-то извне. В случае партеногенеза перемешивание привело бы к тому, что гены унифицировались – гомологичные хромосомы несли бы одинаковые копии генов. А так у червя для каждого гена есть разные варианты, и если в каких-то условиях один из вариантов гена не справится, то вполне возможно, что трудности преодолеть поможет другой вариант.

Дальнейшие перспективы D. pachys как вида неясны: пока что отказ от перемешивания генов позволял ему выживать на протяжении 18 млн лет, однако по эволюционным меркам это не такой уж большой срок.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции