Сходства и различия спирохет и простейших

По своим биологическим свойствам спирохеты занимают промежуточное положение между бактериями и простейшими.

С бактериями их объединяет следующие:

наличие петидогликана в клеточной оболочке

размножение с помощью поперечного деления

II. С простейшими:

многообразные формы движения

метод окраски – по Романовскому – Гимза

образование во внешней среде цистоподобных структур

циклический характер течения заболевания

возможность трансмиссивного пути заражения (особенно выражен при боррелиозах)

чувствительны к солям тяжелых металлов

Общие биологические свойства:

Тело спирохет представляет собой эластичную спиралевидно изогнутую длинную нитевидную клетку.


Рис.3. Структура Т. pallidum. A — схематическое изоб­ражение главных компонентов (показаны только две ак­сиальные нити; в действительности каждая из них пред­ставляет пучок фибрилл); Б — продольный (1) и попе­речный (2) разрезы [Taussig M. J. Processes in Pathology and Microbiology.2nd ed. Blackwell Sci. Publ., 1984]

Состоит из так называемой осевого (цитоплазматический) цилиндр, нуклеоида, цитоплазмы, цитоплазматической мембраны, оболочки, рибосом, мезосомы, включения.

Основа тела - цитоплазматический цилиндр, пространство, окруженное плазматической мембраной и плотно прилегающей к ней кле­точной стенкой, основу которой составляет пептидогликан — достаточно эластичный, чтобы не мешать сгибательным движениям трепонем. Снаружи есть еще одна оболочка. Она напоми­нает внешнюю мембрану грамотрицательных бактерий, но в отличие от нее, а также от внеш­ней мембраны других трепонем, не содержит липополисахаридного эндотоксина.

У спирохет два типа завитков:

1. первичные – за счет сокращения фибрилл, представляют изгибы цитоплазматического цилиндра;

2. вторичные – изгибы тела спирохет во время движения.

Д
вижения осуществляются за счет активного сокращения фибрилл и цитоплазмы.

Формы движения разнообразны:

Тип, число, характер завитков, шаг, высота, угол наклона спирали играют важную роль в систематике спирохет.

Рис. Схема возникновения извитости спирохет за счет аксиальной нити (2). Аксиальная нить сокращена максимально (1)

В неблагоприятных условиях внешней или внутренней среды могут переходить в цисты, образовывать L-формы.

м
икроскопию в живом виде в темном поле

окраску по Бури

окраску по Романовскому-Гимзе – боррелии – сине-фиолетовые, трепонемы – розовые, лептоспиры – красные или розово-фиолетовые.

метод серебрения по Морозову

Рис. Окраска по Бури (схема)

М

Рис. Актиномицеты (строение): 1 - воздушный; 2 - субстратный мицелий; 3 - спорангий; 4 - споры; 5 - капсула.

орфология.Ветвящиеся бактерии. В отличие от грибов не содержат в клеточной стенке хитина или целлюлозы, а сама стенка имеет строение грамположительных бакте­рий. Мицелий примитивен. Имеют вид тон­ких прямых или слегка изогнутых палочек размером, часто образуют нити длиной. Характерная особенность актиномицетов — способность образовывать хорошо развитый мицелий, который у одних видов он длинный, редко ветвящийся, у других — короткий и сильно ветвящийся; гифы мицелия не септированы. Палочковидные формы, часто с утолщенны­ми концами, в мазке располагаются по оди­ночке, парами, V- и Y-образно, либо в виде палисада. Все морфологические формы спо­собны к истинному ветвлению, особенно на тиогликолевой полужидкой среде. По Граму окрашиваются плохо, часто образуют зер­нистые либо четкообразные формы; конидий не образуют; некислотоустойчивы.

Информация

Добавить в ЗАКЛАДКИ
Поделиться:

Спирохеты

Спирохеты имеют вид тонких спиралей с многими оборотами. У спирохет нет ригидной оболочки; оболочка клетки эластичная, вследствие чего спирохеты не только изгибаются, но и закручиваются в кольца. Концы клеток суживаются (рис. 5, 3).[ . ]

Спирохеты отличаются от других прокариотов по ряду признаков: ни один из представителей этой группы не ветвится, не образует слизистых масс, не имеет спор, включений, пигментов; размножаются клетки спирохет поперечным делением.[ . ]

Спирохеты не образуют спор. Наличие органов движений — жгутиков не выяснено, так как для передвижения они не нужны вследствие гибкости и сокращаемости клеток. Характерной чертой спирохет является наличие осевой эластичной нити, проходящей вдоль клетки и выполняющей скелетную функцию. Вокруг осевой нити спирально завивается цитоплазма, образуя первичные завитки. В клетках спирохет путем электронной микроскопии выявлены фибриллярные структуры. Клетка как бы содержит тонкие нити фибрилл, сплетенных в пучки. У сапрофитного рода Cristispira по поверхности клетки тянется килевпд-ная мембрана, называемая кристой. Эта криста тоже имеет фибриллярную структуру.[ . ]

Порядок спирохеты (Spirochaetales). Д. И. Никитин .[ . ]

Порядок спирохет делится на два семейства: спирохеты (Spirochaetaceae), объединяющее гигантские организмы (длина клеток до 30— 500 мкм), и трепонемы (Treponemataceae), включающие более мелкие формы (4—16 мкм). Среди последних есть аэробные — лептоспира (Leptospira) — и анаэробные — трепонема (Treponema) и боррелия (Borrelia).[ . ]

Бациллы, спирохеты и кокки в темном поле зрения.

Многие представители спирохет живут как сапрофиты в пресных и соленых озерах, особенно в донных отложениях и гниющем иле. Среди этой группы бактерий многие виды являются возбудителями опасных заболеваний человека — сифилиса, инфекционной желтухи, возвратного тифа (боррелиозы). Они могут попадать в организм с водой или пищей.[ . ]

У спирохет нет морфологически обособленного ряда, они одноклеточные, не ветвятся, половой процесс отсутствует. Этим они сходны с бактериями. У спирохет нет жесткой клеточной оболочки, они способны активно сокращать свое тело, патогенные спирохеты вызывают инфекции, протекающие циклично (возвратный тиф), спирохеты чувствительны к тем же химиотерапевтическим веществам, что и простейшие; болезни, вызываемые некоторыми Protozoa (малярия, сонная болезнь) протекают тоже циклично. Все это признаки, сближающие спирохеты с Protozoa.[ . ]

Формы бактерий

Геликтоидальные формы подразделяются на три группы. Первая группа называется спирохетами. Это гибкие, извитые формы с большим количеством завитков. Вторая группа называется спириллами. Это негибкие извитые формы с малым количеством завитков. Третья группа — вибрионы. Это негибкие извитые формы, имеющие вид запятой.[ . ]

Самостоятельно передвигаться в воде способны не Есе представители группы бактерий, а только те, клетки которых имеют выросты — жгутики; спирохеты, не имеющие жгутиков, перемещаются благодаря колебаниям всего тела. Попадая в свежую питательную среду, они развиваются в форме неподЕижных коротких палочек; по мере истощения среды у них появляется жгутик, обусловливающий их подвижность. У нитратных бактерий, осуществляющих дальнейшую нитрификацию, известна лишь неподвижная стадия.[ . ]

В состав бактерий входит 1—4% жиров, 8 — 14% белков и 80— 85% воды. В микроколичествах содержатся фосфор, калий, кальций, магний, железо и другие элементы [114 (стр. 267), 115]. Вирусы не обладают клеточной структурой и имеют размер 10— 100 нм [115, стр. 248].[ . ]

Способностью передвигаться обладают только некоторые представители группы бактерий. Эта способность обусловлена наличием у них жгутиков. Только подвижные спирохеты перемещаются ритмичными колебаниями всего тела. Жгутики являются цитоплазматическими выростами, не втягивающимися внутрь при плазмолизе. В неокрашенном виде они под микроскопом не видны. На всем протяжении они имеют одинаковую толщину и диаметр их обычно не превышает /гп поперечного диаметра бактериальной клетки (около 0,02—0,05 мк). Скорость движения 10—20 мк/с.[ . ]

По данным Гизена и Холловей [363, 382], клеточная оболочка составляет 20—30% сухого веса бактериальной клетки. Все бактерии, за исключением микоплазм, миксобактерий и спирохет, имеют плотную и достаточно жесткую ригидную клеточную оболочку подобно растительным клеткам. Однако клеточные оболочки бактерий по своему химическому составу и структуре резко отличаются от клеточных стенок растений, которые, как известно, состоят из целлюлозы. У бактерий целлюлозы в оболочках нет, исключением являются уксусные бактерии Aceto-bacter xylinum и A. acetigenum, образующие толстую кожистую пленку из целлюлозных фибрилл.[ . ]

Извитые формы бактерий в зависимости от степени изогнутости делятся на вибрионы, имеющие вид запятой, спириллы с одним или несколькими завитками (в виде штопора) и спирохеты — сильно извитые тонкие спиральные бактерии. Среди извитых бактерий самые мелкие — вибрионы. Длина их клеток не превышает 1—3 мк. Длина тела спирилл колеблется от 5 до 30 мк при толщине 0,25—1 мк. Самыми крупными извитыми бактериями являются спирохеты. Длина их тонких нитей может доходить до 200 мк, поперечный размер — до 0,3—0,5 .мс. Некоторые авторы рассматривают спирохеты как отдельный класс организмов.[ . ]

Подвижность бактерий. Среди бактерий имеются подвижные и неподвижные формы- К неподвижным относятся все кокки и некоторые палочки. Большинство бактерий передвигается при помощи жгутиков. Спирохеты не имеют жгутиков и могут передвигаться путем изгибания тела.[ . ]

Бактерии имеют три основные формы: шаровидную — кокки, размером чаще всего 1—2 мк, палочковидную — бациллы и бактерии, длина которых обычно бывает 1—4 мк, спиральноизвитую — вибрионы, спириллы, спирохеты, длина их колеблется в пределах от 1 до 20 мк. Размножаются бактерии чаще всего простым делением. Большое количество видов бактерий, попадая в неблагоприятные условия, образуют споры, покрытые прочной защитной оболочкой, предохраняющей их от гибели. В таком состоянии споры могут сохраняться длительное время. При попадании в благоприятные условия споры прорастают и бактерии начинают размножаться.[ . ]

Бактерии имеют три основные формы: шаровидную — кокки, размером чаще всего 1—2 мк, палочковидную — бациллы и бактерии, длина которых обычно бывает 1—4 мк, спиральноизвитую — вибрионы, спириллы, спирохеты, длина их колеблется в пределах от 1 до 20 мк. Размножаются бактерии чаще всего простым делением. Большое количество видов бактерий, попадая в неблагоприятные условия, образуют споры, покрытые прочной защитной оболочкой, предохраняющей их от гибели. В таком состоянии споры могут сохраняться длительное время. При попадании в благоприятные условия споры прорастают и бактерии начинают размножаться.[ . ]

Бактерии (но далеко не все) способны активно передвигаться только в жидкой среде. К числу неподвижных форм относятся кокки (исключение составляют только два вида) и некоторые палочковидные бактерии. Извитые бактерии все подвижны. Спирохеты движутся за счет изгибов тела. Все остальные подвижные формы имеют специальный орган движения — жгутики, представляющие собой длинные очень тонкие нити, спиральные, волнистые или изогнутые. Длина жгутиков может во много раз превышать длину тела бактерии и достигает 10—30 мк и более. Поперечный размер жгутиков равен, приблизительно 0,01—0,03 мк.[ . ]

Извитые бактерии различаются по степени изогнутости. Они варьируются от коротких, слегка изогнутых палочек в виде запятой до длинных спирально извитых нитей. Палочки в виде запятой называются вибрионами, с одним или, несколькими завитками — спириллами и с многочисленными завитками — спирохетами.[ . ]

Легко убедиться, что в данном конкретном случае наибольшее значение будет иметь движущая вперед сила X; что касается силы Т, то она будет тем меньше, чем меньше разность скоростей с — V; сила же В вообще будет равна нулю. Ближе всего к рассмотренному случаю подходит движение таких организмов, как спирохеты.[ . ]

Бактериальная заселенность осадков. В осадках, как и в сточной воде, можно найти все основные формы бактерий [16]: палочковидные (цилиндрические), к которым относятся бациллы, диплобациллы и диплобактерии; шарообразные (эллипсоидные), к которым относятся все шесть видов кокков; извитые, которые подразделяются на спирохеты, спириллы и вибрионы.[ . ]

Размножение большинства бактерий, осуществляется бесполым способом путем деления клетки с образованием делящей перегородки или реже путем перетяжки клетки на две дочерние (рис. II—4). У кокков перегородка может проходить по любому диаметру клетки, у палочковидных бактерий, вибрионов и спирилл— поперек клетки, а у спирохет делящая перегородка может располагаться и вдоль длинной оси.[ . ]

Бактерии — это одноклеточные организмы размером в несколько микрометров1. По форме различают шаровидные (кокки), цилиндрические и извитые, а также переходные между ними. Цилиндрические бактерии, образующие внутри клетки споры, называются бациллами; не образующие спор — соб-чтвенно бактериями. Среди извитых бактерий различают вибрионы, спириллы и спирохеты (рис. 9). Есть более сложные формы бактерий — нитчатые, миксобактерии.[ . ]

До недавнего времени не было ясно, существуют ли фаги против плесневых грибов и дрожжей. В последние годы найдены фаги, активные против грибов родов пенициллбв, аспергил-лов и других, а также против некоторых дрожжей. Интересно отметить, что вирус удалось выявить и у тех видов пенициллов, которые применяются в промышленности для получения пенициллина. Не выявлены вирусы, активные против простейших животных, а также истинных спирохет.[ . ]

Некоторые бактерии обладают способностью самостоятельно двигаться благодаря наличию у них специальных органов — жгутиков. Жгутики представляют собой нитевидные образования протоплазмы, их можно заметить только в электронный или ультрамикроскоп. Под обычным микроскопом они видны только после специальной окраски. Длина жгутиков достигает длины тела бактерий, а диаметр колеблется в пределах 0,02—0,05 Реже встречаются бактерии, которые передвигаются благодаря колебаниям и изгибам своего тела (спирохеты). Подвижность бактерий зависит от внешних условий и возраста клетки.[ . ]

Толщина бактериального газона на фильтрующем материале биофильтра меняется также в зависимости от состава очищаемых вод. При очистке бытовых сточных вод образуется пленка толщиной 0,5—1,0 мм [159]. Очистка фенольных сточных вод сопровождается увеличением биопленки. Кроме того, цвет пленки зависит от наличия анаэробных условий в биофильтре. Так, при очистке сточных вод производства синтетических жирных кислот окраска биопленки чаще всего была чернокоричневой, она образовывала очень мощный газон, особенно в верхней части лабораторной модели биофильтра [99, 100]. По данным В. Христа, биопленка содержала много спирохет и мало простейших, а также грибов [118].[ . ]

Движение бактерий. Многим бактериям свойственно самопроизвольное движение. Так, спиралевидные бактерии все подвижны, есть подвижные палочковидные и шаровидные бактерии, однако многие эубактерии неподвижны. На отдельных стадиях развития подвижные бактерии могут утрачивать способность к движению; она реализуется только в жидкой среде. Некоторые спиральные формы бактерий имеют большую скорость передвижения за одну секунду, в 20—30 раз превышающую их длину, это скорее, чем бежит любой рекордсмен по скоростному бегу — 45—50 м/сек. Автомобилю нужно было бы развить скорость 200 — 250 км/ч, чтобы достичь относительной скорости вибриона. Нельзя смешивать активное движение бактерий с броуновским движением, которое является беспорядочным колебанием бактерий и мелких органических и неорганических частиц. Активное движение возможно реактивным путем, скользящее — вследствие вращательного движения клетки, сокращения ее (у спирохет) и движения при помощи жгутиков.[ . ]

Посоветуйте книгу друзьям! Друзьям – скидка 10%, вам – рубли

Вопрос 1. Основы микробиологии. Классификация микроорганизмов

Микробиология как самостоятельная наука, имеющая свои объекты и методы исследования, сформировалась во второй половине 19 века благодаря работам Пастера, Коха, Эрлиха, Мечникова, Ру и др., но и в настоящее время, также как и тесно связанные с ней, биотехнология и генная инженерия, постоянно и интенсивно развивается.

Зародившись, как наука о возбудителях болезней, т. е. как отрасль медицины, к настоящему времени в зависимости от решаемых задач делится на:

Предметом изучения медицинской микробиологии являются микроорганизмы – представители нормальной микрофлоры тела человека и возбудители различных заболеваний человека, а также методы лабораторной диагностики, специфической профилактики и этиотропной терапии вызываемых ими заболеваний.

Микроорганизмы – это организмы, невидимые невооруженным глазом из-за их незначительных размеров. Этот критерий – единственный, который их объединяет. В остальном мир микроорганизмов еще более разнообразен, чем мир макроорганизмов. Согласно современной систематике, микроорганизмы относятся к трем царствам:

Vira– к ним относятся вирусы;

Eucariotae – к ним относятся простейшие и грибы;

Procariotae – к ним относятся истинные бактерии, риккетсии, хламидии, микоплазмы, спирохеты, актиномицеты.

Основные отличия прокариот от эукариот состоят в том, что прокариоты не имеют:

• морфологически оформленного ядра (нет ядерной мембраны и отсутствует ядрышко), его эквивалентом является нуклеоид, или генофор, представляющий собой замкнутую кольцевую двунитевую молекулу ДНК, прикрепленную в одной точке к цитоплазматической мембране; по аналогии с эукариотами эту молекулу называют хромосомной бактерией;

сетчатого аппарата Гольджи;

Имеется также ряд признаков или органелл, характерных для многих, но не для всех прокариот, которые позволяют отличать их от эукариотов:

• многочисленные инвагинации цитоплазматической мембраны, которые называются мезосомы, они связаны с нуклеоидом и участвуют в делении клетки, спорообразовании, и дыхании бактериальной клетки;

• специфический компонент клеточной стенки – муреин, по химической структуре – это пептидогликан (диаминопиеминовая кислота);

плазмиды – автономно реплицирующиеся кольцевидные молекулы двунитевой ДНК с меньшей, чем хромосома бактерий молекулярной массой. Они находятся наряду с нуклеоидом в цитоплазме, хотя могут быть и интегрированы в него, и несут наследственную информацию, не являющуюся жизненно необходимой для микробной клетки, но обеспечивающую ей те или иные селективные преимущества в окружающей среде. Наиболее известны плазмиды:

– (F-плазмиды), обеспечивающие конъюгационный перенос между бактериями;

– (R-плазмиды) – плазмиды лекарственной устойчивости, обеспечивающие циркуляцию среди бактерий генов, детерминирующих устойчивость к используемым для лечения различных заболеваний химиотерапевтическим средствам.

Название рода обычно или основано на морфологическом признаке соответствующего микроорганизма (например, Staphylococcus, Vibrio, Mycobacterium) либо являются производными от фамилии автора, который открыл или изучил данный возбудитель (например, Neisseria, Shigella, Escherichia, Rickettsia, Gardnerella).

Видовое название часто связано с наименованием основного вызываемого этим микроорганизмом заболевания (например, Vibrio cholerae – холеры, Shigella dysenteriae – дизентерии, Mycobacterium tuberculosis – туберкулеза) или с основным местом обитания (например, Escherihia coli – кишечная палочка).

Кроме того, в русскоязычной медицинской литературе возможно использование соответствующего русифицированного названия бактерий (например, вместо Staphylococcus epidermidis – эпидермальный стафилококк; Staphylococcus aureus – золотистый стафилококк и т. д.).

Царство прокариот включает в себя отдел цианобактерий и отдел эубактерий, который, в свою очередь, подразделяется на порядки:

• собственно бактерии (отделы Gracilicutes, Firmicutes, Tenericutes, Mendosicutes);

Бактерии – это прокариотические, преимущественно одноклеточные микроорганизмы, которые могут также образовывать ассоциации (группы) сходных клеток, характеризующиеся клеточными, но не организменными сходствами.

Порядки подразделяются на группы. Основными таксономическими критериями, позволяющими отнести штаммы бактерий к той или иной группе, являются:

• морфология микробных клеток (кокки, палочки, извитые);

• отношение к окраске по Граму – тинкториальные свойства (грамположительные и грамотрицательные);

• тип биологического окисления – аэробы, факультативные анаэробы, облигатные анаэробы;

• способность к спорообразованию.

Дальнейшая дифференциация групп на семейства, рода и виды, которые являются основной таксономической категорией, проводится на основании изучения биохимических свойств. Этот принцип положен в основу классификации бактерий, приведенной в специальных руководствах – определителях бактерий.

• по биологическим свойствам (биовары или биотипы);

• по биохимической активности (ферментовары);

• по антигенному строению (серовары или серотипы);

• по чувствительности к бактериофагам (фаговары или фаготипы);

• по устойчивости к антибиотикам (резистентовары).

В микробиологии широко применяют специальные термины – культура, штамм, клон.

Культура – это видимая глазом совокупность бактерий на питательных средах. Культуры могут быть чистыми (совокупность бактерий одного вида) и смешанными (совокупность бактерий двух или более видов).

Штамм – это совокупность бактерий одного вида, выделенных из разных источников или из одного источника в разное время. Штаммы могут различаться по некоторым признакам, не выходящим за пределы характеристики вида.

Клон – это совокупность бактерий, являющихся потомством одной клетки.

Вопрос 2. Особенности морфологии микроорганизмов

Среди основных морфологических форм бактерий различают:

шаровидные (кокковые), которые по характеру взаиморасположения делятся на:

– микрококки (отдельное изолированное расположение);

– диплококки (сцепленные попарно);

– тетракокки (сцепленные по четыре);

– стрептококки (сцепленные в цепочку);

– сарцины (сцепленные в пакеты по 8, 12, 16 и т. д.);

– стафилококки (сцепленные беспорядочно в виде виноградной грозди);

палочковидные, которые различаются:

– правильная (энтеробактерии, псевдомонады);

– мелкие (бруцеллы, бордетеллы);

– средние (бактероиды, кишечная палочка);

– крупные (бациллы, клостридии);

по форме концов

– закругленные (сальмонеллы, псевдомонады);

по характеру взаиморасположения все палочки делятся на:

– диплобактерии и диплобациллы (сцепленные попарно);

– стрептобактерии и стрептобациллы (сцепленные в цепочку);

– извитые формы (по характеру и количеству завитков они делятся на:

вибрионы (слегка изогнутые палочки или неполные завитки);

спириллы (один или несколько завитков);

спирохеты, которые в свою очередь, делятся на:

лептоспиры (завитки с загнутыми крючкообразными концами – S-образная форма);

боррелии (4—12 неправильных завитков);

трепонемы (14–17 равномерных мелких завитков).

Структуру бактерий изучают в основном с помощью электронной микроскопии (техника ультратонких срезов), дифференциального ультрацентрифугирования, цитохимических методов.

Структурные компоненты бактериальной клетки делятся на обязательные и необязательные.

Обязательными структурными компонентами являются:

• цитоплазма с локализованными в ней рибосомами и ядерным аппаратом.

Необязательные структурные компоненты – капсула, микрокапсула, внеклеточная слизь, включения, жгутики, пили, споры.

Функции клеточной стенки состоят в том, что она:

• является осмотическим барьером,

• определяет форму бактериальной клетки,

• защищает клетку от воздействий окружающей среды,

• несет разнообразные рецепторы, способствующие прикреплению фагов, колицинов, а также различных химических соединений,

• через клеточную стенку в клетку поступают питательные вещества и выделяются продукты обмена,

• в клеточной стенке локализован О-антиген и с ней связан эндотоксин (липид А) бактерий.

Имеется 2 типа строения клеточной стенки у бактерий. В обоих случаях ее основу составляет пептидогликан муреин. У одних бактерий (1-й тип) он составляет до 90 % массы клеточной стенки и образует многослойный (до 10 слоев) каркас, при этом муреин ковалентно связан с тейхоевыми кислотами. Такие бактерии при окраске по методу Грама прочно удерживают комплекс генцианового фиолетового и йода; они окрашиваются в сине-фиолетовый цвет и называются грамположительными.

У бактерий со 2-м типом строения клеточной стенки поверх 2–3 слоев пептидогликана муреина располагается слой липополисахаридов. Эти бактерии при окраске по методу Грама не способны прочно удерживать комплекс генцианового фиолетового и йода и, соответственно, обесцвечиваются спиртом, прокрашиваясь дополнительным красителем – фуксином в розово-красный цвет. Они называются грамотрицательными.

В связи с различиями в строении клеточной стенки все бактерии делятся на 4 отдела:

грациликуты – бактерии с тонкой клеточной стенкой, грамотрицательные, к ним относятся различные извитые, палочковидные, кокковые формы бактерий, а также риккетсии и хламидии;

фирмикуты – бактерии с толстой клеточной стенкой, грамположительные, к ним относятся палочковидные, кокковые формы бактерий, а также актиномицеты, коринебактерии и микобактерии;

тенерикуты – бактерии без ригидной клеточной стенки (микоплазмы);

мендозикуты – архебактерии, отличающиеся дефектной клеточной стенкой, особенностями строения рибосом, мембран и рибосомальных РНК. Эта группа бактерий медицинского значения не имеет.

Из любой бактериальной клетки можно получить формы, полностью или частично лишенные клеточной стенки. Они называются, соответственно, протопласты и сферопласты, и, независимо от исходного морфологического типа бактерии, из-за отсутствия клеточной стенки принимают шарообразную или грушевидную форму. Кроме того, существуют L-формы бактерий, которые, в отличие от протопластов и сферопластов, способны к размножению, являясь вполне полноценными микробными клетками данного вида бактерий. L-формы разных видов бактерий морфологически неразличимы. Независимо от формы исходной клетки (кокки, палочки, вибрионы) они представляют собой сферические образования разных размеров. Различают стабильные L-формы, нереверсирующие в исходный морфотип, и нестабильные L-формы, реверсирующие в исходный при устранении причины, вызвавшей их образование. В процессе реверсии восстанавливается способность бактерий синтезировать пептидогликан (муреин) клеточной стенки. L-формы различных бактерий играют существенную роль в патогенезе многих хронических, рецидивирующих инфекционных заболеваний (бруцеллез, туберкулез, сифилис, хроническая гонорея и т. д.).

К клеточной стенке бактерий примыкает цитоплазматическая мембрана, строение которой аналогично мембранам эукариотов (состоит из двойного слоя липидов, главным образом фосфолипидов со встроенными поверхностными и интегральными белками). Она обеспечивает:

• селективную проницаемость и транспорт растворимых веществ в клетку,

• транспорт электронов и окислительное фосфорилирование,

• выделение гидролитических экзоферментов, биосинтез различных полимеров.

Цитоплазматическая мембрана ограничивает цитоплазму бактерий, которая представляет собой гранулярную структуру. В цитоплазме локализованы рибосомы и бактериальный нуклеоид, в ней также могут находиться включения и плазмиды (внехромосомная ДНК). Кроме обязательных структур бактериальные клетки могут иметь споры.

Вопрос 3. Необязательные структурные компоненты бактериальной клетки

Спорообразующие палочки называются бациллами.

Споры бактерий представляют собой бактериальные клетки в состоянии анабиоза и образуются при неблагоприятных условиях внешней среды (располагаются внутри клетки терминально, субтерминально или центрально).

В процессе спорообразования клетка почти полностью теряет воду, сморщивается, клеточная стенка уплотняется. Появляется новое вещество – дипиколинат кальция, которое образует комплексы с биополимерами клетки, устойчивые к действию температуры и ультрафиолетовых лучей. В окружающей среде споры бактерий могут сохраняться годами, но при попадании в благоприятные условия спора впитывает влагу, комплексы распадаются, дипиколинат разрушается, и спора превращается в вегетативную клетку.

Таким образом, спору следует рассматривать не как способ размножения, а только как форму существования бактериальной клетки в неблагоприятных условиях. При этом преобразования идут по следующей схеме: 1 клетка – 1 спора – 1 клетка, и увеличения количества бактериальных клеток не происходит.

Спорообразование характерно в основном для грамположительных бактерий. У грамотрицательных бактерий эквивалентом спорообразования является переход в так называемое некультивируемое состояние. В такой форме они также длительно сохраняются в окружающей среде.

При использовании окраски по Граму споры красители не воспринимают, поэтому на окрашенном фоне они бесцветны. Окрашиваются споры с помощью специальных методов окраски, например, по Ожешко или Клейну.

Многие бактерии имеют жгутики. Их количество и расположение у разных бактерий неодинаково. Монотрихии имеют только один жгутик (род Vibrio), лофотрихии – пучок жгутиков на одном полюсе клетки (род Pseudomonas), а у амфитрихов жгутики (один или пучок) расположены на обоих полюсах клетки (род Spirillum), а у перитрихов – по всей поверхности (род Escherichia, Salmonella).

По своему строению жгутики представляют собой спирально закрученные нити, состоящие из специфического белка флагеллина, который по своей структуре относится к сократительным белкам типа миозина.

На поверхности ряда бактерий обнаружены белковые образования – ворсинки (фимбрии, пили). Фимбрии отходят от поверхности клетки и состоят из белка, называемого пилином. Различают более 60 видов ворсинок, из которых наиболее изучены F-pili (половые пили) и common pili (пили, ответственные за адгезию).

Основное предназначение капсул – защита бактерий от фагоцитоза. При окраске мазков по Граму истинно капсульные бактерии имеют характерное взаиморасположение (на расстоянии друг от друга). При световой микроскопии капсулы четко не видны, в связи с чем наличие капсул у бактерий выявляется с помощью специальных методов окраски, например, по методу Гимзе. Для выявления капсул и бактерий, образующих их в организме, используют либо микроскопию мазков, приготовленных из патологического материала или мазков – отпечатков из органов погибших животных.

Вопрос 4. Питание и особенности метаболизма бактерий

По химическому составу и характеру биополимеров (белки, полисахариды, нуклеиновые кислоты, липиды) прокариотические клетки не отличаются от эукариотических. Основными химическими компонентами бактериальной клетки являются органогены (кислород, водород, углерод, азот, фосфор).

Процесс, в ходе которого бактериальная клетка получает из окружающей среды компоненты, необходимые для построения ее биополимеров (органоидов), называется питанием.

Бактериальные клетки не имеют специальных органов питания, т. е. являются голофитными. Поступление питательных веществ в микробную клетку может происходить:

за счет осмоса и диффузии по градиенту концентрации без затрат энергии;

за счет пассивного транспорта, который также осуществляется по градиенту концентрации с помощью белков-переносчиков, но без затрат клеткой энергии, и отличается от диффузии большей скоростью;

за счет активного транспорта, который идет против градиента концентрации с затратой энергии и возможным частичным расщеплением субстрата, осуществляется белками-переносчиками или ферментами – пермеазами.

По источникам углерода, необходимого для построения биополимеров, бактерии делятся на следующие группы:

автотрофы – микроорганизмы, которые используют как единственный источник углерода углекислый газ, и не нуждаются в сложных органических соединениях.

гетеротрофы – микроорганизмы, которые используют в качестве источника углерода разнообразные органические углеродосодержащие соединения (углеводы, углеводороды, аминокислоты, органические кислоты) как биологического, так и не биологического происхождения.

В зависимости от источника получения энергии микроорганизмы делятся на:

фототрофные, способные использовать солнечную энергию,

хемотрофные, получающие энергию за счет окислительно-восстановительных реакций.

В дополнение к этой классификации в зависимости от природы доноров электронов микроорганизмы подразделяются на фототрофные литотрофы и, соответственно, хемотрофные литотрофы, т. е. использующие в качестве доноров электронов неорганические соединения, а также, соответственно фото– и хемоорганотрофы, использующие только органические соединения. К последним принадлежит значительное большинство бактерий, в том числе и патогенные для человека виды.

По источникам азота выделяют:

азотфиксирующие микроорганизмы (способны усваивать молекулярный азот атмосферы),

• микроорганизмы, ассимилирующие неорганический азот солей аммония, нитратов или нитритов и, соответственно, называющиеся аммонифицирующими, нитратредуцирующими и нитритредуцирующими.

Однако большинство патогенных для человека микроорганизмов способны ассимилировать только азот органических соединений.

Микроорганизмы, способные синтезировать все необходимые им органические соединения (углеводы, аминокислоты и др.) из указанных компонентов, называются прототрофами.

Микроорганизмы, не способные синтезировать какое-либо из необходимых соединений, и ассимилирующие их в готовом виде из окружающей среды или организма хозяина (человека, животного), называются ауксотрофами по этому соединению. Чаще всего ими являются патогенные или условно-патогенные для человека микроорганизмы.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции