Питательные среды для кишечных инфекций

К ОКИ относятся: эшерихиозы, вызываемые условно-патогенными и патогенными (энтеропатогенными, энтерогеморрагическими, энтероинвазивными и энтеротоксигенными) кишечными палочками, брюшной тиф, паратифы А и Б, сальмонеллезы, дизентерия, кишечные клебсиеллезы и кишечные иерсиниозы.

Методы их микробиологической диагностики включают следующие принципы:

1. Микроскопический метод диагностики, как правило, не приемлем, так как патогенные и непатогенные энтеробактерии имеют общие морфологические характеристики.

2. Для диагностики применяют бактериологический и серологический методы. Выбор метода диагностики зависит от клинических проявлений, места локализации возбудителя и фазы патогенеза болезни

1. Забор материала.

2. Транспортировка материала осуществляется медицинским работником в системе "стекло, металл" в течение не более трех часов после его забора или в консерванте с сопровождающими документами.

3. Питательные среды, используемые для бактериологического исследования, можно подразделить на три группы:

а) среды обогащения, создающие условия преимущественного размножения выделяемого возбудителя и основанные либо на принципе наличия в среде факторов активации роста данного микроба, либо на принципе подавления роста сопутствующих микробов-антагонистов, второй - селенитовая, магниевая, Мюллера, с пенициллином и т.д.;

б) среды дифференциально-диагностические - плотные питательные среды, содержащие дифференцирующий углевод - лактозу и индикатор. Кишечные палочки, разлагающие лактозу (лактозоположительные), растут в виде окрашенных колоний в зависимости от типа среды - в малиново-красный и розовый (среда Эндо) или темно-синий (среда Левина) цвет. Клебсиеллы пневмонии разлагают лактозу в среде с индикатором бромтимоловым синим и образуют колонии желтого цвета, в то время как колонии лактозоотрицательных биоваров формируют колонии цвета среды. Сальмонеллы и шигеллы на средах Эндо, Левина, Плоскирева также не разлагают лактозу и дают бесцветные колонии;

в) среды накопления чистой культуры. Чаще применяется среда Олькеницкого (трехсахарный агар). Она состоит из столбика, скошенной части и включает лактозу, глюкозу и сахарозу, индикатор, реагенты для определения сероводорода и уреазы. Посев производят уколом в столбик и штрихом по поверхности скошенной части. При росте микробов глюкоза лучше разлагается в столбике, лактоза - на скосе, в результате чего дифференцированно меняется цвет среды. При образовании газа - формируются пузырьки и разрывы в среде, при продукции сероводорода - наблюдается почернение по ходу укола, при продукции уреазы - изменение цвета среды на оранжевый.

4. Идентификация выделенных культур.

7. Материалы для исследования при ОКИ: методы взятия и характер материала в зависимости от клинической формы болезни и этапа патогенеза.

1. Забор материала. Характер материала зависит от первичной или вторичной локализации микроба-возбудителя. Если материалом служат испражнения, что чаще всего бывает, то их берут до начала или после суточного перерыва в антибактериальной терапии. Материал лучше забирать ректальной трубкой, тампоном со стерильной пеленки или стерильной пергаментной бумаги, специальным устройством для забора фекалий (ни в коем случае не допуская его контакта с дезинфектантами). Если материалом служит кровь, то забирают 10,0 мл крови из вены локтевого сгиба.

2. Транспортировка материала осуществляется медицинским работником в системе "стекло, металл" в течение не более трех часов после его забора или в консерванте с сопровождающими документами.

3. Питательные среды

4. Идентификация выделенных культур основана на определении:

· общего для семейства признака - грам- палочки;

· наличия капсулы (у клебсиелл);

· цвета колоний на чашечных средах;

· подвижности (сальмонеллы и эшерихии подвижны, шигеллы и клебсиеллы

· чувствительности к антибактериальным препаратам;

· чувствительности к бактериофагам.

Антигенную структуру определяют по предварительному установлению серогруппы, чаще с монорецепторными адсорбированными сыворотками, а затем серовара тоже с адсорбированными сыворотками.

Дата публикования: 2014-11-29 ; Прочитано: 2360 | Нарушение авторского права страницы

studopedia.org - Студопедия.Орг - 2014-2020 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.002 с) .

1.1. В методических рекомендациях представлена доступная для практических бактериологических лабораторий методика бактериологического исследования на кампилобактериоз больных острыми кишечными инфекциями с учетом современных возможностей лабораторной техники по созданию условий для культивирования и идентификации кампилобактерий.

1.2. Методические рекомендации предназначены для врачей бактериологов, инфекционистов, эпидемиологов и врачей других специальностей.

В настоящее время по данным ВОЗ, во многих зарубежных странах кампилобактериоз является наиболее распространенной этиологической формой в структуре ОКИ и в зависимости от региона на его долю приходится от 3 до 73 % всех расшифрованных острых кишечных инфекций [1, 11].

Изучение кампилобактериоза в Российской Федерации начато с большим опозданием, что сопряжено с рядом причин, в основном со сложностью и высокой стоимостью лабораторной диагностики, обусловленными особенностями культивирования кампилобактеров. Так в 2005 - 2007 гг. по всей России официально зарегистрировано всего 394 - 398 случаев этой инфекции (показатель на 100 тыс. населения - 0,27 - 0,28 соответственно). Показатель заболеваемости на 100 тыс. населения по сальмонеллезу за тот же период составил 29,33, 31,96 и 35,5, соответственно. При этом кампилобактериоз выявлен только в 14-ти из 85-ти административных территорий России. Таким образом, кампилобактериозная инфекция, столь широко распространенная во всем мире, и по частоте выявления сопоставимая с сальмонеллезом, в России диагностируется очень мало [11].

Для лабораторной диагностики кампилобактериозного энтероколита кроме основного бактериологического метода с выделением чистой культуры возбудителя могут быть использованы и другие методы.

Серодиагностика при кампилобактериозе имеет вспомогательное значение и может быть проведена для ретроспективной диагностики при отсутствии выделения возбудителя, при эпидемиологических исследованиях и изучении патогенеза. Исследование парных сывороток при кампилобактериозной инфекции не имеет такого большого диагностического значения как при многих других кишечных заболеваниях, поскольку отчетливое увеличение титров антител наблюдается только у одной трети больных [14].

Для ускоренной индикации кампилобактеров в разное время предлагали использовать иммунологические реакции, такие как реакция коагглютинации, иммуноферментный анализ [3, 12]. Однако они не могут широко использоваться в практических лабораториях из-за ограниченного производства тест-систем.

Одним из наиболее распространенных альтернативных методов индикации кампилобактерий являются методики, основанные на амплификационных технологиях и в частности - методе полимеразной цепной реакции (ПЦР). В связи с высокой частотой циркуляции в популяции здоровых лиц сапрофитных видов кампилобактерий для диагностики кишечных форм кампилобактериоза применяются тест-системы, позволяющие выявлять только термофильную группу этих микроорганизмов и разрешенные к применению на территории Российской Федерации в установленном порядке. Предпочтение при этом должно отдаваться тест-системам, обеспечивающим более высокий уровень контаминационной защищенности при проведении исследований.

Апробация разработанной методики в условиях микробиологической лаборатории инфекционной больницы г. Липецка при обследовании 11607 больных ОКИ подтвердила эффективность ее использования для диагностики кампилобактериозной инфекции. Так, высеваемость кампилобактеров за 2002 - 2005 гг. в г. Липецке в среднем составила 1,8 ± 0,12 %, что более чем в 2 раза выше уровня высеваемости шигелл за анализируемый период (0,8 %), но ниже высеваемости сальмонелл (3,2 %)

3.1 Формула метода

Способ бактериологической диагностики кампилобактериоза, включающий выделение чистой культуры возбудителя, с использованием специальных питательных сред и капнофильных условий культивирования, и последующей ее идентификацией.

3.2. Показания и противопоказания к применению метода:

Показанием к проведению бактериологического исследования биологического материала на кампилобактериоз является необходимость обследования

- больных острыми кишечными инфекциями (ОКИ) - с диагностической целью;

- лиц, контактных с больными ОКИ - по эпидемическим показаниям;

- реконвалесцентов кампилобактериоза - для контроля лечения и выявления бактерионосительства.

Противопоказания к использованию метода отсутствуют.

3.3. Материально-техническое обеспечение метода

3.3.1. Стандартное испытательное и вспомогательное оборудование, средства измерения для микробиологических лабораторий.

3.3.2. Питательные среды, химические реагенты, оборудование для культивирования, выделения, идентификации кампилобактерий, в том числе:

- Трековые мембраны с диаметром пор 0,46 и 0,55 мкм (типа изготовляемых лабораторией ядерных реакций им. Г.Н. Флерова ОИЯИ, г. Дубна и др.).

- Термостат с регулируемой газовой средой или микроанаэростат или системы для инкубации микроаэрофильных и анаэробных микроорганизмов (типа CampyPack Plus jar, Campy Pack (Becton Dickinson), Genbag, Genbox anaer (bio Merieux, Hi Media и др.).

3.3.3. Для лабораторной диагностики кампилобактериоза должны использоваться питательные среды и реагенты, разрешенные к применению на территории Российской Федерации в установленном порядке.

Возбудители кампилобактериоза первоначально были отнесены к роду Vibrio семейства Vibrionaceae, а выделенный для них вид был назван V. fetus []. В 1963 году по предложению Sebald M. и Veron M., доказавших различия между микроаэрофильной группой V. fetus и истинными вибрионами при изучении состава оснований ДНК, род Campylobacter, как новый таксон, был введен в семейство Spirillaceae. В настоящее время микроаэрофильные подвижные, хемоорганотрофные, не образующие спор и капсул грамотрицательные бактерии спиралевидной, S-образной или изогнутой формы объединены в семейство Campylobacteriaceae, а род Campylobacter насчитывает, по последним данным, около 20 видов и подвидов, и это число постоянно растет, уточняются потенциальные возможности данных микроорганизмов в этиологии и патогенезе заболевания у человека. Наибольшее значение для патологии человека на сегодня имеют C. jejuni, C. coli, C. lari, C. fetus. Последний вид чаще поражает ослабленных интеркуррентными заболеваниями людей с развитием гематогенно-диссеминированных форм заболевания [9].

Длина клеток кампилобактеров 0,5 - 5 мкм, толщина - 0,2 - 0,8 мкм, имеют один или два полярно расположенных жгутика, могут обладать плазмидами. В старых культурах бактерии часто принимают сферические или кокковые формы.

Кампилобактерам присущ дыхательный тип метаболизма. В качестве источника энергии они, в основном, используют аминокислоты, но не могут утилизировать углеводы. Кампилобактеры - микроаэрофилы. Кислород необходим для их роста, но становится токсичным для микроорганизмов в избыточном количестве. Для большинства штаммов оптимальной является концентрация кислорода 3 - 6 %. Кампилобактерии являются капнофилами, то есть нуждаются в высоких концентрациях CO2 (до 10 %). Большинство этиологически значимых кампилобактеров обладают каталазой, оксидазой и супероксиддисмутазой.

В зависимости от температурного диапазона роста кампилобактеры делят на 2 группы: 1) нетермофильные (O. faecalis, Chyointestinalis, C. fetus, O. consicus) - температурный оптимум +37 °С; 2) термофильные (C. jejuni, C. coli, C. lari) - температурный оптимум +42 - 43 °С.

На жидких питательных средах через 48 часов инкубации кампилобактер образует равномерное помутнение с выраженным осадком, на полужидких пробирочных питательных средах - зону роста в виде диска, расположенного на глубине 1 - 2 мм от поверхности питательной среды.

C. jejuni на плотных питательных средах с добавлением крови образуют колонии без гемолиза 2-х типов:

На полужидких средах C. jejuni растут в виде диска, 3 - 5 мм от поверхности среды. C. coli на плотных питательных средах с добавлением крови образуют колонии диаметром 1 - 2 мм без гемолиза, гладкие, выпуклые, блестящие с рыжевато-коричневым оттенком.

4.1. Принцип бактериологического метода основан на выявлении живых микроорганизмов в исследуемом субстрате при посеве на специальные питательные среды с последующей инкубацией в термостате при заданной температуре в микроаэрофильных условиях. Изучение культуральных и ферментативных свойств полученных микроорганизмов позволяет идентифицировать бактерии рода Campylobacter.

4.2. При кампилобактериозе бактериологическое исследование обеспечивает постановку этиологического диагноза и контроль освобождения организма от возбудителя. При дифференциальной диагностике кампилобактериоза от других острых кишечных инфекций бактериологическое исследование с выделением возбудителя является единственным методом, так как клиническое течение инфекционного процесса не всегда позволяет различить эти нозологические формы.

4.3 Схема бактериологической диагностики кампилобактерий



Проводить бактериологическое исследование с диагностической целью необходимо в наиболее ранние сроки от начала заболевания, до начала антибиотикотерапии.

4.4 Сбор материала для исследования

Материалом для исследования являются испражнения. Техника взятия исследуемого материала не отличается от техники, применяемой при других ОКИ.

Отбор нативного материала

Испражнения не менее 1 грамма собирают сразу после естественного акта дефекации из судна, горшка (тщательно вымытого и не содержащего следов дезинфектантов) или с пеленки с помощью стерильной стеклянной палочки, проволочной петли или деревянного шпателя и помещают в стерильную посуду (стеклянную пробирку, вакуумный пробоотборник, контейнер транспортировочный со средой для анаэробов или специальными средами с активированным углем и без него для выделения Campylobacter spp.). При наличии в испражнениях патологических примесей (слизь, хлопья, эпителий, гной), за исключением крови, их включают в отбираемую пробу.

Отбор с использованием ректальных петель (тампонов).

Стерильную ректальную петлю (тампон) вводят в прямую кишку на глубину 56 см. Взятый материал переносят в стерильную пробирку с физиологическим раствором или в транспортную среду. Попадание транспортных сред на слизистую оболочку прямой кишки недопустимо!

Условия и сроки хранения и транспортировки проб.

При возможности доставки нативных фекалий в лабораторию в течение 1 часа, транспортные среды можно не использовать.

При необходимости продолжительной транспортировки используют транспортные среды: 0,1 % пептонная вода, среда контроля стерильности, среда Amies, среда Саrу-Blair (см. Приложение 1). Соотношение материал/среда должно быть 1:3 - 1:5. Применение транспортных сред обязательно при отборе проб ректальными петлями [3].

Сроки хранения материала в транспортных средах при температуре 4 °С в зависимости от вида среды:

- в изотоническом растворе натрия хлорида в течение 24 часов,

- в 0,1 % пептонной воде - 72 часа,

- в среде для контроля стерильности, среде Amies, среде Cary-Blair - 5 - 7 суток.

4.5. Этапы бактериологического исследования

Задачей первого этапа бактериологического исследования является выделение чистой культуры кампилобактеров. С этой целью возможны 2 варианта посева исследуемого материала:

1 - посев на селективные питательные среды;

2 - посев с использованием ядерных фильтров.

Первый вариант предусматривает посев испражнений непосредственно на питательные среды (кровяной эритрит агар, угольный эритрит агар, кампилобакагар) с использованием добавок: аэротолерантных (железа II сульфата, натрия пирувата, натрия метабисульфита в концентрации 0,025 % каждой из солей, (см. Приложение 1) и селективных (смеси антибиотиков для подавления сопутствующей микрофлоры, (см. Приложение 2). Перед посевом фекальные пробы суспензируют в изотоническом растворе NaCl или в 0,1 % пептонной воде в соотношении 1:10.

Применение метода ядерных фильтров позволяет производить посев материала на неселективные питательные среды. Использование ядерных фильтров с диаметром пор 0,46 и 0,55 мкм и отказ от внесения в среду селективных добавок способствует: сокращению времени выделения кампилобактерий до 24 часов инкубации; возможности обнаружения разных видов кампилобактерий; росту возбудителя в чистой культуре, что значительно упрощает учет результатов посева; снижению стоимости анализа.

Ядерные фильтры размером 3×3 см, стерилизованные автоклавированием при +121 °С в течение 30 минут, переносятся пинцетом на подсушенную питательную среду. Затем на поверхность фильтров пипеткой наносят 0,1 мл суспензии фекалий в стерильном изотоническом растворе натрия хлорида или консерванте. Через 30 минут экспозиции фильтры удаляют. Допускается повторное использование ядерных фильтров после: обеззараживания кипячением в дистиллированной воде в течение 5 минут (без интенсивного кипения воды), промывания в проточной воде, просушивания, визуальной проверки целостности, стерилизации автоклавированием при +121 °С в течение 30 минут [4].

Инкубация всех посевов проводится при температуре +42,5 - 43 °С в микроаэрофильных и капнофильных условиях. Оптимальные условия для культивирования кампилобактеров создает атмосфера, содержащая 5 % кислорода, 10 % углекислого газа, 85 % азота. Длительность инкубации составляет 48 часов с обязательным просмотром посевов через 24 часа.

Необходимые устройства для культивирования кампилобактерий:

термостат с регулируемой газовой средой, или микроанаэростаты, или эксикаторы, или сборник для твердых радиоактивных отходов, или системы для инкубации Genbox и др.

Способы создания газовой смеси: использование газовой смеси из баллонов; химические газогенерирующие пакеты.

4.6. Идентификация выделенной культуры

На следующем этапе исследования проводится идентификация выделенной культуры.

При обнаружении подозрительных колоний из них готовят мазки с последующей окраской кристалл-виолетом или 1 % раствором фуксина. При выявлении микроорганизмов с характерной морфологией (изогнутые палочки S-образные или в виде крыльев чайки) проводят традиционные тесты: определение цитохромоксидазы (с использованием стандартных наборов и реактивов для определения цитохромоксидазы), продукция каталазы со свежеприготовленным 3 % раствором перекиси водорода, КОН-тест с 3 % раствором КОН.

В настоящее время возможна первичная идентификация колоний,

подозрительных на кампилобактериозные, с помощью латексного агглютинационного набора (типа Campylobacter test kit фирмы ОХOID), который состоит из: карт с сухим кампилобактер-реагентом, имеющими тестовую и контрольную поверхность, экстрагирующего реагента 1 (раствора уксусной кислоты), экстрагирующего нейтрализующего реагента 2 (трис буфера, содержащего 0,09 % азида натрия в качестве консерванта), положительного контрольного реагента.

Методика основана на взаимодействии латексных частиц тестовой поверхности, сенсибилизированных кроличьими антителами, с поверхностными антигенами отобранных клеток кампилобактера.

Подозрительную колонию сначала смешивают с каплей реагента 1 в экстракционной пробирке, оставляют на 3 минуты. Затем добавляют 2 капли экстрагирующего нейтрализующего реагента 2, тщательно перемешивают. Используя веслообразную пастеровскую пипетку, помещают 1 каплю (50 мкл) нейтрализующего экстракта на тестовой круг и 1 каплю на контрольный круг. Веслообразным концом пастеровской пипетки сначала перемешивают экстракт и сухой контрольный реагент, затем эта процедура повторяется и для тестового реагента.

Учет реакции в течение трех минут покачивания карты без использования увеличительного стекла. Результат является положительным, если агглютинация латексных частиц происходит через три минуты, что указывает на присутствие Campylobacter spp. Реакция считается отрицательной, если агглютинация в тестовом окне отсутствует. Реакции, наступающие в тестовом окне после 3-х минут, игнорируются. Тест не подлежит интерпретации, если происходит агглютинация с контрольным реагентом, что указывает на аутоагглютинацию культуры.

Для определения вида выделенной культуры основным тестом является гидролиз гиппурата, позволяющий дифференцировать С. jejuni от других видов. Кроме того, для идентификации используют также определение устойчивости к налидиксовой кислоте, цефалотину, температурный тест, ТТХ (0,04 % трифенилтетразолий хлорид), продукция нитратредуктазы и др.

Для большинства практических лабораторий Российской Федерации постановка некоторых из этих тестов проблематична, что связано с необходимостью приобретения различных химических ингредиентов для реактивов, сложностью их приготовления, трудностями при тестировании и интерпретации результатов.

Важнейшие фенотипические признаки термофильных кампилобактеров

Аннотация научной статьи по промышленным биотехнологиям, автор научной работы — Федорова О.В., Понкратова С.А., Валеева Р.Т., Исламгулов И.Р.

Представлен обзор разнообразия составов питательных сред , применяемых при культивировании микроорганизмов в производстве медицинских и ветеринарных препаратов. Приведена классификация питательных сред , требования, предъявляемые к ним, возможные варианты использования отходов перерабатывающей промышленности и агропромышленного комплекса, как компонентов питательных сред

Похожие темы научных работ по промышленным биотехнологиям , автор научной работы — Федорова О.В., Понкратова С.А., Валеева Р.Т., Исламгулов И.Р.

О. В. Федорова, С. А. Понкратова, Р. Т. Валеева, И. Р. Исламгулов

ПИТАТЕЛЬНЫЕ СРЕДЫ В ПРОИЗВОДСТВАХ МЕДИЦИНСКИХ И ВЕТЕРИНАРНЫХ ПРЕПАРАТОВ

Ключевые слова: питательные среды, микроорганизмы.

Представлен обзор разнообразия составов питательных сред, применяемых при культивировании микроорганизмов в производстве медицинских и ветеринарных препаратов. Приведена классификация питательных сред, требования, предъявляемые к ним, возможные варианты использования отходов перерабатывающей промышленности и агропромышленного комплекса, как компонентов питательных сред

Key words: culture media, microorganisms.

An overview of the diversity of the compositions of culture media used in the cultivation of microorganisms in the production of medical and veterinary preparations. Classification of culture media, the demands placed upon them, the possible uses for the waste processing industry and agriculture, as components of culture media

Питательные среды являются основой исследовательской и производственной работы микробиологов и определяют ее успех [1]. Первые питательные среды были сконструированы во времена классических исследований Пастера и Коха. Особая роль принадлежит Роберту Коху. Постулировав необходимость выделения чистой культуры микроба, он определил необходимые условия решения этой задачи. Важнейшим из них явился состав питательной среды, на которой можно было бы получить рост микроорганизмов. Внедрение в микробиологическую практику в 1881 г. плотных питательных сред (сама идея их использования возникла раньше и принадлежит немецкому исследователю Бредфель-ду) позволило осуществить в контролируемых условиях рост колоний. Им же предложен первый отвер-дитель - желатин, как компонент плотной среды. Привычный для современных микробиологов агар-агар предложила в 1881 г. немецкая исследовательница Хессе, а в повседневную практику он внедрен Фростом значительно позже, в 1919 г. Идеи и практическая деятельность Коха получили в конце XIX и первой четверти XX века интенсивное развитие. Именно в этот период исследователи ряда стран предложили питательные среды различного назначения, роль которых для практической микробиологии и биотехнологии была и остается определяющей и в настоящее время [2]. Большой вклад в разработку составов питательных сред внесен многими отечественными учеными. Среди них можно отметить следующих авторов:

- С.Н. Виноградский - конструирование и широкое использование селективных питательных сред,

- И.Е. Минкевич и И.И. Рогозин - жидкая питательная среда для обнаружения кишечной палочки,

- Н.В. Плоскирев - селективная среда для выделения шигелл и сальмонелл,

- Г.Н. Чистович - элективно-дифференциальная среда для выделения патогенных стафилококков,

- А.М. Безредка - питательная среда для выращивания туберкулёзных бактерий.

В XX веке конструирование питательных сред получило дальнейшее развитие в связи с увеличением разнообразия практического применения микро-

биологических технологий [3]. При получении жизнеспособного посевного материала, прежде всего, необходим подбор питательной среды. Питательная среда предназначена для обеспечения жизнедеятельности, для накопления, выделения и сохранения микроорганизмов, синтеза целевого продукта. В состав питательной среды должны входить органогенные элементы, макроэлементы и микроэлементы, которые должны входить в среду в легкоусвояемом для микроорганизмов виде.

Количество используемых составов питательных сред (с учетом модификаций) по различным источникам превысило 5000 прописей [4]. Все большее развитие получают многокомпонентные синтетические среды, на сегодняшний день все больше появляется питательных сред, содержащих стандартные компоненты, что позволяет контролировать качество питательных сред, а также качество проводимых с их использованием исследовательских работ.

Все питательные среды, использующиеся в лабораторной практике, подлежат регистрации в Рос-здравнадзоре [4].

По своему составу питательные среды подразделяются на:

- естественные среды, состоящие из продуктов животного или растительного происхождения и имеющие неопределенный химический состав: кровяные, молочные, картофельные, яичные, а также овощные и фруктовые соки;

- полусинтетические среды, в состав которых, наряду с веществами неопределенного состава входят соединения известной химической природы:

среды, в состав которых входят источника азота и углерода, пептоны, полученные путем неполного расщепления белков с помощью ферментов пепсина и трипсина, различные гидролизаты, такие, как рыбные, казеиновые, мясные, дрожжевые;

- синтетические среды, содержащие только химически чистые соединения в точно указанных концентрациях, с полностью известным составом [5, 6].

На натуральных средах хорошо развиваются многие микроорганизмы, так как в состав таких сред входят все компоненты, необходимые для их роста и развития. Однако данные среды имеют сложный

непостоянный химический состав и мало пригодны для изучения физиологии, обмена веществ микроорганизмов, так как в значительной степени не позволяют строго учесть потребление многих компонентов питательной среды и образование продуктов обмена по ходу развития. Естественные среды используются для поддержания культур микроорганизмов, накопления их биомассы и в диагностических целях. Это мясо-пептонный бульон и мясо-пептонный агар, картофельные среды [3].

К числу натуральных сред неопределенного состава относят и полусинтетические среды, в состав которых входят соединения известной химической природы и вещества неопределенного состава: мясо-пептонный бульон с глюкозой, среда Эндо, среда Сабуро [4].

К полусинтетическим средам относятся среды, содержащие соединения известного состава - углеводы, нитраты, фосфаты и, в незначительных количествах, соединения неопределенного состава - гидролизат казеина, дрожжевой автолизат, кукурузный экстракт, добавляемые в качестве факторов роста [4].

Для выращивания микроорганизмов чаще используются полусинтетические питательные среды, так как в этих средах такие ценные пищевые продукты как мясо заменены непищевыми: костной и рыбной мукой, кормовыми дрожжами, сгустками крови. Так в состав мясопептонных сред, кроме мясного экстракта и пептона, входят и минеральные компоненты такие, как поваренная соль, фосфат калия. Полусинтетические среды хороши для выращивания определенных групп микроорганизмов и для выделения из среды продуктов их жизнедеятельности: антибиотиков, витаминов [7].

Для культивирования микроорганизмов - выращивания в искусственных условиях in vitro - необходимы особые субстраты — питательные среды разного химического состава, соответствующие требованиям данного вида.

Питательные среды являются основным звеном в системе микробиологических и биотехнологических работ, и их качество нередко определяет результаты всего исследования. Питательные среды должны создавать наилучшие (оптимальные) условия для жизнедеятельности культур и должны удовлетворять следующим требованиям:

- содержать все необходимые для развития микроорганизмов питательные вещества;

- иметь оптимальное значение водородного показателя рН для выращиваемого вида микроорганизмов;

- иметь достаточную влажность, так как транспорт питательных веществ к клеткам определяется законами диффузии и осмоса;

- быть стерильными, обеспечивая, тем самым, возможность выращивания чистых культур.

Огромную роль в технологическом процессе приготовления питательных сред играет вода, к которой предъявляются большие требования. Основной частью питательной среды является вода и все процессы жизнедеятельности протекают только вводной среде. Для протекания химических

реакций в живых организмах необходима вода в доступной для них форме - жидкой фазе. Вода составляет большую часть около 80-90% массы живых микроорганизмов. При недостатке воды нарушается обмен веществ в клетке. Не менее важную роль играет вода как один из основных компонентов среды, в которой растворены источники питания и продукты метаболизма, поступающие из клеток. Вода является функциональным элементом, определяющим биохимическую деятельность клеток, как бы продолжением внутренней среды клеток. Вода должна быть биологически чистая, прозрачная, бесцветная с минимальным количеством бактериальных загрязнений, содержание солей в воде обязательно регламентируется специальным ГОСТом. В воде, используемой для приготовления питательных субстратов, должно содержаться не более 50 мг/л хлоридов и 60 мг/л сульфитов. Ионы металлов не должны превышать следующих пределов, мг/л: свинец - 0,2; мышьяк - 0,05; фтор -1,5; цинк - 5,0; медь - 3,0.

Для проведения обязательного технохимическо-го контроля (микроскопирование, определение оптической плотности) и получения более точных данных экспериментальных исследований необходимо, чтобы питательные среды были по консистенции прозрачными — без посторонних примесей [8].

Достоинством синтетических питательных сред является стандартность и воспроизводимость с высокой степенью точности. Данные среды наиболее удобны для проведения экспериментальных исследований в области обмена веществ микроорганизмов [3].

На сегодняшний день существует большое разнообразие типов питательных сред [9]:

- с нативными и натуральными белками;

Среды промежуточные между белковыми и синтетическими:

- с основой в виде кислотного гидролизата казеина;

- с синтетической основой из аминокислот и незначительным содержанием кислотного, триптиче-ского или грибного казеинового гидролизата глубокого расщепления или дрожжевого автолизата.

Синтетические, полусинтетические и казеиновые среды [10]:

- гликоколовая синтетическая среда ВКЛ (среда Вакенгут, Козловской и Лещинской - 1944 г.) в производстве вакцины BGG;

- модифицированная среда ВКЛ;

- для выращивания в условиях глубинного роста при аэрации дизентерийных и паратифозных бактерий в производстве кишечных вакцин;

- для выращивания бактерий в производстве поливакцины против кишечных инфекций и столбняка;

- для выращивания дизентерийных бактерий Флекснера в производстве поливакцины из полных антигенов;

- казеиновые среды в производстве поливакцины из полных антигенов;

- полусинтетическая казеиново - грибная среда для микобактерий;

- казеиново - грибная среда для микобактерий при изготовлении альттуберкулина;

- для выращивания тифозных бактерий.

Среды на основе рыбо - костной муки [11]:

- рыбо - грибная среда для глубинного выращивания бактерий в производстве кишечных вакцин при аэрации;

- среда из гидролизата рыбо-костной муки для производства токсина Bacillus oedematiens.

Комбинированные среды из рыбо - костной муки и казеина:

- из грибных гидролизатов рыбо - костной муки и казеина для получения токсина Bacillus perfringens;

- комбинированная среда из рыбо - кукурузного и казеинового гидролизатов для производства боту-линических и столбнячного токсинов;

- казеиново - рыбная среда для получения столбнячного токсина - анатоксина.

Рыбные среды [12]:

- рыбо - желатиновая среда в производстве сухой живой туляремийной вакцины из глубинной культуры;

- из рыбных автолизатов для получения дифтерийного токсина - анатоксина.

Среды из китовой муки:

- из китовой муки для изготовления дифтерийного токсина - анатоксина;

- с гидролизатом китовой муки для глубинного выращивания бруцелл при производстве бруцеллина и туляремийной вакцины.

Мясные среды [13]:

- мясной бульон Хоттингера в производстве кишечных вакцин из аэрированных культур;

- плотная среда типа Хеддльсона на мартеновском

пептоне с настоем печени для производства бруцеллезной вакцины;

- жидкая среда для производства бруцеллезной вакцины;

- мартеновский бульон в производстве

- среда триптического ферментолиза для производства дифтерийного анатоксина;

- среда триптического ферментолиза с поджелудочной железой, энтерокиназой и мальтозой для получения дифтерийного токсина;

- среда с рисовым сиропом - модификация среды Попе для получения дифтерийного токсина;

- мясо - грибная среда для получения токсина Bacillus perfringens;

- мясная среда папаинового переваривания для получения токсина Bacillus oedematiens.

Комбинированные мясные среды:

- комбинированный мясной бульон для производства скарлатинозного токсина;

- комбинированные мясо - казеиновые среды для получения столбнячного токсина - анатоксина;

- среда на основе казеиново - мясного бульона на пептоне по Легру и Рамону;

- среда на основе казеиново - мясного бульона на гидролизате по Глузману, Червякову и Ста-робинцу;

- среда для выращивания стрептококка и стафилококка при изготовлении препарата против ревматизма.

Растительные среды [14]:

- среда с автолизатом гороха для глубинного культивирования бактерий кишечной группы, обогащенная дикарбоновыми кислотами;

- среда на основе триптического гидролизата семян сои для выращивания холерного микроба в условиях аэрации;

- картофельный агар для выращивания бруцелл в производстве сухой вакцины;

- картофельная среда Борде - Жангу с кровью для производства коклюшной вакцины;

- растительные среды в производстве бактериофага [15].

Несмотря на то, что существует значительное количество прописей питательных сред, до сегодняшнего дня ведутся многочисленные исследовательские работы по увеличению выхода целевых продуктов микробиологических стадий производств биопрепаратов на основе подбора составов питательных сред. Это работы по аэробному культивированию спиртовых дрожжей [16], кормовых дрожжей [17], пробиотических препаратов [18, 19].

При этом возрастает объем исследований по применению в микробиологическом и биотехнологическом производстве универсальных, стандартизованных, экономически выгодных и доступных видов сырья, используемых для приготовления питательных сред [20]. В частности, тестируются способы использования в качестве компонентов питательных сред отходов перерабатывающей промышленности: мясоперерабатывающей - кровяная, костная мука; промышленного рыбного лова и рыбопереработки - рыбная мука [21]; крахмало-паточного и глюкозного производства - кукурузный экстракт

[22]; сахарного производства - свекловичный жом

[23]; отходы агропромышленного комплекса - отходы растительного сырья: кукурузные кочерыжки, солома, подсолнечный шрот [24, 25].

Значительный объем новых разработок посвящен и производству пробиотических препаратов. Алгоритм конструирования унифицированных составов питательных сред для массового производства про-биотических препаратов включает несколько необходимых этапов:

- предварительный выбор питательных субстратов с учетом критериев биологической ценности, доступности и экономичности;

- получение питательных составов и оценка их эффективности сравнением с моделями регламентированных питательных сред;

- разработка и оценка способов получения питательных сред с учетом критериев технологичности и трудоемкости;

- балансировка состава питательных сред [26]. Таким образом, для выделения и культивирования микроорганизмов могут применяться среды из различного сырья. Располагая широким набором компонентов, можно более эффективно осуществлять конструирование питательных сред различного назначения, и, прежде всего тех, которые могут изготавливаться из доступных дешевых продуктов непищевого назначения отечественного производства. Замена сырья животного происхождения непищевым в настоящее время диктуется экономическими факторами и рассматривается как важнейшее направление научных исследований в области разработки и производства питательных сред [1].

1. О.Л. Старцева, дисс. канд. биол. наук, Ставропольский научно-исследовательский противочумный институт, Ставрополь, 2005. 160 с.

2. Дж. Мейнел, Э. Мейнел, Мир, 46-83, (1967).

3. М.С. Поляк, В.И. Сухаревич, М.Э. Сухаревич, ЭЛБИ-СПб, Санкт-Петербург, 2002, 80 с.

5. А.И. Коротяев, С.А. Бабичев, Специальная литература, Санкт-Петербург, 1998, 558 с.

6. Д.А. Евглевский, А.А. Евглевский, В.В. Семенютин, И.И. Смирнов, К.В. Татарников, Вестник Курской государственной сельскохозяйственной академии 4, 64-66, (2011).

7. А.П. Асташкина, Томский политехнический университет, Томск, 2015, 19 с.

8. Н.В. Прозоркина, П.А. Рубашкина, Феникс, Ростов-на-Дону, 2002, 168 с.

9. И.Н. Виноградова, В.Е. Власова, Н.А. Палкина, Микробиология 2, 61-65, (1956).

10. В.Е. Власова, И.Н. Виноградова, Н.А. Палкина, Микробиология 2, 108-114, (1960).

11. А.Б. Мазрухо, дисс. докт. мед. наук, Федеральное казённое учреждение здравоохранения Ростовский-на-Дону ордена трудового красного знамени научно-исследовательский противочумный институт федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Ростов-на-Дону, 2016. 302 с.

12. А.А. Трифонова, А.В. Тереножкина, Микробиология и иммунология особо опасн. инф., 287-290, (1964).

13. Ю.А. Козлов, Медгиз, Москва, 1950, 252 с.

14. А.М. Носов, Биотехнология 5, 8-28, (2010).

15. М.М. Меджидов, З.З. Султанов, Дагестанское книжное

издательство, Махачкала, 1986, 72 с.

16. Н.К. Филиппова, Биотехнология 1, 49-53, (2002).

17. Р.Т. Валеева, Э.И. Нуретдинова, С.Г. Мухачев, М.Ю. Шурбина, О.В. Красильникова, Вестник Казанского технологического университета 24, 133-135, (2014).

18. Ю.И. Иванов, С.Г. Мухачев, Р.Т. Валеева, Сборник

тезисов - Архангельск, 170-171, (2014).

19. А.П. Лиморенко, дисс. канд. биол. наук, Московская государственная академия ветеринарной медицины и биотехнологии им. К.И. Скрябина, Москва, 2002. 149 с.

20. В.М. Аристовский, И.Е. Минкевич, С.М. Фрид, Медгиз, Москва, 1945, 492 с.

21. Р.Т. Валеева, О.В. Федорова, С.Г. Мухачев, Вестник технологического университета 22, 147-150, (2016).

22. Р.Т. Валеева, О.В. Красильникова, А.Ф. Мухутдинова,

Р.М. Нуртдинов, Вестник технологического университета

23. Р.Т. Валеева, Э.И. Нуретдинова, А.С. Понкратов, О.В.

Ананьева, М.Ю. Шурбина, Вестник технологического

университета 13, 161-163, (2016).

24. Р.Т. Валеева, А.Р. Минмуллина, О.В. Ананьева, Э.Р. Гайфуллина, Ч.Р. Зайдуллина, Вестник Казанского технологического университета 15, 151-153, (2016).

25. Р.Т. Валеева, С.Г. Мухачев, О.В. Красильникова, Вестник Казанского технологического университета 1, 219-221, (2014).

26. В.А. Несчисляев, Е.Г. Арчакова, В.Б. Моховикова, И.В. Белова, Фундаментальные исследования 12, 48-49, (2007).

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции