Вирусы встраивающиеся в днк клетки-хозяина относят к группе мутагенов


Попков В. М., Чеснокова Н. П., Ледванов М. Ю.,

Протоонкогены, механизмы их активации

Представления о молекулярно-клеточных механизмах онкогенной трансформации клеток претерпели значительную эволюцию на протяжении XX века и до настоящего времени [18, 20, 25, 32, 34].

Как указывалось выше, инициирующими этиологическими факторами малигнизации клетки являются разнообразные по природе группы канцерогенов химической, физической, биологической природы, в том числе вирусы, гормоны и генотоксические продукты их метаболизма [13, 26, 63].

Естественно, что при чрезвычайной гетерогенности этиологических факторов неоплазий не могла сформироваться достаточно быстро доминирующая концепция механизмов развития онкогенной трансформации клеток, их активации или промоции опухолевого роста с последующей опухолевой прогрессией. В ранних концепциях канцерогенеза делали акцент на эпигеномных механизмах развития неоплазий, и, безусловно, ряд положений этого направления носит не только исторический характер, но может быть в определенной степени ассоциирован с современными вирусо-генетической и онкогенной теориями канцерогенеза.

Согласно данным ряда исследователей, первичное изменение свойств цитоплазматической мембраны под влиянием канцерогенных углеводородов, онкогенных вирусов является одним из пусковых механизмов последующего изменения генетического аппарата и нарушений регуляции их митотического цикла [108]. Эта концепция канцерогенеза была актуальна в период обнаружения отсутствия контактного ингибирования опухолевых клеток в монослойной культуре.

Как оказалось далее, в механизмах контактного ингибирования клеток важная роль отводится активации мембранной аденилциклазы и увеличению уровня цАМФ, тормозящего митотическую активность клеток. Понижение концентрации цАМФ в мембранах клеток под влиянием различных канцерогенов ведет к неконтролируемой митотической активности. Эта точка зрения имела определенную значимость в понимании пусковых механизмов канцерогенеза, поскольку для многих гормонов, регулирующих метаболизм клеток, их митотическую активность, характерен преимущественно мембранный тип рецепции (АКТГ, СТГ, инсулин, пролактин и др.).

Практически одновременно с мембранной концепцией канцерогенеза создавались митохондриальная и лизосомальная теории развития неоплазий, согласно которым актомиозиновый белок митохондриальных мембран оказывается аномальным у малигнизированных клеток и утрачивает чувствительность к регулирующим влияниям АТФ; при этом гликолитическая реакция опухолевой клетки стимулируется митохондриальными факторами, поступающими постоянно в гиалоплазму, а возрастание концентрации АТФ не подавляет этот процесс.

Одним из классических признаков неоплазий является нарушение регуляции дифференцировки и митотической активности клеток, в связи с чем указанная проблема затрагивается в той или иной форме в разных концепциях [1]. Однако до настоящего времени одной из ведущих концепций канцерогенеза является мутационная теория, согласно которой все канцерогены обладают мутагенной активностью, хотя не все мутагены являются канцерогенами.

Практически все изученные канцерогены индуцируют разрывы фосфодиэстеразных связей в молекуле ДНК. Вначале канцерогены интенсивно связываются с ДНК чувствительных клеток. Обнаружена прямая корреляция между чувствительностью животных и их органов к малигнизирующему действию веществ и степенью их связывания с ДНК [42].

В последующие годы важная роль в развитии онкогенной трансформации клеток и опухолевой прогрессии отведена свободным радикалам. Учитывая значимость индукции избыточных концентраций свободных радикалов в канцерогенезе, необходимо прежде всего остановиться на активации процессов липопероксидации, инициируемой активными формами кислорода (АФК) и в то же время являющейся источником образования значительного количества вторичных эндогенных свободных радикалов [7, 8].

Как известно, активные формы кислорода вступают во взаимодействие с полиненасыщенными жирными кислотами (ПНЖК): линолиевой, линоленовой, арахидоновой – важнейшими компонентами фосфолипидов биологических мембран. Отрыв водорода от молекулы ПНЖК при участии АФК приводит к перемещению двойных связей с образованием гидроперекисей диеновых коньюгатов, которые затем метаболизируются во вторичные (малоновый диальдегид) и третичные продукты липопероксидации [66]. Перекисное окисление липидов затрагивает прежде всего фосфолипиды цитоплазматических мембран клеток, нарушая при этом энергозависимый трансмембранный перенос субстратов, процессы межклеточного взаимодействия. Биологическая активность АФК связана с синтезом простагландинов, лейкотриенов окислительной модификацией белков, нуклеиновых кислот, липидов. Одним из проявлений окислительной модификации белка является инактивация около 240 ферментов, в частности, СОД, ацетил-КоА-гидролазы, каталазы, миелопероксидазы, цитохрома Р450 [22, 66].

Дезинтеграция белка в основном возникает под влиянием гидроксильного радикала, образующегося в организме в процессе реакции взаимодействия супероксида и перекиси водорода с металлами переменной валентности. Объектами окисления в молекуле ДНК под влиянием гидроксильного радикала являются углеводные компоненты, фосфатные группировки, азотистые основания. Наиболее чувствительным к окислительной деструкции азотистым основанием является гуанин, модифицированные формы которого составляют 45 % от общего количества окисленных оснований [83, 95].

Установлено, что чувствительность к фрагментации сахарно-фосфатного остатка ДНК под влиянием АФК оказалось более высокой, чем полипептидного остова белково-пептидных субстанций. Гидроксильный радикал, действуя на ДНК, может отрывать атом водорода от дезоксирибозофосфата, что ведет к его расщеплению и освобождению азотистых оснований. При этом образуются высокотоксичные производные альдегиды.

Данные, опубликованные в последние годы, убедительно свидетельствуют о том, что активные формы кислорода, оксид азота и его производные в сочетании с инфекционными патогенными факторами, бактериями и вирусами, являются ключевыми факторами канцерогенеза [2, 35, 36].

Детальный обзор литературы по этому вопросу приведен в работе Х. Маеда, Т. Акаике (1998). Кислородные радикалы, а также оксид азота могут повреждать ДНК, вызывая мутацию. Мутагенный и канцерогенный эффекты указанных соединений резко возрастают при одномоментной, избыточной продукции, сопровождающейся их взаимодействием с образованием пероксинитрита. Последний участвует в различных внутриклеточных метаболических процессах: нитровании остатков тирозина в белках, подавлении транспорта электронов в митохондриях, в окислении тиоловых соединений. Пероксинитрит является ДНК-расщепляющим агентом. Вышеуказанные химические реакции с участием пероксинитрита могут инициировать апоптоз, мутации, онкогенную трансформацию клеток.

Как указывалось выше, в механизмах индукции канцерогенеза важная роль отводится онкогенным ДНК- и РНК-содержащим вирусам, способным инкорпорировать свою ДНК или ДНК-копию в геном хозяина с последующей возможной онкогенной трансформацией клетки в случае экспрессии протоонкогенов.

Установлено, что РНК-содержащие онкогенные вирусы являются членами семейства ретровирусов, характеризуются наличием липидной оболочки и двух односпиральных РНК, фермента РНК-зависимой ДНК-полимеразы, необходимой для репродукции вируса. Наличие этого фермента обеспечивает обратную транскрипцию вирусной РНК- в ДНК-копию, интегрирующую с геномом клетки [71].

Группа РНК-содержащих вирусов включает следующие разновидности: непатогенную для человека группу вирусов (род А); медленно трансформирующийся вирус гормонзависимой карциномы молочной железы морских свинок и, возможно, человека (род В); дефектные быстро трансформирующиеся и недефектные медленно трансформирующиеся вирусы (род С); род Д – включает вирусы приматов и вирус перевиваемых раковых клеток человека.

ДНК-содержащие онкогенные вирусы подразделяются на следующие семейства:

1. Семейство Poxviridae, содержит, в частности, вирус контагиозного моллюска человека.

2. Семейство Herpes viridae, к которому относится вирус Эпштейн-Барра человеа, вызывающий лимфому Беркитта, цитомегаловирус человека – тип 5.

3. Семейство Adenoviridae – представителями которого являются аденовирусы человека.

4. Семейство Papovaviridae, представителями которого являются вирусы папилломы крыс, хомяков, обезьян, человека.

ДНК-содержащие вирусы внедряют свою ДНК в геном хозяина при участии ферментов эндонуклеаз и липаз, а за счет наличия генов – промоторов – вирусы инициируют транскрипцию генов, следующих за ДНК-вирусами. Последствия внедрения ДНК-вирусов в геном хозяина зависят от зоны инкорнации: интронов, экзонов, протоонкогенов, антионкогенов. Если ДНК-содержащие вирусы встраивают в геном хозяина клетки регуляторы экспрессии протоонкогенов, возможна малигнизация клетки [54].

Механизмы онкогенной трансформации клеток под влиянием ДНК-содержащих вирусов могут быть весьма разнообразны: за счет индукции ранних онкобелков, так называемых Т-антигенов, усиления экспрессии рецепторов экзогенных ростовых факторов. Большие и средние Т-белки ряда ДНК-содержащих вирусов выключают контактное ингибирование пролиферации клеток, препятствуют действию антионкогена р53.

Как известно, вирусо-генетическая теория Л.А. Зильбера явилась основной для формирования современной онкогенной теории канцерогенеза. На смену вирусогенетической теории канцерогенеза пришли теории онкогенов, протоонкогенов и антионкогенов [30, 31, 65, 120].

В настоящее время, очевидно, что в опухолевой трансформации клеток, возникающей под влиянием различных индукторов канцерогенеза, принципиально участвуют следующие категории генов:

1. Онкогены- стимуляторы функций.

2. Гены роста и пролиферации клеток (Myc, Ras, Los, ABL и другие).

3. Антионкогены (потеря функции).

4. Гены, отвечающие за программированную смерть клетки (апоптоз):

– отменяющие программированную смерть: Bcl-2 (стимуляция функций);

– гены смерти клеток – р53 (потеря функции).

Онкогены как специфический химический материал, кодирующий информацию об определенном химическом продукте, впервые были идентифицированы в составе ретровирусов. Геном типичного не трансформирующего ретровируса представляет собой две молекулы односпиральной РНК. Основные гены вируса относятся к трем регионам: gag кодирует структурные белки вирион частицы, env– белки оболочки вириона, ген pol – несет информацию об обратной транскрипции. Последний обеспечивает образование ДНК- копии на матрице РНК-вируса.

Согласно гипотезе онкогенов, гены ретровирусов, попавшие в геном человека в процессе эволюции, переходят по наследству в ряде поколений, проявляют себя в раннем онтогенезе, а затем подавляются внутриклеточными репрессорами. С возрастом под влиянием различных канцерогенов физической, химической, биологической природы возникают экспрессия вирусных онкогенов и усиление продукции ими онкобелков, ответственных за малигнизацию клетки. Онкогенные свойства нетрансформирующих ретровирусов обусловлены наличием в их геноме V-онкогенов, причем большинство из 50 V-онкогенов имеют клеточные прототипы – С-протоонкогены.

Высказывается мысль, что ретровирусы не только могут вносить в определенные позиции клеточного генома V-онкогены, но и способны быть промоторами для усиленной экспрессии протоонкогенов клеток. Считается, что в ходе совместной эволюции ретровирусов и клеток происходят захват клеточных протонкогенов вирусами и их перенос [24].

Развитие теории онкогенов нашло отражение в концепции Темина (1972) о протовирусах, протоонкогенах, согласно которой предсуществующий аналог вируса не является результатом инфекции, а нормальным клеточным геном, необходимым для роста и онтогенеза клеток, причем нормальные клетки не содержат вирусных онкогенов, но зависят от контролируемой экспрессии их клеточных аналогов.

В механизмах развития неоплазий онкогенные ретровирусы играют неоднозначную роль: различают быстро- и медленно-трансформирующие вирусы. Быстротрансформирующие вирусы дефектны по структуре, утратили часть своих поздних репликативных генов и приобрели взамен видоизмененные клеточные гены-V-онкогены, которые и вызывают неопластическую трансформацию при повторной интеграции в клеточный геном. Для полного цикла репликации этим вирусом требуются вирусы-помощники. Клеточные протоонкогены являются прототипами V-онкогенов, консервативными регуляторами клеточной дифференцировки.

Встраивание быстро-трансформирующего реторовируса может либо привести к экспрессии в клетке V-онкогена, либо вирусные промоторы и энхансеры встраиваются рядом с протоонкогенами клетки, вызывая их экспрессию.

Таким образом, встраивание ретровирусов в геном клетки приводит к гиперэкспрессии протоонкогенов, переход их в онкогены с последующей малигнизацией клетки [20, 23, 30, 64].

Что касается механизмов индукции неоплазий химическими канцерогенами с точки зрения современных теорий канцерогенеза – протоонкогенов, онкогенов, антионкогенов, то необходимо остановиться на анализе лишь некоторых работ, посвященных данной проблеме.

Как известно, химические канцерогены, подобно биологическим, способны вызывать развитие мутаций и активацию протоонкогенов [25, 64]. Под влиянием химических канцерогенов возможна онкогенная трансформация в процессе амплификации ДНК. Установлено, что амплификация гена резистентности на фоне воздействия цитостатиков нередко возникает при раке кишечника и является причиной устойчивости неоплазий к химиотерапии. При ряде онкологических заболеваний желудочно-кишечного тракта возникает амплификация онкогенов erbB2, mys, SRS. Индукция развития опухолей нитрозмочевиной связана с амплификацией и активацией N-ras; в опухолях, индуцированных гамма-облучением, активен Ras-H. В ходе химического канцерогенеза отмечено гипометилирование протоонкогена Ras-H, приводящего к развитию генной мутации.

В опухолях, индуцированных химическими канцерогенами, отмечены транскрипции ряда других онкогенов (c-ras и c-mys), связанные с гипометилированием протоонкогена либо его амплификацией. В ходе химического канцерогенеза нарушается зависимость экспрессии c-mys (но не c-ras) от клеточного цикла. Таким образом, многие химические соединения или физические воздействия, а также вирусы могут вызывать мутации ДНК, не летальные для клеток и провоцирующие экспрессию протоонкогенов или депрессию антипротоонкогенов [108]. Последнее приводит к трансформации нормальной клетки в опухолевую.

Эпигенетический механизм канцерогенеза связан с нарушением регуляции клеточного роста, функции клетки и экспрессии генов без повреждения генома. При эпигенетическом канцерогенном эффекте эндогенных или экзогенных канцерогенных факторов возникает инактивация белков-продуктов антипротоонкогенов или активация пострецепторных передатчиков ростовых факторов. Такое воздействие, как правило, не вызывает неоплазии, но усиливает ростовые эффекты, способствует пролиферации мутантного клона и формированию распознаваемой неоплазии. Эффект канцерогенов-мутагенов называют инициирующим, а коканцерогенов – активирующим.

Таким образом, в настоящее время очевидны следующие механизмы активации протоонкогенов:

1) амплификация протоонкогенов, в результате чего резко возрастает их общая активность, что может привести к малигнизации клетки;

2) мутации протоонкогенов, приводящие к их активации, и ингибиция антипротоонкогенов;

3) транслокация протоонкогенов в локус с функционирующим промотором;

4) аддукция промотора рядом с протоонкогеном. В качестве промотора могут выступать ДНК-копии определенных участков онкорнавирусов, а также мобильные генетические структуры, способные перемещаться и встраиваться в различные участки генома.

В геноме человека предполагается наличие около 100 протоонкогенов, выполняющих следующие функции:

1) кодирование ростовых факторов, их рецепторов и пострецепторных передатчиков;

2) кодирование блокаторов запрограммированной гибели клеток, контактного ингибирования пролиферации.

Трансформация протоонкогенов в онкогены приводит к их экспрессии и синтезу онкобелков. При этом онкобелки продуцируются перманентно в увеличенном количестве или в качественно измененном состоянии.

Ниже представлены несколько групп протоонкогенов, антионкогены, и кодируемые ими белки [30, 31, 32].

Мутации можно объединять, в группы—классифицировать по характеру проявления, по месту или, по уровню их возникновения. Мутации по характеру проявления бывают:

Доминантные мутации проявляются в фенотипе в 1-м поколении. Если доминантные мутации неблагоприятные, то организмы могут оказаться нежизнеспособными или неплодовитыми. Такие мутации элиминируют. Большинство мутаций являются рецессивными, т.е. не проявляются у гетерозигот и способны накапливаться в поколениях, уклоняясь от действия естественного отбора.

Мутации нередко понижают жизнеспособность или плодовитость. Мутации, резко снижающие жизнеспособность, частично или полностью останавливающие развитие, называют полулетальными, а несовместимые с жизнью — летальными. Нейтральные мутации формируют полиморфизмы – генетическое разнообразие индивидуумов. Примером нейтральных мутаций у человека могут быть разные группы крови, разный цвет волос или глаз. Многие нейтральные мутации затрагивают некодирующие участки генома и не проявляются фенотипически.

Мутации подразделяют по месту их возникновения или по типу мутировавших клеток. Мутация, возникшая в половых клетках, не влияет на признаки данного организма, а проявляется только в следующем поколении. Такие мутации называют генеративными. Если изменяются гены в соматических клетках, такие мутации проявляются у данного организма и не передаются потомству при половом размножении. Такие мутации называют соматическими. Соматические мутации возникают очень часто и в большинстве случаев остаются незамеченными для организма. Но в некоторых случаях мутации соматических клеток дают начало злокачественной трансформации и развитию опухоли.

Процесс возникновения мутаций называют мутагенезом. Факторы, которые способны вызывать мутации, называются мутагенами. Организм, который приобрел новый признак в результате мутации, называется мутантом.

Мутации характеризуются следующими свойствами:

По причинам возникновения мутации могут быть:

Индуцированные мутации возникают под действием мутагенных факторов, которые можно подразделить на 3 большие группы: физические, химические и биологические. К физическим мутагенам относятся различные виды излучений, температура, влажность, шум, вибрация и т.д. Основные механизмы их действия:

  • нарушение структуры генов и хромосом;
  • образование сшивок – тиминовых димеров.
  • образование свободных радикалов, которые вступают в химические взаимодействия с ДНК;
  • разрыв нитей ахроматинового веретена деления.

К химическим мутагенам относятся:

  • природные органические и неорганические соединения (нитриты, нитраты, гормоны, алколоиды, бензол, фенол и т.д.)
  • продукты промышленной переработки природных соединений – угля, нефти (ароматические углеводороды, бензпирен …)
  • синтетические вещества, ранее не встречавшиеся в природе – ксенобиотики (пестициды, инсектициды, никотин, пищевые добавки, консерванты, лекарственные вещества …)
  • некоторые метаболиты организма человека (хлороформ – фосген, парацетамол – яд, повреждающий печень и почки …)

Биологические мутагенные факторы – вирусы (встраиваются в ДНК хозяина – человека), бактерии (продукты их метаболизма относятся к химическим мутагенам).

Мутации классифицируют по уровню их возникновения. В соответствии с уровнями организации наследственного материала различают:

  • Геномные (изменения числа хромосом – полиплоидия, гаплоидия, анеуплоидия).
  • Хромосомные(изменения структуры хромосом – хромосомные аберрации).
  • Генные(изменения структуры генов – молекулы ДНК).

Геномные мутации. В результате мутаций в ядре зиготы изменяется видовое число хромосом. Кариотип особи изучается на метафазных пластинках.
Геномные мутации могут касаться всех хромосом (полиплоидия) или отдельных хромосом (анеуплоидия). В последнем случае может добавляться отдельная хромосома (трисомия) или вместо пары будет представлена одна хромосома (моногамия). Эти мутации редко оказываются жизнеспособными, чаще они приводят летальному исходу еще в процессе эмбриогенеза (спонтанные аборты), либо к рождению ребенка с нарушениями умственного и физического развития (врожденными пороками развития). Таковы синдромы анеуплоидии в виде моно- и трисомий по аутосомным и половым хромосомам. В частности, известный синдром Дауна обусловлен трисомией по 21-й паре хромосом. Синдром Дауна связан с нарушением ряда признаков - искаженные физические способности, умственная отсталость, выраженная от легкой дебильности до тяжелых форм идиотии. Частота данного заболевания в поколении 1 на 500-700 новорожденных.

Структурные мутации. В этом случае в результате мутации изменяется структура хромосомы. Основными видами структурных мутаций хромосом являются разрывные и обменные аберрации. К разрывным аберрациям относятся разного рода фрагменты (разделение хромосомы на части), к обменным аберрациям относятся случаи, когда имеются два разрыва и хромосома на их основе преобразуется, - транслокации (перенос участка хромосомы в другую хромосому или внутри хромосомы), инверсии (поворот участка внутри хромосомы на 180°), внутренние делеции (потеря внутренних участков хромосом), кольца (замыкание в кольцо отделяющегося внутреннего участка). Структурные изменения могут образовываться перемещающимися элементами в виде участков ДНК, мобильных по своему положению в организации генома. Как правило, структурные мутации хромосом приводят к множественным дефектам развития. Так, при делеции короткого плеча 5-й хромосомы (нехватке концевого фрагмента) наблюдается заболевание, названное синдромом "кошачьего крика". Помимо болезненного крика ребенка, напоминающего кошачье мяуканье, обусловленного аномалиями развития гортани, для больных детей характерны тяжелая умственная отсталость, задержка роста и другие симптомы. Ряд транслокаций и инверсий передаются потомкам.

Генные мутации. При повреждении или нарушениях в порядке, или замене нуклеотидов, появлении внутренней дупликации или делении в молекуле ДНК возникают генные (точковые) мутации. Эти изменения отдельных генов часто приводят к тяжелым дегенеративным заболеваниям, в частности, многочисленным болезням обмена веществ через нарушения синтеза белков, ферментов. Примером может служить мутация, приводящая к появлению серповидноклеточной анемии — наследственного заболевания, как правило, приводящего детей и подростков к смерти. В этом случае в эритроцитах вместо нормального гемоглобина A содержится аномальный гемоглобин S. Аномалию вызывает мутация в шестом нуклеотидном триплете ДНК гена гемоглобина, что приводит к замене в альфа-цепи белка гемоглобина глутаминовой кислоты на валин. Те дети, которые получают аномальный ген от одного из родителей и его нормальный аллель от другого, будут лишь носителями гена серповидноклеточности (гетерозиготное состояние), а у тех, кто получил аномальные гены от обоих родителей (гомозиготное состояние), развивается серповидноклеточная анемия. Около 20% населения Центральной Африки (а также Средиземноморья) являются гетерозиготными особями, т.е. скрытыми носителями мутантного гена "серповидноклеточности.









КЛАССИФИКАЦИЯ БИОЛОГИЧЕСКИХ МУТАГЕНОВ.

В настоящее время проблема биологических мутогенов очень актуальна, так как количество вирусных заболеваний возрастает с каждым годом. Именно на мутационном действии основывается канцерогенный эффект некоторых групп вирусов. Возникновение злокачественных опухолей начинается с перерождения соматических клеток, вызванных наруше­ниями их генетического аппарата мутагенами.

Цель.

Рассмотреть существующую классификацию биологических мутогенов.

Задача.

Изучить заболевания, возникшие при биологических мутациях.

Основная часть.

Мутагены — это химические и физические факторы, вызывающие наследственные изменения , то есть мутации. Впервые искусственные мутации получены в 1925году Г. А. Надсоном и Г. С. Филипповым у дрожжей действием радиоактивного излучения радия; в 1927 году Г. Мёллер получил мутации у дрозофилы действием рентгеновских лучей. Способность химических веществ вызывать мутации (действием иода на дрозофилы) открыта И. А. Рапопортом. У особей мух, развившихся из этих личинок, частота мутаций оказалась в несколько раз выше, чем у контрольных насекомых.

До середины 40-х годов XX ст. никто не догадывался , что ДНКявляется носителем генетической информации. Тогда считалось, что эта информа­ция записана в особых белках. Впервые доказать, что именно ДНК является носителем наследственной информации, удалось академику Украины Сергею Михайловичу Гершензону(1906—1998). Он выращивал дрозофил на среде, насыщенной ДНК. Выяснилось, что в таких колониях воз­никают мутации, тогда как в пробирках, среда которых содержала разно­образные белки, мутации не наблюдались. Отсюда был сделан вывод, что ДНК является генетически активным веществом.

Классификация

Мутагенами могут быть различные факторы, вызывающие изменения в генетической структуре и количестве хромосом. По происхождению мутагены классифицируют на эндогенные, образующиеся в процессе жизнедеятельности организма и экзогенные — все факторы, в том числе и условия окружающей среды.

По природе возникновения ихклассифицируют на физические, химические и биологические.

Кроме воздействий, вызывающих изменения наследственного материала существует еще одно: новые гены могут попадать из генома одного организма в геном другого с вирусами, которые встраиваются в ДНК клеток хозяина, при размножении часто захватывают часть хозяйских генов и передают новым хозяевам при их заражении –это биологические мутагены.

Биологические мутагены бывают

специфические последовательности ДНК — транспозоны;

Транспозоны формально относятся к так называемой некодирующей части генома — то есть к той, которая в последовательности пар оснований ДНК не несёт на себе информацию об аминокислотных последовательностях белков, хотя некоторые классы мобильных элементов содержат в своей последовательности информацию о ферментах, транскрибируются и катализируют передвижения; например, ДНК-транспозоны и ДДП-1 кодируют белки транспозаза, БОРС1 и БОРС2. У разных видов транспозоны распространены в разной степени: так, у человека транспозоны составляют до 45 % всей последовательности ДНК, у плодовой мухи некоторые мобильные элементы составляют лишь 15—20 % всего генома. У растений транспозоны занимают основную часть генома — так, у кукурузыс размером генома в 2,3 миллиардов пар оснований по крайней мере 85 % составляют различные мобильные элементы.

некоторые вирусы (вирус кори, краснухи, гриппа);

Корь — острое инфекционное вирусное заболевание с очень высоким уровнем восприимчивости, которое проявляется в виде высокой температуры (до 40,5 °C), воспаления слизистых оболочек полости рта и верхних дыхательных путей, конъюнктивита и характерной пятнисто-папулезной сыпи кожныхпокровов, общей интоксикации.

Грипп — острое инфекционное заболевание дыхательных путей, вызываемое вирусом гриппа. Введено в группу острых респираторных вирусных инфекций . Периодически распространяется в виде эпидемий и пандемий. В настоящее время выявлено более 2000 вариантов вируса гриппа, различающихся между собой антигенным спектром. По оценкам ВОЗ, от всех вариантов вируса во время сезонных эпидемий в мире ежегодно умирают от 250 до 500 тыс. человек ,в некоторые годы число смертей может достигать миллиона.

продукты обмена веществ (продукты окисления липидов);

антигены некоторых микроорганизмов.

Микрооргани́змы, микро́бы — собирательное название группы живых организмов, которые малы для того, чтобы быть видимыми невооружённым глазом. Термин микроббыл предложен 26 февраля 1878 года французским филологом Эмилем Литтре — по просьбе учёного Шарля Эммануэля Седийо дать подходящее название микроорганизмам.

Заключение.

На основе вышесказанного, можно сделать вывод. Биологические мутагены имеют имеют очень важное значение для выявления вирусных заболеваний на уровне ДНК. Основываясь на классификации этих мутаций можно провести соответсвующую диагностику и лечение зараженному.

Гершензон С.М. Мутации. Киев: Наук. Думка, 1991.

Бочков Н.П., Захаров А.Ф. и Иванов В.И. Медицинская генетика, М., 1984.

Абилев С.К. // Генетика. 1979. Т. 15, № 5. С. 807–811.

Дубинин Н.П. Общая генетика. М.: Наука, 1986. 559 с.

Дубинин Н.П. Некоторые проблемы современной генетики. М.: Наука, 1994. 224 с.


Опухоли представляют собой группу генных болезней, характеризующихся неконтролируемой клеточной пролиферацией. По способности к распространению в организме их делят на 2 группы:

доброкачественные, или локальные, не обладающие способностью прорастать в соседние ткани;
злокачественные, способные к разрастанию (инвазии) в определённых тканях и перемещению в другие части тела, давая начало вторичным опухолям (метастазам).
Описано более 100 различных видов рака, хотя 5 из них дают более 50% от всех диагностируемых случаев заболевания. Это - рак лёгкого, молочной железы, толстой и прямой кишки, простаты, матки и яичников (рис. 16-1).

Опухоли классифицируют также в зависимости от тканей и типов клеток, из которых они возникли:

карциномы - опухоли из клеток эктодермы и эндодермы;
саркомы - из клеток мезодермы;
гемобластозы (лейкозы и лимфомы) - из камбиальной клетки кроветворной и лимфатической ткани.
После заболеваний ССС рак как причина смертности населения занимает второе место. У человека наиболее изученными причинами рака являются радиация, химические канцерогены и вирусы.

Исследования вирусов как возможной причины онкологических болезней привели к созданию онкогенной теории, которая позволила дать объяснение механизму, с помощью которого различные агенты вызывают превращение нормальной клетки в опухолевую.

I. ФИЗИЧЕСКИЕ, ХИМИЧЕСКИЕ И БИОЛОГИЧЕСКИЕ АГЕНТЫ, ВЫЗЫВАЮЩИЕ ВОЗНИКНОВЕНИЕ ОПУХОЛЕЙ

Около 80% случаев рака у людей - результат воздействия факторов окружающей среды, под которыми понимают стиль жизни, пищевые продукты, заболевания, увеличивающие риск развития опухолей, и наследственные изменения в геноме.

Рис. 16-1. Смертность от разных видов рака среди мужчин и женщин.

Агенты, стимулирующие возникновение опухолей (канцерогены), можно разделить на три большие группы: излучения, химические соединения и вирусы.

Установлено, что УФО, х- и γ-лучи оказывают мутагенное и канцерогенное действие. Они повреждают ДНК несколькими способами. Под воздействием излучений из полинуклеотидных цепей могут удаляться азотистые основания и образовываться апуринизированные или апиримидинизированные участки, могут появляться одно- и двухцепочечные разрывы или сшивки. УФО вызывает образование тиминовых димеров (см. раздел 4). Наряду с прямым воздействием х- и γ-излучения индуцируют образование в тканях свободных радикалов (О22-, ОН-, ОН•, О2 и др.), воздействие которых на ДНК и другие макромолекулы повреждает генетический аппарат и нарушает матричный синтез в клетке.

Так, в Австралии и Новой Зеландии, где высока интенсивность УФО солнечных лучей, у части населения возникают карциномы и меланомы. Отмечено увеличение случаев заболевания лейкозами у жителей Японии после взрыва на их территории атомных бомб. Учащение случаев рака лёгких наблюдают у шахтёров, работающих с радиоактивными рудами.

Б. Химический канцерогенез

Канцерогенным действием обладает огромное количество различных по химическому строению веществ, основные группы которых представлены в табл. 16-1.

В печени большинство из этих веществ проканцерогены - соединения, не взаимодействующие с генетическим аппаратом клеток. После дополнительной метаболической модификации они превращаются в канцерогены, способные реагировать с молекулами нуклеиновых кислот и белков, нарушать работу регуляторных механизмов клеток и вызывать рост опухолей. Трансформация клеток под действием канцерогенов получила название химического канцерогенеза.

Установлено, что ферменты детоксикации, участвующие в метаболизме проканцерогенов, обнаруживают поразительный полиморфизм. Отдельные изоформы этих белков имеют низкую активность. У индивидуумов с такими вариантами ферментов проканцерогены медленнее подвергаются метаболическим превращениям и выводятся из организма, не успевая превратиться в

Таблица 16-1. Основные химические канцерогены

Группы веществ Представители групп
Полициклические ароматические углеводороды Бензопирен, диметилбензантрацен
Ароматические амины 2-Ацетиламинофлуорен, К-метил-4-аминоазобензол
Нитрозамины Диметилнитрозамин, диэтилнитрозамин
Алкилирующие агенты Циклофосфамид, диэтилстильбэстрол
Природные вещества Дактиномицин, афлатоксин B1
Неорганические вещества Хром, бериллий, асбест, свинец, кадмий
активные канцерогены. С этим явлением связаны разная чувствительность людей к канцерогенам табачного дыма и предрасположенность курильщиков к раку лёгкого.

В покоящихся клетках ДНК двухспиральна, и азотистые основания защищены от воздействия повреждающих агентов. Однако в ходе репликации полинуклеотидные цепи очень чувствительны к канцерогенам, и клетки, получившие повреждения, могут иметь разную судьбу (рис. 16-2).

Полициклические ароматические углеводороды (ПАУ) входят в состав продуктов неполного сгорания каменного угля и нефти, продуктов пиролиза масел и веществ, найденных в жжёном мясе, а также образуются при курении табака. Они могут связываться с пуриновыми основаниями (особенно гуанином) только после ферментативной активации монооксигеназами (см. раздел 12), работающими при участии различных изоформ цитохрома Р450. Эти ферменты катализируют образование эпоксидов, которые превращаются в диолы с помощью эпоксидгидролазы. Первичные или вторичные эпоксиды, обладая высокой реакционной способностью, могут взаимодействовать с нуклеофильными группами в молекуле ДНК (рис. 16-3).

ПАУ стали первыми соединениями, канцерогенность которых была доказана экспериментально в начале XX века, когда из каменноугольной смолы были выделены бензантрацен, бензо(а)-пирен, 7,12-диметилбензантрацен и другие соединения, содержащие конденсированные ароматические кольца. Наблюдения, связывающие контакты людей с определёнными веществами, и развитие рака были описаны значительно раньше. Так, ещё в 1775 г. появилось сообщение о том, что у трубочистов Лондона особенно часто встречается рак мошонки, и было сделано предположение о том, что это объясняется их постоянным контактом с каменноугольной смолой и сажей. Почти в то же время была обнаружена взаимосвязь между употреблением нюхательного табака и раком носа, курением и раком губ или лёгких.

Ароматические амины. К ароматическим аминам относят вещества, использующиеся в производстве анилиновых красителей и резиновой промышленности. Контакт с ними приводит к развитию у рабочих, занятых в указанных производствах, рака мочевого пузыря. Одним из представителей этой группы является 2-нафтиламин, химическая модификация которого происходит главным образом в печени (рис. 16-4).

Канцероген 2-амино-1-нафтол образуется в ходе гидроксилирования 2-нафтиламина. Однако в печени он быстро взаимодействует с ФАФС,

Норма Рис. 16-2. Последствия повреждения ДНК клетки канцерогенами.

Рис. 16-3. Образование канцерогенов из ПАУ под действием ферментов детоксикации ксенобиотиков. А и Б - два разных метаболических пути, по которым может превращаться бензо(а)пирен. Путь Б приводит к образованию нереакционно-способного продукта, а путь А превращает бензо(а)пирен в канцероген, способный связываться с остатками гуанина и аденина в молекуле ДНК.

превращаясь в нейтральный продукт, который выводится с мочой. В мочевом пузыре часть конъюгатов расщепляется гидролазами, присутствующими в незначительных количествах в моче. Вновь образуется 2-амино-1-нафтол - канцероген, который при повторяющихся контактах человека с нафтиламином вызывает развитие рака мочевого пузыря.

Нитрозамины появляются в организме в результате взаимодействия вторичных алифатических аминов с нитритами. Вторичные амины и нитриты являются постоянными компонентами пищи, поэтому нитрозамины синтезируются при запекании мяса, рыбы. Одно время нитриты широко применялись как консерванты мяса и рыбы, образуются они также в зелёных растениях.

Метаболизм нитрозаминов микросомальной системой окисления приводит к образованию иона метилдиазония, который способен метилировать ДНК клеток, индуцируя возникновение злокачественных опухолей лёгких, желудка, пищевода, печени и почек (рис. 16-5).

Основным продуктом взаимодействия нитрозаминов с ДНК клетки является N7-метилгуанин-ДНК, но наибольшей канцерогенностью обладает минорный продукт этого взаимодействия - О6-метилированный гуанин-ДНК.

Алкилирующие и ацилируюшие агенты, взаимодействуя с нуклеофильными амино- и гидроксильными группами ДНК, могут повреждать структуру генов и индуцировать образование опухолей. Такие соединения, как винилхлорид, используемый в производстве пластмасс и упаковочных

Рис. 16-4. Метаболизм 2-нафтиламина.
Рис. 16-5. Метилирование ДНК продуктами метаболизма нитрозаминов: диметилнитрозамина и N-метилнитрозомочевины.

материалов, некоторые лекарства, применяемые в лечении опухолей или как иммуносупрессоры (циклофосфамид, бисульфан, диэтилстильбэстрол), можно рассматривать как факторы риска. Лекарственные препараты этой группы соединений способны вызывать вторичные опухоли у небольшого процента больных.

В. ДНК- и РНК-содержащие вирусы

Данные о роли вирусов в развитии опухолей были получены в начале XX столетия. Так, в 1908 г. лейкоз у кур удалось вызвать под действием бесклеточного экстракта из опухолевых клеток, а в 1910 г. Р. Раус описал первый онкогенный вирус, способный инициировать саркому у кур. В 1968 г. российским учёным Л.А. Зильбером была сформулирована вирусно-генетическая теория возникновения опухолей под действием онкогенных вирусов. Хотя вирусный канцерогенез первоначально был описан только у птиц и животных, но в последнее время получены данные об участии вирусов в развитии некоторых опухолей у человека. Так, ДНК-содержащий вирус Эпштейна-Барр вызывает развитие лимфомы Бёркитта, ДНК вируса папилломы - развитие рака кожи и гениталий, РНК-содержащий вирус иммунодефицита человека - возникновение сарком.

ДНК-содержащие вирусы частично, а иногда полностью встраиваются в клеточный геном человека, экспрессируют вирусные гены, в результате чего образующиеся в ядре белки нарушают регуляцию клеточного цикла. К ДНК-содержащим онковирусам, помимо упомянутых выше, относят вирус герпеса, аденовирус, па-повавирус, вирус ветряной оспы. Как правило, эти вирусы вызывают инфекционные болезни и лишь в одном из миллиона случаев - злокачественную трансформацию. С другой стороны, ДНК-содержащий вирус гепатита В является причиной рака печени, от которого в мире умирает ежегодно около 500 000 человек. При этом инфицирование пациентов происходит, как правило, за 20-25 лет до возникновения опухоли.

РНК-содержащие вирусы, попадая в клетки человека, синтезируют ДНК с помощью обратной транскриптазы и частично или полностью включают её в геном эукариотов в виде провируса (латентного вируса).

В 1976 г. с помощью техники рекомбинантных ДНК для вируса саркомы Рауса была рас-

Рис. 16-6. Структура генома вируса саркомы Рауса. LTR-длинные концевые повторы (от англ, long terminal repeats),содержащие промоторы, к которым присоединяется РНК-полимераза; gag, pol, env- гены, кодирующие вирусные белки; src- ген, кодирующий тирозиновую протеинкиназу (тир-ПК) с молекулярной массой 60 кД (ррбО), которая вызывает нарушение контактного торможения (прекращения деления клеток при возникновении физического контакта между ними) и трансформацию клеток. Обратная транскриптаза - фермент, который синтезирует ДНК на матрице РНК. Благодаря активности этого фермента генетический материал вируса в клетках хозяина превращается в двухцепочечную кольцевую ДНК и может включаться в геном человека.
Рис. 16-6. Структура генома вируса саркомы Рауса. LTR-длинные концевые повторы (от англ, long terminal repeats),содержащие промоторы, к которым присоединяется РНК-полимераза; gag, pol, env - гены, кодирующие вирусные белки; src - ген, кодирующий тирозиновую протеинкиназу (тир-ПК) с молекулярной массой 60 кД (ррбО), которая вызывает нарушение контактного торможения (прекращения деления клеток при возникновении физического контакта между ними) и трансформацию клеток. Обратная транскриптаза - фермент, который синтезирует ДНК на матрице РНК. Благодаря активности этого фермента генетический материал вируса в клетках хозяина превращается в двухцепочечную кольцевую ДНК и может включаться в геном человека.

шифрована структура генома (рис. 16-6). Наряду с тремя обычно встречающимися у всех вирусов генами был обнаружен ген, ответственный за злокачественную трансформацию. Он назван src-онкогеном, так как выделен из клеток саркомы. Показано, что, когда src-ген встраивается в геном нормальных клеток, растущих в культуре, то они теряют способность к контактному торможению и приобретают все свойства трансформированных клеток.

Г. Наследственная предрасположенность

Наследственные изменения в геноме играют важную роль в канцерогенезе. Так, у детей предрасположенность к ретинобластоме (злокачественная опухоль сетчатки глаза) наследуется как аутосомно-доминантный признак, и примерно 40% случаев заболевания имеют семейный характер. Также наследуется предрасположенность к множественному полипозу толстой кишки, и практически во всех случаях в зрелом возрасте у пациентов образуются аденокарциномы.

Нестабильность хромосомной ДНК может быть связана с дефектом ферментов репарации. Это нарушение встречается у пациентов с пигментной ксеродермой, которая часто сопровождается развитием карциномы кожи на участках, подверженных действию УФО.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции