Вирусы как объекты биотехнологии

Объекты биотехнологии и их биотехнологические функции

Биотехнологические объекты находятся на разных ступенях организации:

а) субклеточные структуры (вирусы, плазмиды, ДНК митохондрий и хлоропластов, ядерная ДНК);

б) бактерии и цианобактерии;

е) культуры клеток растений и животных;

ж) растения – низшие (анабена-азолла) и высшие – рясковые.

Бактерии и цианобактерии

Микроорганизмов, синтезирующих продукты или осуществляющих реакции, полезные для человека, несколько сотен видов. Биотехнологические функции бактерий разнообразны. Бактерии используются при производстве: - пищевых продуктов, например, уксуса (Gluconobacter suboxidans), молочнокислых напитков (Lactobacillus, Leuconostoc) и др.; - микробных инсектицидов (Bacillus thuringiensis); - белка (Methylomonas); - витаминов (Clostridium - рибофлавин); - растворителей и органических кислот; - биогаза и фотоводорода.

Полезные бактерии относятся к эубактериям. Уксуснокислые бактерии, представленные родами Gluconobacter и Acetobacter, - это грамотрицательные бактерии, превращающие этанол в уксусную кислоту, а уксусную кислоту в углекислый газ и воду. Род Bacillus относится к грамположительным бактериям, которые способны образовывать эндоспоры и имеют перитрихиальное жгутикование. B.subtilis - строгий аэроб, а B.thuringiensis может жить и в анаэробных условиях. Анаэробные, образующие споры бактерии представлены родом Clostridium. C.acetobutylicum сбраживает сахара в ацетон, этанол, изопропанол и n-бутанол (ацетобутаноловое брожение), другие виды могут также сбраживать крахмал, пектин и различные азотсодержащие соединения.

К молочнокислым бактериям относятся представители родов Lactobacillus, Leuconostoc и Streptococcus, которые не образуют спор, грамположительны и нечувствительны к кислороду. Гетероферментативные молочнокислые бактерии рода Leuconostoc превращают углеводы в молочную кислоту, этанол и углекислый газ. Гомоферментативные молочнокислые бактерии рода Streptococcus продуцируют только молочную кислоту, а брожение, осуществляемое представителями рода Lactobacillus, позволяет получить наряду с молочной кислотой ряд разнообразных продуктов.

К бактериям рода Corynebacterium, неподвижные грамположительные клетки которых не образуют эндоспор, относятся патогенные (C.diphtheriae, C.tuberculosis) и непатогенные почвенные виды, имеющие промышленное значение. С.glutamicum служит источником лизина и улучшающих вкус нуклеотидов. Коринебактерии хотя и считаются факультативными анаэробами, лучше растут аэробно. Бактерии используются для микробного выщелачивания руд и утилизации горнорудных отходов.

Широко используется такое свойство некоторых бактерий, как диазотрофность, то есть способность к фиксации атмосферного азота.

Выделяют 2 большие группы диазотрофов:

- симбионты: без корневых клубеньков (азотобактер - лишайники, азоспириллум - лишайники, анабена – лишайники, азолла), с корневым клубеньками (бобовые – ризобии, ольха, лох, облепиха – актиномицеты);

- свободноживущие: гетеротрофы (азотобактер, клостридиум, метилобактер), автотрофы (хлоробиум, родоспириллум и амебобактер).

Микробные клетки используют для трансформации веществ.

Бактерии также широко используются в генноинженерных манипуляциях при создании геномных клонотек, введении генов в растительные клетки (агробактерии).

Производственные штаммы микроорганизмов должны соответствовать определенным требованиям: способность к росту на дешевых питательных средах, высокая скорость роста и образования целевого продукта, минимальное образование побочных продуктов, стабильность продуцента в отношении производственных свойств, безвредность продуцента и целевого продукта для человека и окружающей среды. В связи с этим все микроорганизмы, используемые в промышленности проходят длительные испытания на безвредность для людей, животных и окружающей среды. Важным свойством продуцента является устойчивость к инфекции, что важно для поддержания стерильности, и фагоустойчивость.

Все цианобактерии обладают способностью к азотфиксации, что делает их весьма перспективными продуцентами белка. Анабена (Anabaena) - нитчатая сине-зеленая водоросль. Нити из более или менее округлых клеток, содержат гетероцисты и иногда крупные споры, по всей длине нить одинаковой толщины. В цитоплазме клеток откладывается близкий к гликогену запасной продукт - анабенин. Такие представители цианобактерий, как носток, спирулина, триходесмиум съедобны и непосредственно употребляются в пищу. Носток образует на бесплодных землях корочки, которые разбухают при увлажнении. В Японии местное население использует в пищу пласты ностока, образующиеся на склонах вулкана и называет их ячменным хлебом Тенгу (Тенгу - добрый горный дух).

В природе существует огромное число микроорганизмов, которые способны синтезировать продукты или осуществлять реакции, которые могут быть полезны для биотехнологии. Однако практическое применение нашли не более 100 видов микроорганизмов (бактерии, грибы, дрожжи, вирусы, водоросли).

Дрожжи широко используют в хлебопечении, пивоварении, виноделии, получении соков, кормового белка, питательных сред для выращивания бактерий и культур животных клеток. Из 500 известных видов дрожжей используется только несколько видов – Saccharomyces cerevisiae, Saccharamyces carlsbergencis, Saccharomyces uwarum.

Среди бактерий чаще всего применяют в биотехнологии представителей следующих родов: Acetobacter, которые превращают этанол в уксусную кислоту и уксусную кислоту в углекислый газ и воду; Bacillus – для получения ферментов (B. subtilis), средств защиты растений (В. thuringiensis); Clostridium – для сбраживания сахаров в ацетон, этанол, бутанол; псевдомонады – например, P. Denitrificans – для получения витамина В12, Corynebacterium glutamatum – для получения аминокислот и др.

Для получения разнообразных антибиотиков в биотехнологии применяют актиномицеты (род Streptomyces), грибы рода Penicillium и др.

Многие микроорганизмы – бактерии, дрожжи, вирусы – используются в качестве реципиентов чужеродного генетического материала с целью получения рекомбинантных штаммов–продуцентов биотехнологической продукции. Получены рекомбинантные штаммы E. coli, продуцирующие интерфероны, инсулин, гормон роста, антигены вируса СПИДа; штаммы B. subtilis, вырабатывающие интерферон; штаммы дрожжей, продуцирующие интерлейкин–2, антиген вируса гепатита В; рекомбинантные вирусы осповакцины, синтезирующие антигены гепатита В, вируса бешенства, клещевого энцефалита и др.

Для получения вакцин и диагностических препаратов используют также патогенные микроорганизмы (брюшного тифа, коклюша, дифтерии, столбняка и др.).

Широкое применение в биотехнологии нашли культуры животных и растительных клеток. Известно, что строение, физиология и биотехнология животных и растительных клеток более сложные, чем у бактериальных клеток. Из культур животных и растительных клеток можно извлечь более широкий ассортимент продуктов сложной, цепной реакции, но процесс культивирования растительных и животных клеток более трудоемкий и дорогостоящий. Из культур тканей растений можно получать разнообразные соединения, используемые в медицине (алкалоиды, противовоспалительные вещества, противолейкозные и противоопухолевые, противобактериальные, сердечные и почечные средства, ферменты, витамины, опиаты и др.), сельском хозяйстве, химической и других отраслях промышленности. Животные клетки используют как для получения продукции, так и для выращивания в клетках вирусов с целью получения из них вакцин и диагностических препаратов.

Таким образом, в современном биотехнологическом производстве используют весьма широкий ассортимент биообъектов, классификация которых весьма сложна и наиболее рационально может быть выполнена на основе принципа их соразмерности. В таблице приведены биологические объекты, объединенные в 5 групп, причем, соразмерность в первых четырех имеет кратность в три порядка и только в пятой группе собраны биообъекты, отличающиеся по размерам от предшествующей (четвертой) группы всего на один порядок.

Биообъекты, используемые при биотехнологических способах производства лекарственных (диагностических, лечебных и профилактических) средств:

Размер от 10 м до 1 см: человек, животные, растения-бионакопители сапонинов, алкалоидов и т.п.

Размер от 1 см до 1 мм: гигантские водоросли, каллусные культуры меристемы, культуры тканей, культуры клеток.

Размер от 1 мм до 1 мкм: клетки эукариот и прокариот в культуре, биопродуценты и биотрансформаторы.

Размер от 1 мкм до 1 нм: бактериофаги, вирусы, липосомы.

Размер менее 1 нм: ДНК, ферменты, макромолекулы-носители.

Требования, предъявляемые к биообъектам для реализации биотехнологических процессов: чистота, высокая скорость размножения клеток и репродукции вирусных частиц, активность и стабильность биомолекул или биосистем.

Основные термины и понятия биотехнологии:

Нуклеиновые кислоты – высокомолекулярные сложные органические соединения, состоящие из серии компонентов более простого строения, названных нуклеотидами.

Нуклеотид – это комплекс, включающий одно из азотистых оснований, углевод (рибозу или дезоксирибозу) и остаток фосфорной кислоты.

ДНК (дезоксирибонуклеиновые кислоты) – нуклеиновые кислоты, содержащие в качестве углеводного компонента дезоксирибозу, а в качестве азотистых оснований – аденин, гуанин, цитозин, тимин. ДНК присутствуют в клетках любого организма, входят в состав многих вирусов. Первичная структура молекулы ДНК строго индивидуальна и специфична, представляет собой кодовую форму записи биологической информации, т.е. генетический код.

РНК (рибонуклеиновые кислоты) – нуклеиновые кислоты, содержащие в качестве углеводного компонента рибозу, а в качестве азотистых оснований – аденин, гуанин, цитозин, урацил. РНК присутствуют в клетках любого живого организма, входят в состав многих вирусов; участвуют в реализации генетической информации.

Ген – наследственный фактор, функционально неделимая информация генетического материала; участок молекулы ДНК, кодирующий первичную структуру полипептида, молекулы транспортной и рибосомальной РНК или взаимодействующий с регуляторным белком.

Генотип – совокупность генов данной клетки или организма.

Геном – совокупность генов, характерных для гаплоидного набора хромосом данного вида организмов; основной гаплоидный набор хромосом.

Вектор – любая плазмида или фаг, в которые может быть встроена чужеродная молекула ДНК с целью клонирования.

Плазмида – кольцевая внехромосомная ДНК, способная к автономной репликации.

Репликация – самоудвоение молекулы ДНК путем образования её копии при помощи набора ферментов (ДНК-полимераз, лигаз и т.п.).

Гибридизация – процесс образования или получения гибридов, в основе которого лежит объединение генетического материала разных клеток в одной клетке.

Клон – совокупность клеток или особей, произошедших от общего предка путем бесполого размножения.

Штамм – чистая культура микроорганизма, выделенного из определенного источника или полученного в результате мутаций.

Эукариоты – организмы, состоящие из клеток, в которых обязательно содержится особый органоид – ядро.











Основные объекты и характерные черты биотехнологического производства

Автор(ы): кандидат технических наук Б. С. Пайлеванян

12 сентября 2011

of your page -->
Tweet

Промышленная биотехнология, находящая применение в таких ключевых направлениях, как медицина и сельское хозяйство, производство химических веществ и пищевых продуктов, биоэнергетика и биоэлектроника, восстановление и защита окружающей среды, материаловедение, биогеотехнология и других, является универсальным инструментарием по борьбе со стихийным развитием цивилизации и обеспечению её управляемого устойчивого непрерывного прогрессирования.

Принимая во внимание исключительную прикладную ценность биотехнологии, представляется крайне важным проанализировать и систематизировать основные объекты и этапы биотехнологического процесса, комплексно рассмотреть базовые методы и подходы, имеющих место в промышленной биотехнологии, описать технологическое оборудование, схемы ведения работ и, соответственно, продукты, получаемые в результате биотехнологического производства.

Учитывая, что биобъекты — основополагающий элемент промышленной биотехнологии, видится целесообразным вначале коротко остановиться на их описании. В качестве биобъектов выступают одно- или многоклеточные живые организмы, функциональное предназначение которых — биосинтез необходимого продукта (продуценты) либо катализ ферментативной реакции (биокатализаторы). К биообъектам относятся макромолекулы, микро- и макроорганизмы, в частности:

  • вирусы — не имеющие клеточного строения и собственного энергоснабжения мельчайшие организмы, ведущие паразитический образ жизни;
  • бактерии — прокариотические (не обладающие ядром и другими мембранными органоидами) и эукариотические (содержащие в своём строении ядро и иные структуры) клетки;
  • водоросли (бурые, красные, зелёные, диатомовые, синезелёные и т. п.) — группа одноклеточных, колониальных или многоклеточных организмов, обитающих, в основном, в водной среде, но также в почве, на поверхности растений и в других местах;
  • лишайники — симбиотические ассоциации микроскопических грибов (микобионт) и зелёных микроводорослей и / или цианобактерий (фотобионт или фикобионт), образующие слоевища (талломы) определённой структуры;
  • грибы — лишённые хлорофилла (пигмента, участвующего в фотосинтезе) организмы, усваивающие минеральные вещества непосредственно из окружающей среды, а органические — только в готовом виде;
  • водные растения, пребывающие в солёной, пресной (большей частью) либо солоноватой водных средах;
  • культуры клеток животного происхождения, равно как и изолированные ткани, органы или цельные тела животных;
  • тотипотентные растительные клетки, сохраняющие генетическую информацию в процессе своего развития и способные, в случае наличия благоприятных условий, полностью восстановить организм.

При этом низшие растения (вирусы, бактерии, водоросли, миксомицеты, лишайники, грибы), в свою очередь, подразделяются на автотрофы (водоросли и лишайники), синтезирующие органические соединения из неорганических, и гетеротрофы (вирусы и бактерии, большинство миксомицетов и грибов), неспособные к фотосинтезу / хемосинтезу и использующие для питания органические вещества, произведённые другими организмами.

Рассмотрев объекты, которыми оперирует биотехнология, перейдём к исследованию производственного процесса (заметим, что в практической деятельности, для удобства, он часто иллюстрируется в виде последовательно составленной блок-схемы), предполагающего, в конечном счёте, получение внутри- или внеклеточного целевого продукта биосинтеза. Обычно, в классическом варианте, изучаемый процесс состоит из подготовительной, биотехнологической и заключительной стадий.

На начальной, подготовительной стадии осуществляется приготовление необходимого сырья с заданными свойствами, подразумевающее, в зависимости от целевой продукции, такие методы, как: заготовка специальной среды с нужными компонентами, стерилизация газов путём очистки от излишних веществ, подготовка посевного материала либо биокатализатора.

На основной, биотехнологической стадии, с помощью тех или иных перечисленных выше биообъектов, происходит преобразование исходного сырья в желаемый продукт. Данный этап включает в себя синтез новых органических соединений, а также процессы: биотрансформация, ферментация, биокатализ, биоокисление, метановое брожение, биокомпостирование, бактериальное выщелачивание, биосорбция, биодеградация.

На последней, заключительной стадии технологического процесса биотехнологического производства получается запроектированная готовая продукция. Однако, целевой продукт на текущем этапе изначально находится в биомассе либо жидкости. Для их разделения можно воспользоваться следующими методами: отстаивание, фильтрация (в том числе микро- и ультрафильтрация), сепарация / центрифугирование и др.

После указанных выше стадий, наступает время выделения целевого продукта. Это успешно делается экстракцией, осаждением, адсорбцией, ионным обменом и другими известными методами, характерными для внутриклеточных и внеклеточных формирований.

Полезно отметить, что, в случае необходимости удалить ненужные примеси, в производственный процесс, после стадии выделения, может быть включён этап очистки, который реализуется на основе хроматографии, диализа, кристаллизации, равно как и ректификации, ферментолиза, обратного осмоса и иных методов, приведённых для предыдущей стадии.

Завершая раздел, посвящённый хронологическим аспектам биотехнологического производственного процесса, стоит упомянуть и о возможности максимизировать выход целевого продукта (до 90—100 %) — это достигается путём его концентрирования (например, выпариванием, сушкой, нано- и гиперфильтрацией).

Касаемо оборудования, используемого в биотехнологической практике, следует сказать, что при лабораторных исследованиях, главным образом, применяют роллеры и качалки, предотвращающие посредством вращающей конструкции осаждение клеток и обеспечивающие оптимальное количество растворённого кислорода. Чтобы в периодическом и непрерывном режимах выращивать клеточные культуры и микроорганизмы в промышленных масштабах, больше подойдут ферментёры и биореакторы, где перемешивание клеток может происходить за счёт аэрирования воздуха (барботажный тип), создания направленных циркуляционных потоков (эрлифтный тип) или с помощью механических устройств.

В заключение, хотелось бы акцентировать внимание на том, что, согласно результатам проведённых автором изысканий и мнениям учёных по исследуемой тематике, перспективы промышленной биотехнологии весьма позитивны, поскольку она обладает исключительно важными преимуществами.

Вот лишь некоторые из них: широкий спектр получаемых продуктов (к примеру: газы — водород, биогаз, диоксид углерода; культуральные жидкости вместе с микроорганизмами — кефир, йогурт; твёрдые субстраты — сырная продукция, ферментированное с заквасками колбасное изделие; жидкости, полученные после отделения биомассы, — квас, вино; биопрепараты — бактериальные удобрения, эффективные средства защиты растений, пекарские дрожжи; различные биопродукты — этанол, антибиотики, аминокислоты и многое другое), экологичность и безопасность производственного процесса, умеренность стоимости подготовки и запуска биотехнологической линии, эвентуальность использования в качестве сырья низких по цене отходов сельского хозяйства и промышленности, а также, что особо ценно, возможность получать чрезвычайно востребованные вещества (белки, ДНК и т. д.), которые сложно либо, более того, вовсе не представляется реальным получить каким-то иным способом в достаточном для людских нужд объёме.

В статье использованы материалы: к. т. н. Пайлеваняна Б. С.


На основе рекомбинантного вируса коровьей оспы, несущего ген гликопротеида вируса бешенства, создано новое поколение вакцин против бешенства.

Суть метода генно-инженерного получения живых вакцин отражена далее. В рекомбинантную молекулу ДНК с геном тимидинкиназы (ТК) вируса вакцины оставляют ген другого вируса (герпеса, гепатита, вазикулярного стоматита или др.). Нормальный вирус вакцины и составную плазмиду переносят в клетки животных, в которых собственный ген. тимидинкиназы не работает (ТК-клетки). Ввиду наличия гомологии (схожести) между вирусной и плазмидной ДНК (общее у них - тимидинкиназный ген) между ними происходит гомологичная рекомбинация. Клетки, в которых такая рекомбинация не произошла, становятся ТК (за счет работы тимидинкиназного гена вируса вакцины), а клетки с рекомбинантным вирусом остаются ТК, что и позволяет их отселектировать (разделить). Такие составные вирусы используют затем в качестве живых безопасных вакцин. Вставляя в вирус вакцины одновременно гены разных вирусом, можно создавать мультивалентную вакцину против нескольких вирусов одновременно.

Получение биологически активных белков с помощью культивируемых клеток животных проводится в промышленных масштабах с использованием ферментеров - специальных культиваторов, в которых можно выращивать клетки в больших количествах. Самый крупный ферментер для культивирования животных клеток-продуцентов создан фирмой Cellthech. Его объем 2000 л, а производительность - 15 кг МАТ в год. Существует проект ферментера на 10 000 л.

Потребность в продуктах, синтезируемых клетками животных, непрерывно растет. В 1990 г. рынок сбыта (потребность) одного из таких продуктов - эритропоэтина - оценен в 400 - 750 млн. долл. В 1987 г. в США было продано рекомбинантных вакцин на сумму 745 млн. долл. Ожидается, что в 1993 г. эта сумма возрастет до 4,5 млрд. долл. Для диагиостикумов иммунных заболеваний (главным образом СПИДа), создаваемых на основе антител, только в США рынок сбыта составлял в 1987 т. 167,2 млн. долл., а к 1992 г. он достигнет, как ожидается, 294 млн. долл.

Антибиотики вырабатываются микроорганизмами в результате совместного действия продуктов 10 - 30 генов, что усложняет использование генно-инженерных подходов для управления их синтезом. Однако данная проблема разрешима в тех случаях, когда синтез антибиотиков определяется мультиферментными комплексами, кодируемыми одним опероном (например, в случае антибиотиков пептидной природы). Это открывает новые перспективы в биотехническом получении антибиотиков. Внедрение соответствующих генов из одного микроорганизма в клетки другого близкородственного может приводить к получению “гибридного” антибиотика, обладающего новыми свойствами. Этот подход был успешно применен в 1988 г. биохимиком Михаэлем Хопвудом в США. При объединении генов биосинтеза актинородина и медермицина был получен новый антибиотик, получивший название “медерродин”. В другом случае этот же автор создал штамм, продуцирующий “гибридный” антибиотик дигидрогранатиродив. Высокая продуктивность штаммов микроорганизмов иногда достигалась за счет увеличения в клетках количества копий генов биосинтеза антибиотика. Таким образом, удалось, например, существенно увеличить выход актинородина.

Широко применяют антибиотики в медицине, сельском хозяйстве (для лечения, а также для улучшения роста и развития молодняка), в пищевой промышленности (консервирующие средства). В 1987 г. за рубежом стоимость всех антибиотиков, использованных в качестве антибактериальных препаратов, составила 3,5 млрд. долл.; ожидается, что в 1992 г. она достигнет 4,2 млрд. долл.

В борьбе с болезнетворными бактериями вместо антибиотиков иногда используют другую бактерию - антагонист патогенного штамма. Примером может служить дикий патогенный штамм бактерии Streptococcus mutans, разрушающий зубную эмаль и дентин. При введении в ротовую полость мутантного штамма этого же вида выделяется белковый продукт, губительный для дикого штамма. В данном случае бактерии-антагонисты выступают в роли биостерилизаторов. Описаны аналогичные способы защиты сельскохозяйственных растений. В частности, это относится к инфекционному заболеванию рассады томатов, вызываемому почвенными бактериями Fusarium oxysporum. Заболевание связано с действием фузаровой кислоты, продуцируемой этими бактериями. В качестве биостерилизатора в этом случае используют клетки Pseudomonas solanactarum, способные накапливать фузаровую кислоту и этим снижать ее токсичнjt воздействие на томаты.

Следующее направление генно-инженерных работ - создание гербицидустойчивых ценных видов культурных растений, с тем чтобы эффективнее бороться с сорняками. Традиционные методы селекции создания сортов, устойчивых к гербицидам, очень длительны и малорезультативны. Поэтому и здесь большие надежды связывают с использованием генной инженерии. Пока можно говорить об отдельных примерах. Осуществлен успешный перенос гена устойчивости к гербицидам из Streptomyces в клетки сахарной свеклы. После этого регенерировавшие из них растения приобрели устойчивость к гербициду фосфинотрициану. Этим же путем удалось получить устойчивые к гербицидам растения табака.

Есть еще одна интересная область применения генной инженерии. В размягчении плодов помидоров при их хранении, ухудшающем потребительские качества плодов, участвует фермент полигалактуронидаза (ПГУ). Естественно желание подавить активность этого фермента в созревающих помидорах. Методом генной инженерии сконструирован ген, транскрипция которого приводит к образованию вместо природной мРНК фермента анти-мРНК (т. е. РНК, комплементарную нормальной мРНК). В результате в клетках растения, в которое перенесен искусственно созданный ген, накапливается анти-мРНК, которая ингибирует природную мРНК. Механизм подавления мРНК ПГУ в клетках томатов представляется следующим образом: накапливающиеся в клетках молекулы анти-ПГУ мРНК вступают в комплекс с мРНК ПГУ, в результате чего последняя не в состоянии транслироваться. Анти-мРНК в данном случае действуют подобно антителам, инактивирующим антигены.

Объекты биотехнологии многочисленны. Это представители основных групп живых организмов - микроорганизмы (бактерии, вирусы, дрожжи, одноклеточные организмы), растения, животные, а также изолированные из них клетки и субклеточные компоненты. Биотехнология базируется на протекающих в этих живых системах физико-химических, биохимических, физиологических процессах, в результате которых происходят выделение энергии, синтез и деградация продуктов, формирование организованных структур. Из этого ясно, что в биотехнологии для решения насущных научных и производственных задач имеется в готовом виде обширная материальная база. Ограничивают использование этой базы несовершенство знаний о живых объектах и протекающих в них процессах, отсутствие техники и методов оперирования ими и жесткие требования к уровню рентабельности используемых биотехнологий. Поэтому разные виды и группы живых организмов и их клетки вовлекают в сферу биотехнологии постепенно, но мере преодоления этих ограничивающих факторов.

Биотехнология решает не только конкретные задача науки и производства. У нее есть более глобальная методологическая задача - она расширяет и ускоряет с помощью достижений научно-технического прогресса масштабы воздействии человека на живую природу, я способствует приспособлению живых систем к условиям существования человека (ноосфере), выступая в роли нового мощного фактора антропогенной адаптивной эволюции. В прошлом влияние человека на живые организмы было ограничено главным образом искусственным отбором. В настоящее время искусственный отбор входит в формирующуюся биотехнологию как одна из ее исторических предпосылок. Этот глобальный (общебиологический) и конкретный (научно производственных взаимоотношений биотехнологии с живой природой тесно смыкаются и стимулируют друг друга. Они представляют собой единую систему, которая на верхнем уровне смыкается с эволюцией, а на нижнем все больше “сращивает” живую природу с социальной и производственной сферами жизни человека.

По своим потенциям биотехнология экологически достаточно чистый и практически неисчерпаемый высокоэкономичный производитель разнообразной продукции и поэтому все больше будет вытеснять несовершенные, ограниченные ресурсами и экологически вредные современные химические технологии. Однако для большего прогресса биотехнология нуждается в успехах фундаментальных наук и в более совершенных методах оперирования живыми системами.


На основе рекомбинантного вируса коровьей оспы, несущего ген гликопротеида вируса бешенства, создано новое поколение вакцин против бешенства.

Суть метода генно-инженерного получения живых вакцин отражена далее. В рекомбинантную молекулу ДНК с геном тимидинкиназы (ТК) вируса вакцины оставляют ген другого вируса (герпеса, гепатита, вазикулярного стоматита или др.). Нормальный вирус вакцины и составную плазмиду переносят в клетки животных, в которых собственный ген. тимидинкиназы не работает (ТК-клетки). Ввиду наличия гомологии (схожести) между вирусной и плазмидной ДНК (общее у них - тимидинкиназный ген) между ними происходит гомологичная рекомбинация. Клетки, в которых такая рекомбинация не произошла, становятся ТК (за счет работы тимидинкиназного гена вируса вакцины), а клетки с рекомбинантным вирусом остаются ТК, что и позволяет их отселектировать (разделить). Такие составные вирусы используют затем в качестве живых безопасных вакцин. Вставляя в вирус вакцины одновременно гены разных вирусом, можно создавать мультивалентную вакцину против нескольких вирусов одновременно.

Получение биологически активных белков с помощью культивируемых клеток животных проводится в промышленных масштабах с использованием ферментеров - специальных культиваторов, в которых можно выращивать клетки в больших количествах. Самый крупный ферментер для культивирования животных клеток-продуцентов создан фирмой Cellthech. Его объем 2000 л, а производительность - 15 кг МАТ в год. Существует проект ферментера на 10 000 л.

Потребность в продуктах, синтезируемых клетками животных, непрерывно растет. В 1990 г. рынок сбыта (потребность) одного из таких продуктов - эритропоэтина - оценен в 400 - 750 млн. долл. В 1987 г. в США было продано рекомбинантных вакцин на сумму 745 млн. долл. Ожидается, что в 1993 г. эта сумма возрастет до 4,5 млрд. долл. Для диагиостикумов иммунных заболеваний (главным образом СПИДа), создаваемых на основе антител, только в США рынок сбыта составлял в 1987 т. 167,2 млн. долл., а к 1992 г. он достигнет, как ожидается, 294 млн. долл.

Природные микроорганизмы, как правило, обладают низкой продуктивностью тех веществ, производство которых необходимо. Для биотехнологии нужны высокопродуктивные штаммы микроорганизмов. Их создают методами селекции - направленного отбора спонтанных или индуцированных (химическими мутагенами или радиацией) мутантов. Получение таких штаммов занимаются иногда многие годы. В результате селекции производительность продуцентов удается увеличить в сотни или тысячи раз. Например, в работе с Penicillium методами селекции выход пенициллина был увеличен в конце концов, примерно в 10 тыс. раз по сравнению с исходным диким штаммом.

Отбору высокопроизводительных штаммов предшествуют тонкие манипуляции селекционера с генетическим материалом исходных штаммов. При этом используют весь спектр естественных способов рекомбинирования генов, известных у бактерий: конъюгацию, трансдукцию, трансформацию и другие генетические процессы. Например, конъюгация (обмен генетическим материалом между бактериями) была успешно использована при создании штамма Pseudomonas putida, способного утилизовать углеводороды нефти. Очень часто прибегают к трансдукции (перенос гена из одной бактерии в другую посредством бактериальных вирусов - бактериофагов) и амплификации (увеличение числа копий нужного гена).

Так, у многих микроорганизмов гены биосинтеза антибиотиков или их регуляторы находятся не в основной хромосоме, а в плазмидах. Путем амплификации удается увеличить число этих плазмид в клетках и существенно повысить производство антибиотиков.

Еще один подход в генетико-селекционной работе - получение генетических рекомбинантов путем слияния разных штаммов бактерий, лишенных стенок (протопластов). Так, слиянием протопластов двух штаммов Streptomyces был сконструирован новый высокоэффективный штамм-продуцент рифампицина С: мутанты Nocardia mediterranei, в которых не синтезировался рифампицин, после слияния сформировали штаммы, продуцирующие три новых рифампицина. Слияние протопластов позволяет объединять генетические материалы и таких микроорганизмов, которые в естественных условиях не скрещиваются.

Большое значение для медицины и сельского хозяйства имеют вакцины, которые вызывают активный иммунитет против инфекционных болезней. С помощью генной инженерии получены так называемые рекомбинантные вакцины.

Такой составной вирус экспрессировал слитый белок на поверхности инфицированных им клеток, растущих в культуре. При инъекциях этих клеток в цыплят почти все иммунизированные птицы были устойчивы к вирусу болезни Ньюкасле. Аналогичная живая вакцина была получена и для вируса бронхита птиц.

Отлажена техника изготовления вакцин-антигенов, которая заключается в клонировании и функционировании отдельных генов возбудителей болезней в Е. coli, дрожжах, клетках насекомых или млекопитающих. Вакцины-антигены высокостабильны, малоопасны как аллергены и неинфекционны. Одна из проблем, возникающая при использовании этих вакцин - наблюдающаяся низкая иммуногенность.

Чтобы пациенты легко переносили действие вакцин и для повышения их эффективности разработаны синтетические вакцины. Их создают с помощью соединения фрагментов белков, полисахаридов и других веществ микроорганизмов (к которым образуются антитела) с большими молекулами-носителями (адъювантами), которые усиливают иммуногенность антигенов. При этом к одной молекуле, стимулирующей иммунный ответ, могут быть присоединены фрагменты антигенов нескольких видов микробов и вирусов, что приводит к образованию поливакцин.

С помощью генной инженерии уже получены первые коммерчески доступные вакцины для человека пробактериального энтеротоксина, против гепатита Б.

На начальном этапе своего развития биотехнология в основном пользовалась живыми системами в том виде, в каком они существовали в природе. Следующий шаг - использование традиционных методов селекции (искусственного отбора) микроорганизмов, растений и животных, получение более продуктивных штаммов, линий. В последние 10 - 15 лет целенаправленнее улучшение свойств живых систем как объектов биотехнологии резко ускорилось и расширилось после того, как с середины 70-х до середины 80-х гг. были разработаны методы генной инженерии. Сначала это были методы рекомбинирования и конструирования очищенных из клеток генов. На следующем этапе были усовершенствованы методы переноса генов в микроорганизмы, а в конце 70-х годов отработаны подходы к переносу генов в культивируемые клетки животных.

В 1980 - 1982 гг. появились методы переноса генов в целые (многоклеточные) животные организмы и почти одновременно - методы переноса генов в растительные клетки и в целые растения. Микроорганизмы, а также клетки, растущие вне организма, после переноса в них новых генов называют генетически трансформированными клетками. Трансформированными можно называть и многоклеточные организмы - животные, растения, но чаще их обозначают как трансгенные животные и растения. Генетический материал переносят в клетки и организмы с помощью разных методов. В микроорганизмы гены вводят в составе кольцевых молекул.

Особые приемы используют для переноса генов в целые животные организмы. Один из них заключается в том, что очищенные гены впрыскивают в только что оплодотворившиеся яйцеклетки (зиготы) с помощью шприца и микропипетки, кончик которой (с внутренним диаметром

1 мкм) вводят непосредственно в ядро. Ген можно перенести в эмбрион и с помощью вирусов. Существует 2 подхода переноса генов в растения. Первый состоит в том, что гены вводят в изолированные клетки, лишенные полисахаридных стенок (такие клетки называют протопластами). Затем из этих клеток получают целые растения. При другом подходе используют ДНК (Ti-плазмиду) микроорганизма Agrobacterium tumefaciens, способного заражать растительные клетки и переносить в них часть Ti-плазмиды вместе с любой содержащейся в ней чужой ДНК. Переносимый ген предварительно вводят в эту часть Ti-плазмиды. Напомним, что плазмиды - кольцевые молекулы ДНК, присутствующие в клетках вне хромосом.

Естественно, что в небольшой по объему заметке невозможно рассказать в полной мере обо всех аспектах современной биотехнологии. Поэтому наша цель - ознакомить интересующихся лишь с основными, наиболее перспективными направлениями биотехнологических работ.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции