Вирус гриппа и бактериофаги

С чего все начиналось?

В конце 19 века британский бактериолог Эрнест Ханкин исследовал воды индийских рек, в частности священной реки Ганг. Индусы считали, что окунаясь в эту реку, они защищают себя от всех болезней. И Ханкин частично подтвердил это. Он отметил, что несмотря сильную загрязненность, вода из реки может убивать возбудителя холеры. Однако что именно убивает бактерию исследователь так и не определил.

Что такое бактериофаг?


Бактериофаги представляют собой наиболее многочисленную, и, возможно, самую древнюю группу вирусов. Но эти вирусы опасны только для бактерий. Для человека они безвредны. По сути, бактериофаг – это вирус, который поражает бактерии, как например, вирус гриппа поражает организм человека.

В головке бактериофага содержится генетический материал — РНК или ДНК. Найдя свою бактерию, фаг прикрепляется к ней ножками, затем прокалывает оболочку бактерии и впрыскивает свою днк. И тут начинается полная перестройка метаболизма клетки. Бактерия теперь служит лишь средой, в которой размножается вирус. Всего через 30 минут в ней образуется множество новых бактериофагов, которые буквально разрывают клетку и выходят наружу для поиска новых жертв.


Бактерия умирает, а количество вирусов-убийц наоборот увеличивается, причем в геометрической прогрессии. Быстрее не размножается ни один организм на земле. Однако фаги размножаются только до тех пор, пока имеются чувствительные к ним бактерии, а затем они постепенно выводятся из организма и окружающей среды. Тем самым бактериофаги могут самостоятельно регулировать свою численность.

Как производят препараты бактериофаги?


В последнее время из-за бесконтрольного и повсеместного применения антибиотиков многие бактерии становятся устойчивыми к ним и уже с трудом поддаются лечению. Бактериофаги обладают широким спектром антибактериальной активности, и очень эффективны против лекарственно-устойчивых организмов. Поэтому теперь ученые вновь смотрят на бактериофаги как на потенциальные заменители антибиотиков. Тем более что у них есть ряд неоспоримых преимуществ. Например, их невозможно передозировать и после приема не возникает дисбактериоз.

Для того чтобы придумать новый действенный антибиотик ученым нужно порядка 5-10 лет. А устойчивость у микроорганизма к лекарству появляется уже через 2-3 года. Поэтому бактериофаги могут стать вполне хорошей заменой антибиотикам.

Уколы красоты: так ли безопасен ботокс?

В погоне за красотой и молодостью женщины готовы пойти на любые жертвы. Одной из последних тенденций в индустрии красоты являются уколы ботокса. Чтобы избавиться от морщин к модному препарату прибегает все больше женщин. Но так ли это все безвредно? Ведь ботокс это не что иное как ботулотоксин – один из сильнейших ядов на планете! Так стоит ли красота таких жертв?


Ботулотоксин – это сильнейший органический яд, одно из самых ядовитых веществ на Земле. Его попадание в организм вызывает тяжёлое заболевание — ботулизм.

Ботулотоксин вырабатывается бактериями клостридии (Clostridium). Во время Второй мировой войны военные тщательно изучили токсин на предмет использования его в качестве биологического оружия. В результате в 1975 году ботулотоксин типа А был принят на вооружение армии США.

В медицине ботокс впервые применили в конце 70 также в штатах. Офтальмолог Алан Скотт вводил его в микродозах в орбитальную мышцу глаза для лечения блефароспазма . Это заболевание характеризуется непроизвольным сокращением круговой мышцы глаза, которое приводит к смыканию век. Выяснилось что токсин, введенный в микродозах в мышцу, не опасен для организма. Он только расслаблял мышцу, благодаря чему глаз открывался. Такой же эффект ботокс оказывает и на сверхактивные мышцы лица. После инъекции они расслабляются, их двигательная активность снижается за счет чего разглаживаются мимические морщины.


В 2014 году на российский рынок поступил аналог зарубежных препаратов ботулотоксина. Его разработали и производят сотрудники уфимского Иммунопрепарата. Преимуществом препарата является отсутствие в составе человеческого альбумина. Эти простые белки, которые содержатся в крови человека, используются при производстве препаратов ботулотоскина за рубежом. Желатин проходит 2 стадии гидротермического гидролиза, совершенно безопасен. В отличие от альбумина ему не требуется проверка на инфекции, а также удаление и инактивация всевозможных вирусов. К тому же желатин быстрее рассасывается организмом.

Препараты ботулотоксина применяются не только в косметологии, но и в неврологии. Кроме того сейчас Микроген проводит клинические испытания препарата релатокс для лечения спастической формы детского церебрального паралича.


Врачи Центрального военного клинического госпиталя им. А.А. Вишневского Минобороны РФ совместно с учеными восстановили методику создания коктейлей из бактериофагов. Разработанная терапия стала единственным способом вылечить человека с инфекцией, вызванной супербактерией. И это уникальная возможность побороть болезнь, которую не берут никакие антибиотики. Терапия уже перешла в стадию клинической практики.


Вирусы с историей

Устойчивость вредоносных бактерий к антибиотикам является сегодня одной из наиболее серьезных угроз для здоровья человека. Всё больше патологий — пневмония, туберкулез, заражение крови, заболевания пищевого происхождения — одерживают верх из-за снижения эффективности антимикробных препаратов. Поэтому поиск новых способов борьбы с инфекциями — первостепенная задача ученых.

Персональный коктейль

Когда антибиотики уже неэффективны, для больного создается коктейль из бактериофагов. Врачи берут биоматериалы для микробиологического анализа у пациентов, которые находятся на лечении в специализированных отделениях военного госпиталя им. А.А. Вишневского. Затем в институте им. Г.Н. Габричевского, где находится самая большая в стране библиотека бактериофагов, ученые подбирают максимально эффективные штаммы с учетом иммунного ответа конкретного больного.


— Самое страшное для бактериофага — это гуморальный иммунитет, который ответственен за выработку иммуноглобулинов. Дело в том, что нейтрализующие вирус антитела появляются через две-три недели после приема фага. И нам надо быть уверенными, что именно к этому препарату у пациента пока еще нет антител, — отметил Андрей Алешкин.

Оценив иммунную систему больного, специалисты выбирают метод введения бактериофага в организм в каждом конкретном случае: при ИВЛ-ассоциированной пневмонии, например, эффективны ингаляции, а при кожных заражениях — специальные повязки.

Медицина двойного назначения

— Эти препараты назначаются больным с трофическими язвами разной этиологии, пациентам с диабетической стопой, — отметил он. — Используются при хронических остеомиелитах и свищах разного происхождения. Помогают устранять последствия ранений, но не на острой стадии, а на этапе хронических воспалительных заболеваний.

Работа ученых крайне актуальна, уверена заведующая кафедрой микробиологии и вирусологии медицинского института РУДН Ирина Подопригора.

— В научной литературе всё чаще встречаются предостережения о наступлении постантибиотической эры и призывы к поиску альтернативных путей влияния на патологические процессы инфекционной природы, — рассказывает она. — При госпитальных инфекциях, вызванных супербактериями, это может быть единственным возможным решением.


— Персональный подбор коктейлей из бактериофагов для лечения того или иного бактериоза — очень важный шаг вперед, — не сомневается он. — Однако надо понимать, что также как бактерии сумели приспособиться к антибиотикам, так еще раньше они смогли адаптироваться к наличию бактериофагов. Иначе в мире уже не осталось бы бактерий. Поэтому бактериофаги нельзя назвать идеальным оружием. Однако коллеги научились использовать их в нужное время и в нужных локациях, что очень важно.

История массового применения препаратов уходит корнями во времена Великой Отечественной войны. В 1940 году был создан коктейль из нескольких видов бактериофагов, борющихся с бактериями, вызывающими тяжелые раневые инфекции. В СССР приоритет фаготерапии принадлежал Зинаиде Ермольевой, получившей Сталинскую премию за предупреждение вспышки холеры в Советской армии в тяжелейших эпидемиологических условиях Сталинградской битвы. Крупным центром по изучению фагов во времена СССР был научно-исследовательский институт микробиологии, вирусологии и иммунологии им. Г. Элиава в Тбилиси.

Вирусы могут перемещаться на сотни тысяч километров вместе с частичками пыли и каплями влаги. Означает ли это, что в любой момент смертоносные инфекции могут обрушиться нам на голову прямо с неба?

Величественный хребет Сьерра-Невада расположен в Андалусии, на юге Пиренейского полуострова. В этих горах — самый южный горнолыжный курорт в Европе, но еще больше они славятся тем, что здесь проходит так называемый глобальный пояс пыли — ветра доносят сюда шлейф из самых пыльных областей Восточного полушария: западного побережья Северной Африки, Ближнего Востока, Центральной и Южной Азии, даже из Китая.

На высоте примерно 3 тысяч метров на пике Велета ученые из Университета Британской Колумбии (Канада) установили анализаторы — ловушки для пыли и аэрозоля — смеси газа, частичек пыли и пара. Их целью было посмотреть, в каком виде живые организмы — бактерии, грибы и вирусы — способны преодолевать большие расстояния "верхом" на пылевых частицах. Каково же было удивление ученых, когда они нашли не мертвых, а вполне себе живых и бодрых микробов. За день в сборник попали миллионы бактерий и примерно миллиард вирусов.

— Свыше 20 лет мы пытались понять, каким образом вирусы с одного континента перемещаются на другой,— говорит автор исследования Кертис Саттл.— Мы находили генетически идентичные вирусы в самых разных уголках планеты, и вот теперь загадка разгадана.

По словам соавтора исследования, специалиста по экологии микроорганизмов из Гранадского университета в Испании Исабель Рече, со временем это глобальное переселение микроорганизмов будет все более интенсивным: из-за изменения климата усиливается эрозия почв, растет количество ураганов.

Пока ученые не могут сказать, какие именно вирусы попали к ним в "сети" в горах Испании, но, по предварительным оценкам, подавляющее большинство этой биомассы — бактериофаги, вирусы, которые разрушают бактерии. Но что, если среди них окажутся болезнетворные вирусы, способные вызвать эпидемии?

— Вопрос в том, выживет вирус в новых условиях или нет,— говорит Кертис Саттл.— Чаще всего это зависит от того, найдет ли он себе "хозяина" на новом месте.

Подозрение, однако, существует давно. Уже в 2001 году некоторые ученые объясняли вспышку ящура в Великобритании гигантской бурей на севере Африки, которая перенесла пыль, а вместе с ней и вирус ящура на тысячи миль к северу. Буря произошла всего за неделю до того, как были выявлены первые случаи заболевания в Британии.

А совсем недавно, осенью прошлого года, во время вспышки коронавируса MERS-CoV в Саудовской Аравии, врачи предупреждали, что инфекция может переноситься с порывами ветра: вирус разносят летучие мыши и крыланы, которые заражают верблюдов. Их испражнения впитываются в песок и пыль, а затем разносятся ветром. По этой причине россияне, которые планируют отправиться в эту страну, должны были проявлять бдительность, особенно оказавшись на природе.


— Могут ли переноситься патогенные вирусы на большие расстояния — вопрос абстрактный,— пояснил "Огоньку" завкафедрой инфекционных болезней и эпидемиологии РНИМУ им. Н.И. Пирогова, главный инфекционист ФМБА России Владимир Никифоров.— Все зависит от вида вируса и его жизнестойкости. Большинство быстро погибает вне организма, как, например, тот же вирус гриппа. Но есть и такие, которые могут выживать в течение нескольких дней и месяцев. К этим долгоживущим инфекциям относятся вирус гепатита В и вирус бешенства. В целом, однако, нынешнее исследование зарубежных коллег не должно вызывать паники, потому что доля патогенных вирусов в общем числе вирусов, путешествующих в атмосфере, составляет не более одной тысячной процента.

Стоит отметить, что диапазон жизнестойкости у микроорганизмов чрезвычайно широк. Так, бактерии сибирской язвы чрезвычайно опасны для человека именно потому, что их споры могут жить в земле столетиями. При этом есть бактерии, которые погибают, едва выпав из привычных условий обитания (к таким, например, относится бактерия хеликобактер, которая вызывает язву желудка).

Вирусы в этом отношении — более хрупкие, что в первую очередь связно с их строением. Вирус состоит всего из одной молекулы нуклеиновой кислоты, которая хранит генетическую информацию. У него нет аппарата для самовоспроизведения, поэтому он размножается, только паразитируя на клетках зараженного организма. Зато, покидая своего "хозяина", вирусы, как правило, быстро утрачивают жизнестойкость: перегреваются, высыхают и теряют способность заражать. При этом именно перегрев для вирусов — один из наиболее губительных факторов. Скажем, при температуре 37 градусов они еще "чувствуют" себя вполне сносно. А вот при жаре, когда температура тела поднимается до 38-39 градусов, вирусы погибают. Это, кстати, и объясняет, почему не надо сбивать не очень высокую температуру — нужно дать вирусам погибнуть, а не создавать комфортные условия для размножения.

Зато даже при низких температурах они неплохо выживают, и это дает ответ на другой популярный вопрос: почему зимой к нам привязывается то вирус гриппа, то герпеса.

— Все вирусы лучше хранятся при максимально низких температурах,— рассказывает "Огоньку" профессор Николай Львов, руководитель лаборатории герпес-вирусов Института микробиологии и эпидемиологии им. Гамалеи, в прошлом хранитель коллекции вирусов.— Не случайно люди, которые страдают от неизлечимой болезни и мечтают воскреснуть, когда эти болезни научатся лечить, просят поместить их в жидкий азот — в этом материале клетки могут храниться миллионы лет. Даже в расхожих триллерах про инопланетян есть доля правды. Мы не знаем, что происходило на Земле тысячи лет назад. Не исключено, что и во льдах Антарктики могут скрываться некие инфекции, которые останутся жизнеспособны, когда их высвободит таяние льдов.

Вместе с тем способность вирусов к размножению после попадания в новый организм зависит не только от переохлаждения, но и от злоупотребления антибиотиками, которые подавляют иммунитет, а еще от стрессов, смены часовых поясов, переездов с места на место.

"Каждая капелька океана действительно содержит огромное количество вирусов, не способных вызвать заболевание человека,— комментирует работу испанских и канадских микробиологов заведующий лабораторией эпидемиологии природно-очаговых инфекций ЦНИИ эпидемиологии Роспотребнадзора Александр Платонов.— Ветром брызги воды уносятся на сотни километров, вместе с микроорганизмами — это логично. Но с точки зрения эпидемиологии это значения не имеет. Если морской воздух перелетит горы, то ничего болезненного он с собой не потащит. Но вот если больной человек закашляет, то вокруг него образуется облачко вирусов, которое осядет на ближайшее окружение. Однако никакой ветер ни в Испанию, ни в Америку это облачко не унесет.

Намного опаснее, с точки зрения ученых, традиционные способы миграции вирусов — в организмах носителей, которые в условиях глобального мира перестают поддаваться контролю.

— Вот представьте, что человек болеет, скажем, герпесом губ,— рассуждает Николай Львов.— Он лечит его специальной противовирусной мазью, но назавтра должен лететь на другой конец земли, допустим, в Новую Зеландию. Там он активно общается с людьми, а известно, что капельки слюны при разговоре разлетаются на метр, при кашле — уже на 2 метра. И пожалуйста, контактировавшие с ним заразились герпесом, а поскольку он применял мазь, то еще и устойчивым вирусом герпеса. Вот в этом случае мы можем говорить про миграцию вируса — через человека.


Высокая мобильность людей и потрясающая скученность населения — вот основные козыри вирусов. Например, каждый вирус гриппа несет в себе 9-10 фрагментов генома и может обмениваться ими с другими вирусами. Таким образом, получается астрономическое число фрагментов генома вирусов гриппа. И именно потому так трудно создать вакцину против этого заболевания. При этом вирусы могут заимствовать генетическую информацию как у человека, так и у птиц и животных, что делает их фактически неуязвимыми для современных лекарств.

— Обычно грипп существует как зоонозная (передающаяся от животного к животному) инфекция, в местах больших скоплений птиц,— объясняет Александр Платонов.— Птицы мигрируют, летят через горы, через моря в другие страны, заражают других птиц, иногда млекопитающих. В результате мутационного процесса образуются новые варианты вируса гриппа, способные заражать и человека, причем к ним у нас пока нет иммунитета. Люди контактируют с ними, заболевают и становятся сами источником инфекции. И чем населеннее местность, тем больше вероятность заболеваний. Разных, не только гриппа.

Традиционно свой поход грипп всегда начинал из Юго-Восточной Азии — именно здесь больше всего птиц — разносчиков этого вируса. И именно через Азию проходят пути перелетных птиц. Так называемый свиной грипп тоже начал свой путь оттуда же. Его, кстати, правильнее назвать калифорнийским, чтобы не вводить в заблуждение. По словам профессора Платонова, в принципе, все вирусы гриппа можно считать свиными, поскольку, прежде чем "перекинуться" от птиц к млекопитающим — человеку, они сначала "обживаются" на свиньях. Пожив в них, мутируют и приобретают способность заражать людей.

Победить зоонозные инфекции практически невозможно, в отличие от тех, что передаются от человека к человеку. Например, когда мы прививаемся от полиомиелита или кори, то одной прививкой защищаем не только себя, но и других людей, которых могли бы заразить. Но если вирус живет в животном, то вакцинация уже не столь эффективна, потому что не будешь же прививать всех мышей, обезьян, свиней, кур и клещей.

Сейчас ученые ВОЗ создают карты перемещения инфекций, пытаясь найти новые закономерности распространения заразы. Источником все новых и новых разновидностей обычного человеческого гриппа долгое время, как отмечалось выше, оставалась Азия, откуда инфекция волнами распространялась по планете и примерно через год затухала в Южной Америке. Сегодня традиционная картинка миграции вирусов уже не столь четкая, что, возможно, тоже связано с глобальным изменением климата.

— Мы собрали более 30 тысяч единиц хранения в государственной российской коллекции вирусов,— с гордостью отмечает Николай Львов из НИИ вирусологии им. Гамалеи.— И это одно из лучших подобных собраний в мире, с которым может поспорить разве только коллекция США. Вирусы, еще в советское время, собирались в Прибалтике, на Украине, Таджикистане — в общем, на всем пространстве СССР. Много вирусов мы выделяли из образцов самостоятельно, часть получали благодаря официальному обмену с другими странами.

Хранят спящие вирусы самыми удивительными способами: в мозге зараженных мышей, в виде замороженных концентратов или клеточных культур. Работа государственной коллекции заключается в том, чтобы спустя годы и десятилетия поднимать вирусы из анабиоза, определять степень их сохранности и создавать оптимальные для хранения условия. Помимо чисто научных целей коллекция вирусов нужна, чтобы сохранить разнообразие этих микроорганизмов.

— В природе существует огромное количество вирусов, которые не предоставляют опасности для человека, говорит Александр Платонов из ЦНИИ эпидемиологии Роспотребнадзора.— Они нужны прежде всего для экологического равновесия. Например, от тех вирусов, которые живут в морях, зависит состояние планктона. А эти водоросли производят огромное количество кислорода.

Ученые предлагают рассматривать как своего рода "банк семян" микроорганизмов и те группы вирусов, которые обитают в атмосфере.

— Я считаю, что атмосфера — это большая трасса в буквальном смысле,— говорит Кертис Саттл из Университета Британской Колумбии.— Она дает возможность экосистемам, расположенным в тысячах километрах друг от друга, обмениваться микроорганизмами и, на мой взгляд, это имеет гораздо более серьезные экологические последствия, чем мы думаем.

Дело за малым: остается выяснить, как научиться хранить это биоразнообразие, не давая ему выйти из-под контроля.

Государственная коллекция вирусов НИИ вирусологии им. Ивановского включает огромное количество микроэкспонатов. И патогенные микробы — лишь небольшая часть из них. Этот банк данных помогает создавать инновационные лекарства, бороться с бактериями, изучать эволюцию. А вообще, аргументов в пользу того, чтобы считать вирусы не только источником заболеваний, довольно много

Удивительно, но многие фрагменты человеческого генетического кода происходят от вирусов, которые на ранних стадиях эволюции встроились в организм теплокровных. Предполагают, что бывшие вирусы или размножившиеся вирусоподобные объекты занимают 40-45 процентов генома человека. Именно они, по-видимому, сыграли важную роль в развитии иммунной системы.

На страже урожая

В некоторых странах вирусы, паразитирующие на насекомых, с успехом используются в борьбе против вредителей, атакующих сельхозкультуры. Например, вирусы ядерного полиэдроза можно успешно применять в борьбе с гусеницами совок, репной белянки и американской белой бабочки.

С помощью вирусов были получены многие сорта цветов, чья пестрая окраска — результат вирусной инфекции, передающейся от поколения к поколению. Например, знаменитую и чрезвычайно ценную пестролепестность тюльпанов вызывает вирус, переносимый тлей. А недавно было установлено, что растение джут (источник грубых волокон для канатов и мешков) дает больший урожай, когда поражен вирусным заболеванием,— некротической мозаикой риса.

Онколитические вирусы — большая группа микробов, которые способны бороться с раковыми клетками. Например, сейчас проходят клинические испытания генно-инженерного штамма герпес-вируса для лечения больных с тяжелой формой рака кожи.

Бактериофаги — это вирусы, которые избирательно поражают бактериальные клетки. В СССР активно разрабатывали препараты на их основе, которые составляли конкуренцию традиционным антибиотикам. Сегодня применяются в случаях, когда лечение антибиотиками невозможно или недейственно.

В России разрабатывалась новая живая вакцина от гриппа. Она оказалась малоэффективной, зато на ее основе сейчас создают новую вакцину против туберкулеза, где вирус гриппа используется как вектор. То есть в него генно-инженерным путем введены компоненты, которые формируют иммунитет против туберкулеза.

Все знают вирусы, которые поражают человека: вирус гриппа, вирус иммунодефицита человека, из самых известных еще вирус оспы, от которого, к счастью, удалось избавиться, вирус полиомиелита — много-много разных вирусов. Полезно понимать, что вирусы — это не изобретение эукариотического мира. До того как появились вирусы, заражающие эукариоты, существовало множество вирусов, которые заражают бактерии. Вирусы бактерий называются бактериофагами или просто фагами и существуют очень давно.

Картинка ровно такая же, как с нашими вирусами. Бактериофаг не сам проникает в бактерию, а впрыскивает туда свою ДНК, переключает все информационные процессы бактериальной клетки на изготовление новых бактериофагов. То есть он отключает синтез собственных белков и заставляет бактерию синтезировать белки фага. Постепенно бактерия превращается в мешочек с вирусными частицами, который затем лопается, бактериофаги выходят наружу, заражают новые бактерии — это довольно эффективный процесс. Ясно, что если бы так было, то бактерий бы не осталось: фаги заразили бы все бактерии, и они бы умерли. Этого не происходит, потому что у бактерий есть множество разнообразных механизмов защиты. Это еще одно проявление войны, которая происходит в микромире, теперь уже между бактериями и бактериофагами. Механизмы защиты есть очень разные и довольно остроумные. Примерно понятно, как они могли выработаться в ходе эволюции: можно наблюдать промежуточные стадии, которые оказались полезными, поэтому сохранились до наших времен.


Можно разрушить вирусную ДНК. Вирус присоединяется к белку на поверхности клетки, опознает таким способом бактерию, впрыскивает туда свою собственную ДНК, а клетка ее тут же разрушает. Для того чтобы разрушить ДНК вируса, надо ее узнать, отличить ДНК вируса от своей собственной ДНК, бактериальной. Это делается разными способами, например при помощи системы рестрикции-модификации, которую мы очень интенсивно используем в генной инженерии.

Второй способ. Есть фаги, которые модифицируют всю ДНК целиком. После этого ДНК такого фага не может узнать вообще никакая клеточная система. Клетки модифицируют свои системы, чтобы, наоборот, узнавать модифицированные буквы и не узнавать немодифицированные. За счет маленьких изменений белков и того, что они узнают, все время происходит гонка вооружений.

Для того чтобы опознать ту бактерию, которую ему надо заразить, фаг связывается с каким-то конкретным белком на поверхности бактерии. Это белок бактериальный, он для чего-то нужен (например, белок, транспортирующий что-то полезное). Но в ситуации, когда много фагов, которые узнают этот рецептор, он становится вредным, потому что это те ворота, через которые проникает фаг. Бактериальная клетка может либо вообще избавиться от такого белка, либо его модифицировать за счет точечных мутаций. Имеется в виду не то, что бактериальная клетка задумалась и решила поменять свой рецептор, чтобы фаги ее не узнавали. Происходят случайные мутации, и те из них, которые препятствуют распознаванию фагом, оказываются полезными в ситуации большой зараженности, и такие бактерии получают эволюционное преимущество.


Наконец, самый красивый и альтруистический пример ― это самоубийство, когда бактерия, которая заражена фагом, не продуцирует новых фаговых частиц, а просто совершает самоубийство, разлагается. Для этого тоже есть специальные молекулярные механизмы, что называется системой токсин-антитоксин. Представьте себе, что у вас есть два белка. Один ядовитый, его в клетке мало, он продуцируется с маленькой интенсивностью, но он долгоживущий, то есть молекул мало, но каждая из них живет долго. Второй белок — антитоксин, он может связаться с токсином и его заингибировать, то есть токсин больше не действует. Молекул антитоксина много, так чтобы свободных молекул токсина не образовалось даже случайно, но они короткоживущие. Молекулы в избытке, они быстро разлагаются, и клетка все время много их делает.

На первом этапе заражения фаг переключает все клеточные механизмы на синтез новых фагов, в частности механизмы синтеза токсина и антитоксина. Клетка перестает продуцировать собственные белки, заканчивается продукция токсина и продукция антитоксина. Что происходит? Токсин долгоживущий, значит, молекулы токсина как были, так и остались, они никуда не делись. Антитоксин разлагается, это происходит быстро, а новые молекулы антитоксина не производятся. Теперь появились свободные молекулы токсина, токсин отравляет клетку, и она умирает, не успев сделать новых фагов.

Почему такой механизм эволюционно мог закрепиться? Как может закрепиться такой механизм самоубийства? Казалось бы, клетке от этого ничего хорошего, она бы в любом случае умерла. Дело в том, что обычно бактериальные клетки не существуют изолированно. Бактериальные клетки живут колониями, и все клетки в колонии идентичны генетически. Метафорически можно рассматривать такую колонию как генетически однородный единый организм. Тогда отдельным клеткам оказывается полезно совершить самоубийство, потому что с точки зрения набора генов они все одинаковы. Если какая-то из клеток умерла, но ценой этого сохранились все остальные, то эволюционно это очень полезно, они все генетически идентичны. Для бактерии как вида неважна судьба отдельных клеток, вид все равно сохранил штамм — набор идентичных бактерий. Можно это сопоставить с обычной иммунной системой людей: наши иммунные клетки погибают в процессе борьбы с заражением, но благодаря этому сохраняется весь организм.

Еще один механизм, по времени открытый самым последним. Он будет очень широко использоваться, в генной инженерии уже используются отдельные компоненты этого механизма. Это очень похоже на человеческий иммунитет, потому что система адаптивная. Система рестрикции-модификации и система токсин-антитоксин работают всегда, но в индивидуальной бактерии адаптации под новые фаги не происходит. Бактерии адаптируются на эволюционных временах, когда за счет точечных мутаций происходит подстройка.


Это действительно удивительная система, она была открыта буквально в последние годы. Она эволюционно очень красивая и оказалась очень полезна в генной инженерии, потому что механизм точного опознавания фрагмента ДНК можно использовать для того, чтобы модифицировать геномы людей, растений, животных — кого угодно. Люди очень много это изучают, в частности в Сколтехе под руководством Константина Северинова, в том числе имея в виду индустриальное применение.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции