В чем цель вирусов и бактерий

Увеличивается во всем мире и число сторонников вирусной теории рака. Исследования сотен лабораторий свидетельствуют, что именно вирусы — наиболее вероятная причина рака, саркомы, лейкемии.

И. Губарев, наш специальный корреспондент, обратился к директору Института вирусологии имени И. Д. Ивановского АМН СССР, академику АМН СССР, профессору Виктору Михайловичу Жданову с просьбой рассказать об истории и сегодняшнем дне Вирусологии, о стратегии борьбы С вирусными болезнями.

Вирусология — наука молодая. 80 лет прошло со времени открытия И. Д. Ивановским первого вируса — возбудителя мозаичной болезни табака. Много позже — в 50-х годах — было получено первое несовершенное изображение этого инфекционного агента. Самые значительные исследования в области вирусологии были выполнены лишь за последние 15—20 лет.

С исследованиями вирусологов сегодня связано уничтожение инфекционных заболеваний на планете, борьба против рака. Вирусологии же, изучающей наиболее простые формы существования, предстоит дать ответ на многие вопросы, связанные с происхождением жизни на Земле.

Итак, что же мы знаем и «его еще не знаем о вирусах?

Пример: до недавнего времени мы почти ничего не знали о специфических обезьяньих вирусах. В 1960-х годах было начато массовое производство вакцины против полиомиелита, изготавливаемой на обезьяньих почках. Необходимо было обеспечить стерильность этой вакцины, то есть полностью исключить проникновение в нее каких-либо микроорганизмов. И вот в ходе исследований, направленных на обеспечение такого рода стерильности, был открыт целый ряд до тех пор неизвестных вирусов, специфичных для обезьян.

К настоящему времени мы располагаем сведениями примерно о тысяче видах вирусов. Безусловно, лучше других нам известны вирусы, поражающие человека. Их выявлено около 500 видов. Весьма обширна группа вирусов, найденных у лабораторных животных — мышей, кроликов, морских свинок.

Сравнительно много мы знаем о вирусах сельскохозяйственных животных и растений, меньше — о вирусах, опасных для птиц и других животных, древесных и кустарниковых пород лесе. И уж вовсе малоизвестны и числом и повадками вирусы папоротников, мхов, лишайников.

Вирусы проявляют себя не всегда одинаково. В одних случаях они нападают лишь на определенные виды живых существ. Скажем, уже выявлены специфические вирусы гриппа свиней, кошек, чаек, поражающие только этих животных и безопасные для других. Подчас специализация становится своеобразно утонченной: мельчайшие вирусы бактерий — фаги Р-17 выбирают в качестве объекта лишь мужские особи только одной разновидности кишечной палочки. А вот в числе объектов онкогенных вирусов — пресмыкающиеся, птицы, млекопитающие. Рекорд побивают, пожалуй, так называемые пулевидные вирусы, названные так благодаря их характерному очертанию на микрофотографии. Внешне вирусы этой разновидности очень схожи. А болезни они вызывают самые разнообразные, поражая при этом весьма далекие друг от друга виды живых существ. Они могут стать причиной бешенства — тяжелейшего поражения нервной системы млекопитающих (в том числе, разумеется, и человека) и таких болезней, как везикулярный стоматит крупного рогатого скота (передаваемый, кстати, через насекомых), желтой карликовости картофеля и полосатой штриховатости пшеницы. Эти же вирусы провоцируют тяжелое заболевание у мухи дрозофилы, приводящее насекомое к гибели в результате повышения чувствительности к углекислому газу.

Человек, животные, насекомые, растения. Болезни общие для многих видов и узко-специфичные. Откуда такой широкий спектр агрессивных возможностей? Под влиянием каких условий сложились эти свойства? Сколько еще существует в природе вирусов специализированных и универсальных?

На все эти вопросы лишь предстоит ответить.

С вирусами связано немало загадочного, неясного, а если быть точным до конца — еще не выясненного.

Признавая существование возбудителей инфекционных болезней, по размерам намного меньших, чем бактерии, ученые долго не могли прийти к единому мнению: какие они? Так, известный голландский микробиолог М. Бейеринк, к примеру, предполагал, что вирусы — необъяснимая загадка. Он дал им название Cоntagium vivum fluidum — живое жидкое заразное начало.

Другие исследователи пытались связать данные о вирусах с привычными для них представлениями о живом организме (клеточное строение, размножение путем деления с последующим ростом до размеров взрослой особи и т. д.). Не будем перечислять здесь другие предположения, высказанные на заре развития вирусологии. Все они — как наивные, так и наделенные долей предвидения — строились на одних лишь догадках, вслепую.

Много неясного и в современных гипотезах о происхождении вирусов. Так, одни исследователи считают, что вирусы — это потомки древних доклеточных форм жизни, застывшие, остановившиеся в своем развитии на определенном этапе. Разнообразие генетического вещества, говорят сторонники гипотезы, отражает ход эволюции этих существ. Природа как бы опробовала на вирусах все возможные варианты наследственного вещества, прежде чем остановиться окончательно на двухспиральной ДНК.

Вирусы — потомки бактерий или других одноклеточных организмов, по неизвестным причинам двинувшиеся в своем развитии вспять, деградировавшие, говорят другие ученые. Возможно, некогда их устройство было сложней, но со временем они многое утратили, и их нынешнее состояние, в том числе и разнообразие носителей генетической информации, лишь отражает разные уровни деградации, которых достигли различные их виды.

Наконец, существует гипотеза, согласно которой вирусы представляют собой составные части клеток живых существ, по неизвестной причине ставшие автономными системами. Процесс возникновения вирусов, согласно этой гипотезе, относится не только к глубокой древности, когда они уже, безусловно, существовали, но и к нашему времени. Иными словами, эта гипотеза признает возможность повсеместного, происходящего непрерывно образования вирусов клеточными элементами. Возможно ли такое, способны ли составные части клеток стать автономными, да еще и саморепродуцирующимися (способными к воспроизведению) системами?

Логика и парадоксы микромира

Устройство вирусов поражает своей чисто математической завершенностью, логикой симметрии. Возьмем, к примеру, наиболее просто организованный вирион (зрелый вирус) табачной мозаики.

Сотни белковых кристаллообразных структур уложены в виде тугой спирали. Сердцевина нити, образующей спираль, представляет собой своеобразную капсулу, где находится молекула нуклеиновой кислоты. В результате общий вид вириона — предельно лаконичный цилиндр, полая трубка.

А вот другая форма: двадцатигранник, икосаэдр, грани которого образованы треугольниками. Основной материал, из которого сложен икосаэдр, — те же белковые структуры. Внутри — полость, где покоится молекула нуклеиновой кислоты. Это вирион полиомиелита.

— Позвольте, — возражали многие ученые еще в недавнем прошлом, — да можно ли вообще после этого называть вирусы живыми существами? Может быть, это кристаллообразные вещества, наделенные болезнетворными свойствами?

— Либо, — говорили другие, — это пограничные формы между живым и неживым мирами.

Кто же прав? Скорей всего наиболее многочисленная группа исследователей, которая считает, что вирусы — представители живой природы, го есть не вещества, а существа. Правда, существа крайне своеобразные, ведущие сугубо паразитический образ жизни.

Вирус проникает в клетку

Вирусы, имеющие иное строение, проникают в клетку не столь затейливым путем. Притянутые к оболочке клетки и воздействующие на нее ферментами, они провоцируют втягивание внутрь того участка мембраны, на котором осели. Образуется своего рода капсула-вакуоль с вирусной частицей внутри. Вакуоль эта затем отрывается, и в ней, путешествующей внутри клетки, продолжают идти одновременно два процесса — вирусная частица с помощью своих ферментов разрушает окутывающие ее стенки капсулы, а ферменты клетки разрушают внешние оболочки вируса, освобождая, как это было и в случае с фагом Т2, нуклеиновую кислоту.

Итак, нуклеиновая кислота покинула белковую оболочку и исчезла, бесследно растворилась в клеточной среде. Что же дальше?

Мы еще не имеем возможности получить полный ответ на этот вопрос. До сих пор удалось установить характер лишь некоторых изменений, происходящих на этом этапе в различных частях клетки. И по этим отдельным штрихам мы воссоздаем, пытаемся представить себе полностью происходящее.

Формирование вирусов начинается, по-видимому, с подавления нормальных процессов обмена веществ в клетке. Установлено, в частности, что рибонуклеиновая кислота (РНК) вируса гриппа способна синтезировать на клеточных элементах — рибосомах, ведающих выработкой белка,— особое вещество, также белковой природы,— гистон, который, в свою очередь, связывается с ДНК клетки и прекращает синтез клеточной РНК. Некоторые другие вирусы, например, вирусы полиомиелита, не нуждаются в окольном пути, так как сами способны вмешаться в деятельность рибосом и прекратить синтез клеточных белков. Выявлены и другие механизмы подавления вирусами клеточного обмена, их вмешательства в жизнедеятельность клетки, но в конечном счете все сводится к одному: клеточные ресурсы перестают расходоваться на нужды самих клеток и поступают в распоряжение вирусной нуклеиновой кислоты.

Беззащитна ли клетка!

Цикл превращений, связанных с размножением вирусов, как правило, краток. В одних случаях проникновение вирусной нуклеиновой кислоты в клетку отделяет от появления вирионов 13—15 минут, в других — 40 минут. Вирусы одной из наиболее распространенных инфекций, гриппа, проходят этот путь примерно за 6—8 часов. И каждый раз около погибшей клетки оказываются десятки, а порой и сотни вирионов. Причем каждый из них, в свою очередь, готов к продолжению процесса размножения. Количество вирусной инфекции нарастает буквально лавинообразно.

Но так как главное действующее лицо — вирус остается за кадром (в обычный микроскоп он не виден), на экране только последствия его агрессии. Картина перед наблюдателем разворачивается впечатляющая. Вначале крайние клетки, первыми подвергшиеся нападению, начинают терять свойственные им округлые очертания. Постепенно истончаются их мембраны, клеточные элементы, клетка как бы взрывается. В этот момент, как мы знаем (но не видим этого), опустошенную оболочку покидают полчища вирионов, направляющихся к очередным своим жертвам. И через самое непродолжительное время точно так же изменяются, а затем лопаются соседние клетки, за ними другие, еще и еще.

. Колония клеточной культуры как бы охвачена пламенем. Вот она рассечена обезжизненными структурами на островки. Вот сжимаются и эти островки, уменьшаются в размерах, и. все кончено. Колония разрушена дотла.

Обладай вирусы такими же возможностями в естественных условиях, и человеку и любому другому живому существу пришлось бы плохо. Однако этого не происходит, ибо на страже — отработанные за миллионы лет защитные приспособления организма, ограничивающие могущество вирусов.

Безграничному расширению вирусной агрессии препятствуют прежде всего сами вирусы. Еще в 30-х годах ученые заметили, что размножение в клетке одного вируса нередко препятствует размножению в этой же клетке другого вируса.

Кстати, если говорить серьезно, одна из многочисленных гипотез, пытавшихся объяснить это явление, так и гласила: всему причиной конкуренция вирусов, борющихся за клеточные компоненты. Без малого три десятилетия понадобилось, чтобы раскрыть существо этого явления, получившего название интерференции. И, как оказалось, в данном случае инициатива принадлежала не вирусам, а самой клетке. На проникновение вируса (чему воспрепятствовать клетка, увы, не может) она отвечает немедленной выработкой особого белкового вещества — интерферона. Правда, интерферон не спасает уже пораженную клетку, но препятствует продвижению вирусной инфекции к другим клеткам организма. Иными словами, за первыми же вирионами, прорвавшимися в организм, возникает барьер интерфероновой защиты.

Антитела, появляющиеся позже, существуют несравненно дольше. Именно они и становятся основой стойкого иммунитета, благодаря которому многие инфекционные болезни не повторяются дважды в жизни одного индивидуума.

Медицина — в наступлении

Среди инфекционных заболеваний 80 процентов вирусных. Эта цифра — свидетельство победы человека над бактериальными инфекциями. Чума, холера, тиф, некогда безоговорочно первенствовавшие в медицинских статистических сводках, с приходом антибиотиков и сульфопрепаратов навсегда сдали свои позиции. Их место заняли болезни, вызываемые вирусами.

Как известно, и с этими недугами ведется успешная борьба. Побежден полиомиелит. Тягостным воспоминанием ушла в прошлое оспа. Широким фронтом идет наступление на корь: лишь за последнее пятилетие число перенесших заболевание корью снизилось в 5 раз; на повестке дня — полное искоренение этой инфекции на территории нашей страны.

Значительные усилия направляются на борьбу с гепатитом, гриппом, паротитом, вирусными респираторными заболеваниями, однако здесь решающие достижения еще впереди.

Наряду с этим ученые работают над созданием других эффективных лекарственных веществ, способных подавить вирусную инфекцию.

Работа эта начата. Во все концы нашей страны и за рубеж отправляются специальные экспедиции вирусологов. Уже получены чрезвычайно ценные данные о перемещениях вирусной гриппозной инфекции из Всемирного противогриппового центра, в деятельность которого вносит существенный вклад региональный противогриппозный центр СССР.

Коронавирус заразил множество людей. Наверное, вы уже задавались вопросом, а что же вообще такое эти вирусы?

Если из носа у вас течет, в этом, как правило, виноват обычный простудный вирус. К счастью, у нас имеется иммунитет, способный справиться с простудой, так что она быстро проходит.

Другие вирусы победить сложнее.

Существуют лекарства против вирусов, но они не всегда эффективны. Поэтому если вирус проник в клетки организма, задача иммунной системы — очистить их.

Между бактериями и вирусами — большая разница

И бактерии, и вирусы могут стать причиной болезни человека. Но при этом они очень разные.

Внутри бактериальной клетки есть все, что требуется для жизни. Бактерия способна питаться, размножаться и избавляться от ненужных ей веществ. А вот вирус этого не может. Он выживает только за счет других, просто-напросто заставляя чужие клетки работать на себя.


Вирус проникает в клетку. А затем начинает пользоваться ею, производя множество своих копий. Некоторые вирусы копируют себя в таких количествах, что клетка в итоге просто лопается и погибает. Из нее высвобождаются миллионы новых вирусов, готовых атаковать следующую клетку.

Коробка с инструкцией внутри

Клетка — очень сложная система. Вирус же, напротив, относительно примитивен. На самом деле он даже не выполняет все требования, сформулированные учеными, чтобы дать определение живого существа.

Вирусы ничего не поглощают и не выделяют. Все эти заботы они перекладывают на других.

Представьте себе вирус в виде маленькой коробочки. Внутри лежат его гены — своего рода инструкция, в которой описывается, как вирус работает.

Хорошие вирусы

Мы постоянно носим в себе множество вирусов. Они присутствуют повсюду. Но, к счастью, далеко не все вирусы опасны. Некоторые из них даже участвуют в очень важных процессах в природе.

Например, в чайной ложке воды — несколько миллионов вирусов! В море они убивают бактерии, обеспечивая питанием прочие организмы.

Большинство вирусов не вредят людям, ведь они атакуют лишь определенный тип клеток.

Некоторые вирусы нападают только на свиней, другие вызывают заболевания у растений. Третьи предпочитают бактерии. На земле существуют вирусы практически для всего живого.

Могут изменяться

Нынешний коронавирус изначально был вирусом животных. Вероятно, его носителями были летучие мыши.

Как вышло, что он перекинулся на людей?

В процессе создания копий вируса периодически случаются ошибки. Копия получается не совсем точной. Это называется мутацией.

Но изредка вирусы мутируют так, что, вместо того чтобы заражать животных, начинают атаковать клетки человека. Если в организм человека попадает такой вирус, это может стать началом нового опасного заболевания.

Нужен ключ


Клетка стала фабрикой по производству вируса

Клетка вырабатывает все, что нужно вирусу. Она становится вирусной фабрикой.

Готовые вирусы затем могут покинуть клетку и отправиться в путешествие по организму. Либо клетка настолько переполняется вирусами, что лопается и погибает. И тогда множество новых вирусов вырываются на волю и атакуют новые жертвы.

Вот почему человек болеет

В организме поднимается тревога. Иммунитет выпускает своих агентов, чтобы они арестовали непрошеных гостей. В этот момент человек чувствует себя слабым и больным.

Вирусы гриппа и коронавирус атакуют и повреждают клетки легких.

У заболевших коронавирусом поднимается температура и начинается кашель. Когда мы болеем гриппом, мы тоже страдаем от насморка и кашля. Так организм реагирует на инфекцию и защищается от нее.

Коронавирус распространяется по воздуху в маленьких капельках жидкости, при кашле вылетающих изо рта человека. Вдохнуть эти капельки может кто угодно. Либо кто-то может прикоснуться к месту, где они осели, а затем дотронуться до рта. Таким образом вирус распространяется.

Лекарства и вакцины могут помочь

Поскольку вирус на самом деле не совсем живое существо, очень трудно найти против него эффективное лекарство, которое при этом не навредило бы клеткам.

От некоторых вирусов защищают вакцины. Когда мы прививаемся, наш иммунитет учится распознавать вирус. В таком случае он нападает на вирус настолько быстро, что тот просто не успевает наплодить множество копий.

Сейчас ученые одновременно разрабатывают и лекарства, и вакцины против коронавируса.

От некоторых вирусов избавиться нельзя

Такое случается, например, когда иммунная система не в состоянии отследить вирус. К подобному типу относится вирус герпеса.


О мире вирусов известно многое, но еще больше ученым только предстоит узнать.

Гигантские вирусы

Вирусы — мельчайшие и простейшие микроорганизмы из всех существующих на Земле.

Если представить, что клетка — это авианосец, то бактерия по сравнению с ней покажется обычной весельной лодкой. А вирус — бутылочной пробкой, качающейся на волнах поблизости.

Но на самом деле есть и вирусы побольше. Их обнаружили всего несколько лет назад. Самые большие вирусы даже крупнее, чем простые бактерии. У них гораздо больше генов, чем у остальных вирусов, и большая часть их генетического материала совершенно не изучена.

Ученые задаются вопросом, откуда взялись гигантские вирусы. Может, прежде чем стать паразитами, они относились к отдельному виду живых организмов, обитавших на планете давным-давно?

К счастью, нам не стоит особенно бояться этих гигантских вирусов, как свидетельствуют проведенные исследования. Похоже, они предпочитают жить за счет амёб — одноклеточных организмов.

Материалы ИноСМИ содержат оценки исключительно зарубежных СМИ и не отражают позицию редакции ИноСМИ.



















  • Популярное
  • Обсуждаемое

При полном или частичном использовании материалов ссылка на ИноСМИ.Ru обязательна (в интернете — гиперссылка).



Произошла ошибка. Пожалуйста, повторите попытку позже.

Факт регистрации пользователя на сайтах РИА Новости обозначает его согласие с данными правилами.

Пользователь обязуется своими действиями не нарушать действующее законодательство Российской Федерации.

Пользователь обязуется высказываться уважительно по отношению к другим участникам дискуссии, читателям и лицам, фигурирующим в материалах.

Публикуются комментарии только на русском языке.

Комментарии пользователей размещаются без предварительного редактирования.

Комментарий пользователя может быть подвергнут редактированию или заблокирован в процессе размещения, если он:

В случае трехкратного нарушения правил комментирования пользователи будут переводиться в группу предварительного редактирования сроком на одну неделю.

При многократном нарушении правил комментирования возможность пользователя оставлять комментарии может быть заблокирована.

Пожалуйста, пишите грамотно – комментарии, в которых проявляется неуважение к русскому языку, намеренное пренебрежение его правилами и нормами, могут блокироваться вне зависимости от содержания.

Вирусы могут перемещаться на сотни тысяч километров вместе с частичками пыли и каплями влаги. Означает ли это, что в любой момент смертоносные инфекции могут обрушиться нам на голову прямо с неба?

Величественный хребет Сьерра-Невада расположен в Андалусии, на юге Пиренейского полуострова. В этих горах — самый южный горнолыжный курорт в Европе, но еще больше они славятся тем, что здесь проходит так называемый глобальный пояс пыли — ветра доносят сюда шлейф из самых пыльных областей Восточного полушария: западного побережья Северной Африки, Ближнего Востока, Центральной и Южной Азии, даже из Китая.

На высоте примерно 3 тысяч метров на пике Велета ученые из Университета Британской Колумбии (Канада) установили анализаторы — ловушки для пыли и аэрозоля — смеси газа, частичек пыли и пара. Их целью было посмотреть, в каком виде живые организмы — бактерии, грибы и вирусы — способны преодолевать большие расстояния "верхом" на пылевых частицах. Каково же было удивление ученых, когда они нашли не мертвых, а вполне себе живых и бодрых микробов. За день в сборник попали миллионы бактерий и примерно миллиард вирусов.

— Свыше 20 лет мы пытались понять, каким образом вирусы с одного континента перемещаются на другой,— говорит автор исследования Кертис Саттл.— Мы находили генетически идентичные вирусы в самых разных уголках планеты, и вот теперь загадка разгадана.

По словам соавтора исследования, специалиста по экологии микроорганизмов из Гранадского университета в Испании Исабель Рече, со временем это глобальное переселение микроорганизмов будет все более интенсивным: из-за изменения климата усиливается эрозия почв, растет количество ураганов.

Пока ученые не могут сказать, какие именно вирусы попали к ним в "сети" в горах Испании, но, по предварительным оценкам, подавляющее большинство этой биомассы — бактериофаги, вирусы, которые разрушают бактерии. Но что, если среди них окажутся болезнетворные вирусы, способные вызвать эпидемии?

— Вопрос в том, выживет вирус в новых условиях или нет,— говорит Кертис Саттл.— Чаще всего это зависит от того, найдет ли он себе "хозяина" на новом месте.

Подозрение, однако, существует давно. Уже в 2001 году некоторые ученые объясняли вспышку ящура в Великобритании гигантской бурей на севере Африки, которая перенесла пыль, а вместе с ней и вирус ящура на тысячи миль к северу. Буря произошла всего за неделю до того, как были выявлены первые случаи заболевания в Британии.

А совсем недавно, осенью прошлого года, во время вспышки коронавируса MERS-CoV в Саудовской Аравии, врачи предупреждали, что инфекция может переноситься с порывами ветра: вирус разносят летучие мыши и крыланы, которые заражают верблюдов. Их испражнения впитываются в песок и пыль, а затем разносятся ветром. По этой причине россияне, которые планируют отправиться в эту страну, должны были проявлять бдительность, особенно оказавшись на природе.


— Могут ли переноситься патогенные вирусы на большие расстояния — вопрос абстрактный,— пояснил "Огоньку" завкафедрой инфекционных болезней и эпидемиологии РНИМУ им. Н.И. Пирогова, главный инфекционист ФМБА России Владимир Никифоров.— Все зависит от вида вируса и его жизнестойкости. Большинство быстро погибает вне организма, как, например, тот же вирус гриппа. Но есть и такие, которые могут выживать в течение нескольких дней и месяцев. К этим долгоживущим инфекциям относятся вирус гепатита В и вирус бешенства. В целом, однако, нынешнее исследование зарубежных коллег не должно вызывать паники, потому что доля патогенных вирусов в общем числе вирусов, путешествующих в атмосфере, составляет не более одной тысячной процента.

Стоит отметить, что диапазон жизнестойкости у микроорганизмов чрезвычайно широк. Так, бактерии сибирской язвы чрезвычайно опасны для человека именно потому, что их споры могут жить в земле столетиями. При этом есть бактерии, которые погибают, едва выпав из привычных условий обитания (к таким, например, относится бактерия хеликобактер, которая вызывает язву желудка).

Вирусы в этом отношении — более хрупкие, что в первую очередь связно с их строением. Вирус состоит всего из одной молекулы нуклеиновой кислоты, которая хранит генетическую информацию. У него нет аппарата для самовоспроизведения, поэтому он размножается, только паразитируя на клетках зараженного организма. Зато, покидая своего "хозяина", вирусы, как правило, быстро утрачивают жизнестойкость: перегреваются, высыхают и теряют способность заражать. При этом именно перегрев для вирусов — один из наиболее губительных факторов. Скажем, при температуре 37 градусов они еще "чувствуют" себя вполне сносно. А вот при жаре, когда температура тела поднимается до 38-39 градусов, вирусы погибают. Это, кстати, и объясняет, почему не надо сбивать не очень высокую температуру — нужно дать вирусам погибнуть, а не создавать комфортные условия для размножения.

Зато даже при низких температурах они неплохо выживают, и это дает ответ на другой популярный вопрос: почему зимой к нам привязывается то вирус гриппа, то герпеса.

— Все вирусы лучше хранятся при максимально низких температурах,— рассказывает "Огоньку" профессор Николай Львов, руководитель лаборатории герпес-вирусов Института микробиологии и эпидемиологии им. Гамалеи, в прошлом хранитель коллекции вирусов.— Не случайно люди, которые страдают от неизлечимой болезни и мечтают воскреснуть, когда эти болезни научатся лечить, просят поместить их в жидкий азот — в этом материале клетки могут храниться миллионы лет. Даже в расхожих триллерах про инопланетян есть доля правды. Мы не знаем, что происходило на Земле тысячи лет назад. Не исключено, что и во льдах Антарктики могут скрываться некие инфекции, которые останутся жизнеспособны, когда их высвободит таяние льдов.

Вместе с тем способность вирусов к размножению после попадания в новый организм зависит не только от переохлаждения, но и от злоупотребления антибиотиками, которые подавляют иммунитет, а еще от стрессов, смены часовых поясов, переездов с места на место.

"Каждая капелька океана действительно содержит огромное количество вирусов, не способных вызвать заболевание человека,— комментирует работу испанских и канадских микробиологов заведующий лабораторией эпидемиологии природно-очаговых инфекций ЦНИИ эпидемиологии Роспотребнадзора Александр Платонов.— Ветром брызги воды уносятся на сотни километров, вместе с микроорганизмами — это логично. Но с точки зрения эпидемиологии это значения не имеет. Если морской воздух перелетит горы, то ничего болезненного он с собой не потащит. Но вот если больной человек закашляет, то вокруг него образуется облачко вирусов, которое осядет на ближайшее окружение. Однако никакой ветер ни в Испанию, ни в Америку это облачко не унесет.

Намного опаснее, с точки зрения ученых, традиционные способы миграции вирусов — в организмах носителей, которые в условиях глобального мира перестают поддаваться контролю.

— Вот представьте, что человек болеет, скажем, герпесом губ,— рассуждает Николай Львов.— Он лечит его специальной противовирусной мазью, но назавтра должен лететь на другой конец земли, допустим, в Новую Зеландию. Там он активно общается с людьми, а известно, что капельки слюны при разговоре разлетаются на метр, при кашле — уже на 2 метра. И пожалуйста, контактировавшие с ним заразились герпесом, а поскольку он применял мазь, то еще и устойчивым вирусом герпеса. Вот в этом случае мы можем говорить про миграцию вируса — через человека.


Высокая мобильность людей и потрясающая скученность населения — вот основные козыри вирусов. Например, каждый вирус гриппа несет в себе 9-10 фрагментов генома и может обмениваться ими с другими вирусами. Таким образом, получается астрономическое число фрагментов генома вирусов гриппа. И именно потому так трудно создать вакцину против этого заболевания. При этом вирусы могут заимствовать генетическую информацию как у человека, так и у птиц и животных, что делает их фактически неуязвимыми для современных лекарств.

— Обычно грипп существует как зоонозная (передающаяся от животного к животному) инфекция, в местах больших скоплений птиц,— объясняет Александр Платонов.— Птицы мигрируют, летят через горы, через моря в другие страны, заражают других птиц, иногда млекопитающих. В результате мутационного процесса образуются новые варианты вируса гриппа, способные заражать и человека, причем к ним у нас пока нет иммунитета. Люди контактируют с ними, заболевают и становятся сами источником инфекции. И чем населеннее местность, тем больше вероятность заболеваний. Разных, не только гриппа.

Традиционно свой поход грипп всегда начинал из Юго-Восточной Азии — именно здесь больше всего птиц — разносчиков этого вируса. И именно через Азию проходят пути перелетных птиц. Так называемый свиной грипп тоже начал свой путь оттуда же. Его, кстати, правильнее назвать калифорнийским, чтобы не вводить в заблуждение. По словам профессора Платонова, в принципе, все вирусы гриппа можно считать свиными, поскольку, прежде чем "перекинуться" от птиц к млекопитающим — человеку, они сначала "обживаются" на свиньях. Пожив в них, мутируют и приобретают способность заражать людей.

Победить зоонозные инфекции практически невозможно, в отличие от тех, что передаются от человека к человеку. Например, когда мы прививаемся от полиомиелита или кори, то одной прививкой защищаем не только себя, но и других людей, которых могли бы заразить. Но если вирус живет в животном, то вакцинация уже не столь эффективна, потому что не будешь же прививать всех мышей, обезьян, свиней, кур и клещей.

Сейчас ученые ВОЗ создают карты перемещения инфекций, пытаясь найти новые закономерности распространения заразы. Источником все новых и новых разновидностей обычного человеческого гриппа долгое время, как отмечалось выше, оставалась Азия, откуда инфекция волнами распространялась по планете и примерно через год затухала в Южной Америке. Сегодня традиционная картинка миграции вирусов уже не столь четкая, что, возможно, тоже связано с глобальным изменением климата.

— Мы собрали более 30 тысяч единиц хранения в государственной российской коллекции вирусов,— с гордостью отмечает Николай Львов из НИИ вирусологии им. Гамалеи.— И это одно из лучших подобных собраний в мире, с которым может поспорить разве только коллекция США. Вирусы, еще в советское время, собирались в Прибалтике, на Украине, Таджикистане — в общем, на всем пространстве СССР. Много вирусов мы выделяли из образцов самостоятельно, часть получали благодаря официальному обмену с другими странами.

Хранят спящие вирусы самыми удивительными способами: в мозге зараженных мышей, в виде замороженных концентратов или клеточных культур. Работа государственной коллекции заключается в том, чтобы спустя годы и десятилетия поднимать вирусы из анабиоза, определять степень их сохранности и создавать оптимальные для хранения условия. Помимо чисто научных целей коллекция вирусов нужна, чтобы сохранить разнообразие этих микроорганизмов.

— В природе существует огромное количество вирусов, которые не предоставляют опасности для человека, говорит Александр Платонов из ЦНИИ эпидемиологии Роспотребнадзора.— Они нужны прежде всего для экологического равновесия. Например, от тех вирусов, которые живут в морях, зависит состояние планктона. А эти водоросли производят огромное количество кислорода.

Ученые предлагают рассматривать как своего рода "банк семян" микроорганизмов и те группы вирусов, которые обитают в атмосфере.

— Я считаю, что атмосфера — это большая трасса в буквальном смысле,— говорит Кертис Саттл из Университета Британской Колумбии.— Она дает возможность экосистемам, расположенным в тысячах километрах друг от друга, обмениваться микроорганизмами и, на мой взгляд, это имеет гораздо более серьезные экологические последствия, чем мы думаем.

Дело за малым: остается выяснить, как научиться хранить это биоразнообразие, не давая ему выйти из-под контроля.

Государственная коллекция вирусов НИИ вирусологии им. Ивановского включает огромное количество микроэкспонатов. И патогенные микробы — лишь небольшая часть из них. Этот банк данных помогает создавать инновационные лекарства, бороться с бактериями, изучать эволюцию. А вообще, аргументов в пользу того, чтобы считать вирусы не только источником заболеваний, довольно много

Удивительно, но многие фрагменты человеческого генетического кода происходят от вирусов, которые на ранних стадиях эволюции встроились в организм теплокровных. Предполагают, что бывшие вирусы или размножившиеся вирусоподобные объекты занимают 40-45 процентов генома человека. Именно они, по-видимому, сыграли важную роль в развитии иммунной системы.

На страже урожая

В некоторых странах вирусы, паразитирующие на насекомых, с успехом используются в борьбе против вредителей, атакующих сельхозкультуры. Например, вирусы ядерного полиэдроза можно успешно применять в борьбе с гусеницами совок, репной белянки и американской белой бабочки.

С помощью вирусов были получены многие сорта цветов, чья пестрая окраска — результат вирусной инфекции, передающейся от поколения к поколению. Например, знаменитую и чрезвычайно ценную пестролепестность тюльпанов вызывает вирус, переносимый тлей. А недавно было установлено, что растение джут (источник грубых волокон для канатов и мешков) дает больший урожай, когда поражен вирусным заболеванием,— некротической мозаикой риса.

Онколитические вирусы — большая группа микробов, которые способны бороться с раковыми клетками. Например, сейчас проходят клинические испытания генно-инженерного штамма герпес-вируса для лечения больных с тяжелой формой рака кожи.

Бактериофаги — это вирусы, которые избирательно поражают бактериальные клетки. В СССР активно разрабатывали препараты на их основе, которые составляли конкуренцию традиционным антибиотикам. Сегодня применяются в случаях, когда лечение антибиотиками невозможно или недейственно.

В России разрабатывалась новая живая вакцина от гриппа. Она оказалась малоэффективной, зато на ее основе сейчас создают новую вакцину против туберкулеза, где вирус гриппа используется как вектор. То есть в него генно-инженерным путем введены компоненты, которые формируют иммунитет против туберкулеза.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции