Размножение вирусов в культуре клеток



тЙУ. 5. йОДЙЛБГЙС ТЕРТПДХЛГЙЙ ЧЙТХУБ Ч ЛХМШФХТЕ ФЛБОЙ РП ГЙФПРБФЙЮЕУЛПНХ ДЕКУФЧЙА (грд): 1.ЙОФБЛФОБС НПОПУМПКОБС ЛХМШФХТБ ЛМЕФПЛ; 2. ЪБТБЦЕООБС ЛХМШФХТБ (грд). (нЙЛТПВЙПМПЗЙС Й ЙННХОПМПЗЙС.-рПД ТЕД. б.б. чПТПВШЕЧБ.-н, нЕДЙГЙОБ, 1999.-464 У.)

л РПМХРЕТЕЧЙЧБЕНЩН ЛХМШФХТБН ПФОПУСФУС ДЙРМПЙДОЩЕ ЛМЕФЛЙ ЮЕМПЧЕЛБ. пОЙ РТЕДУФБЧМСАФ УПВПК ЛМЕФПЮОХА УЙУФЕНХ, УПИТБОСАЭХА Ч РТПГЕУУЕ 50 РБУУБЦЕК (ДП ЗПДБ) ДЙРМПЙДОЩК ОБВПТ ИТПНПУПН. дЙРМПЙДОЩЕ ЛМЕФЛЙ ЮЕМПЧЕЛБ ОЕ РТЕФЕТРЕЧБАФ ЪМПЛБЮЕУФЧЕООПЗП РЕТЕТПЦДЕОЙС Й ЬФЙН ЧЩЗПДОП ПФМЙЮБАФУС ПФ ПРХИПМЕЧЩИ.
дМС ЧЩТБЭЙЧБОЙС ЧЙТХУПЧ НПЦОП ЙУРПМШЪПЧБФШ ЛХМШФХТЩ ФЛБОЕК МАВПЗП ФЙРБ. дПЪБ ЪБТБЦЕОЙС ЪБЧЙУЙФ ПФ ГЕМЙ Й ОБЪОБЮЕОЙС ПРЩФБ. фЛБОЕЧЩЕ ЛХМШФХТЩ ЙУРПМШЪХАФ ДМС ЧЩДЕМЕОЙС ОПЧЩИ НБМПЙЪХЮЕООЩИ ЧЙТХУПЧ, ЛПЗДБ ПВЩЮОЩН НЕФПДПН (ЪБТБЦЕОЙЕ ЦЙЧПФОЩИ, ЛХТЙОЩИ ЬНВТЙПОПЧ) ОЕЧПЪНПЦОП ХУФБОПЧЙФШ ЧЙТХУОХА РТЙТПДХ ЧПЪВХДЙФЕМС. чЩВПТ ЛМЕФПЮОЩИ ЛХМШФХТ ПРТЕДЕМСЕФУС ЙИ ЮХЧУФЧЙФЕМШОПУФША Л ПФДЕМШОЩН ЗТХРРБН ЧЙТХУПЧ.
тБЪМЙЮБАФ ПУФТХА Й ИТПОЙЮЕУЛХА ЙОЖЕЛГЙЙ. пУФТПЕ ФЕЮЕОЙЕ ЙОЖЕЛГЙЙ ИБТБЛФЕТЙЪХЕФУС ГЙФПРБФЙЮЕУЛЙН ДЕКУФЧЙЕН (ДЕУФТХЛФЙЧОЩНЙ ЙЪНЕОЕОЙСНЙ ЪБТБЦЕООЩИ ЛМЕФПЛ, ЪБЧЕТЫБАЭЙИУС ЙИ ЗЙВЕМША). иТПОЙЮЕУЛБС ЖПТНБ ТЕРТПДХЛГЙЙ ЧЙТХУБ ОЕ ЧЩЪЩЧБЕФ ВЩУФТХА ЗЙВЕМШ ЛМЕФПЛ, ПОЙ ДПМЗПЕ ЧТЕНС ПУФБАФУС ЦЙЪОЕУРПУПВОЩНЙ Й ЧОЕЫОЕ НПЗХФ ОЕ ПФМЙЮБФШУС ПФ ЪБТБЦЕООЩИ.
йОДЙЛБГЙА ЧЙТХУПЧ Ч ЛХМШФХТЕ ЛМЕФПЛ РТПЧПДСФ ОБ ПУОПЧБОЙЙ УМЕДХАЭЙИ ЖЕОПНЕОПЧ:

  • гЙФПРБФЙЮЕУЛПЕ ДЕКУФЧЙЕ (грд) - ЧЙДЙНЩЕ РПД НЙЛТПУЛПРПН НПТЖПМПЗЙЮЕУЛЙЕ ЙЪНЕОЕОЙС ЛМЕФПЛ, ЧРМПФШ ДП ЙИ ПФФПТЦЕОЙС ПФ УФЕЛМБ, ЛПФПТЩЕ ЧПЪОЙЛБАФ Ч ТЕЪХМШФБФЕ ЧОХФТЙЛМЕФПЮОПК ТЕРТПДХЛГЙЙ ЧЙТХУПЧ (ТЙУ. 5). иБТБЛФЕТ грд РТЙ ТБЪМЙЮОЩИ ЧЙТХУОЩИ ЙОЖЕЛГЙСИ ОЕПДЙОБЛПЧ. рТЙ ТЕРТПДХЛГЙЙ ПДОЙИ ЧЙТХУПЧ (РБТБНЙЛУПЧЙТХУЩ, ЗЕТРЕУЧЙТХУЩ) ОБВМАДБЕФУС УМЙСОЙЕ ЛМЕФПЛ У ПВТБЪПЧБОЙЕН УЙОГЙФЙС, ДТХЗЙИ (ЬОФЕТПЧЙТХУЩ, ТЕПЧЙТХУЩ) - УНПТЭЙЧБОЙЕ Й ДЕУФТХЛГЙС ЛМЕФПЛ, ФТЕФШЙИ (БДЕОПЧЙТХУЩ) - БЗТЕЗБГЙС ЛМЕФПЛ Й Ф.Д.
  • чЙТХУОЩЕ ЧЛМАЮЕОЙС - УЛПРМЕОЙЕ ЧЙТХУОЩИ ЮБУФЙГ ЙМЙ ПФДЕМШОЩИ ЛПНРПОЕОФПЧ ЧЙТХУПЧ Ч ГЙФПРМБЪНЕ ЙМЙ СДТЕ ЛМЕФПЛ, ЧЩСЧМСЕНЩЕ РПД НЙЛТПУЛПРПН РТЙ УРЕГЙБМШОПН ПЛТБЫЙЧБОЙЙ. чЛМАЮЕОЙС ТБЪМЙЮБАФУС РП ЧЕМЙЮЙОЕ, ЖПТНЕ, ЮЙУМЕООПУФЙ. иБТБЛФЕТОЩЕ СДЕТОЩЕ ЧЛМАЮЕОЙС ЖПТНЙТХАФУС Ч ЛМЕФЛБИ, ЪБТБЦЕООЩИ ЧЙТХУБНЙ ЗЕТРЕУБ, БДЕОПЧЙТХУБНЙ, ЗТЙРРБ, ВЕЫЕОУФЧБ, ПУРЩ Й ДТ.
  • вМСЫЛЙ, ЙМЙ ОЕЗБФЙЧОЩЕ ЛПМПОЙЙ - ПЗТБОЙЮЕООЩЕ ХЮБУФЛЙ, УПУФПСЭЙЕ ЙЪ ДЕЗЕОЕТБФЙЧОЩИ ЛМЕФПЛ, ЛПФПТЩЕ ЧЙТХУЩ УРПУПВОЩ ПВТБЪПЧЩЧБФШ Ч НПОПУМПЕ ЛМЕФПЛ РПД БЗБТПЧЩН РПЛТЩФЙЕН. пОЙ ЧЙДОЩ ОЕЧППТХЦЕООЩН ЗМБЪПН ЛБЛ УЧЕФМЩЕ РСФОБ ОБ ЖПОЕ РТЙЦЙЪОЕООП ПЛТБЫЕООЩИ ОЕКФТБМШОЩН ЛТБУОЩН ЛМЕФПЛ. пДОБ ВМСЫЛБ УППФЧЕФУФЧХЕФ РПФПНУФЧХ ПДОПЗП ЧЙТЙПОБ. оЕЗБФЙЧОЩЕ ЛПМПОЙЙ ТБЪОЩИ ЧЙТХУПЧ ПФМЙЮБАФУС РП ТБЪНЕТХ, ЖПТНЕ. вМСЫЛППВТБЪПЧБОЙЕ ЙУРПМШЪХАФ ДМС ДЙЖЖЕТЕОГЙБГЙЙ, УЕМЕЛГЙЙ ЧЙТХУПЧ, Б ФБЛЦЕ ДМС ПРТЕДЕМЕОЙС ЙИ ЛПОГЕОФТБГЙЙ Ч ЙУУМЕДХЕНПН НБФЕТЙБМЕ. фЙФТ ЧЙТХУБ, ХУФБОПЧМЕООЩК ЬФЙН НЕФПДПН, ЧЩТБЦБАФ ЮЙУМПН ВМСЫЛППВТБЪХАЭЙИ ЕДЙОЙГ (впе) Ч 1 НМ.
  • `гЧЕФОБС' РТПВБ. еУМЙ ЧЙТХУЩ ОЕ ТБЪНОПЦБАФУС Ч ЛХМШФХТЕ ЛМЕФПЛ, ФП ЦЙЧЩЕ ЛМЕФЛЙ Ч РТПГЕУУЕ УЧПЕЗП НЕФБВПМЙЪНБ ЧЩДЕМСАФ ЛЙУМЩЕ РТПДХЛФЩ, ЮФП ЧЕДЕФ Л ЙЪНЕОЕОЙА То УТЕДЩ Й ГЧЕФБ ЙОДЙЛБФПТБ ЖЕОПМПЧПЗП ЛТБУОПЗП ОБ ЦЕМФЩК. рТЙ РТПДХЛГЙЙ ЧЙТХУПЧ ОПТНБМШОЩК НЕФБВПМЙЪН ЛМЕФПЛ ОБТХЫБЕФУС, ЛМЕФЛЙ ЗЙВОХФ, Й УТЕДБ УПИТБОСЕФ УЧПК РЕТЧПОБЮБМШОЩК (ЛТБУОЩК) ГЧЕФ. фБЛЙН ПВТБЪПН, ЛТБУОЩК ГЧЕФ УТЕДЩ ХЛБЪЩЧБЕФ ОБ ОБМЙЮЙЕ ЧЙТХУБ Й РТЕЛТБЭЕОЙЕ ЦЙЪОЕДЕСФЕМШОПУФЙ ЛМЕФПЛ.
  • зЕНБДУПТВГЙС - УРПУПВОПУФШ ЛХМШФХТ ЛМЕФПЛ, ЙОЖЙГЙТПЧБООЩИ ЧЙТХУБНЙ, БДУПТВЙТПЧБФШ ОБ УЧПЕК РПЧЕТИОПУФЙ ЬТЙФТПГЙФЩ ПРТЕДЕМЕООЩИ ЧЙДПЧ ЦЙЧПФОЩИ Й РФЙГ. зЕНБДУПТВГЙС РТПСЧМСЕФУС УЛПРМЕОЙЕН Ч ЧЙДЕ ЗТПЪДЕК ЬТЙФТПГЙФПЧ, БДУПТВЙТПЧБООЩИ ОБ ЙОЖЙГЙТПЧБООЩИ ЧЙТХУПН ЛМЕФЛБИ.
  • йОФЕТЖЕТЕОГЙС - ОЕЛПФПТЩЕ ЧЙТХУЩ НПЦОП ПВОБТХЦЙФШ Ч ЛХМШФХТЕ ФЛБОЙ ФПМШЛП РП ОБМЙЮЙА ЙОФЕТЖЕТЕОГЙЙ. йУРЩФХЕНЩК ЧЙТХУ ЧЧПДЙФУС Ч ЛХМШФХТХ ЛМЕФПЛ РЕТЧЩН, ЮЕТЕЪ ОЕУЛПМШЛП ДОЕК ФХДБ ЦЕ ЧОПУСФ УФБОДБТФОХА ДПЪХ ЧЙТХУБ, ПВМБДБАЭЕЗП ЧЩТБЦЕООПК ГЙФПРБФЙЮЕУЛПК БЛФЙЧОПУФША ЙМЙ УРПУПВОПУФША ЧЩЪЩЧБФШ ЗЕНБДУПТВГЙА. рПУМЕ ПРТЕДЕМЕООПЗП ЙОЛХВЙТПЧБОЙС РТПЧЕТСАФ ОБМЙЮЙЕ ГЙФПРБФЙЮЕУЛЙИ ЙЪНЕОЕОЙК ЙМЙ ЗЕНБДУПТВГЙЙ, РПДФЧЕТЦДБАЭЙИ ТБЪНОПЦЕОЙЕ `ЧЩСЧМСАЭЕЗП' ЧЙТХУБ. пФУХФУФЧЙЕ Ч ЛХМШФХТЕ `ЧЩСЧМСАЭЕЗП' ЧЙТХУБ ЗПЧПТЙФ П ОБМЙЮЙЙ ЙУРЩФХЕНПЗП ЧЙТХУБ.

Существуют следующие основные методы индикации вируса в культуре клеток: по цитопатическому эффекту или цитопатическому действию (ЦПЭ, ЦПД); по положительной реакции гемадсорбции (РГАд); по образованию бляшек; по обнаружению внутриклеточных включений; по выявлению вирусов в реакции иммунофлуоресценции (РИФ); по обнаружению интерференции вирусов; по подавлению метаболизма клеток (цветная проба); электронной микроскопией и др.

ЦПД Наиболее широко и часто о размножении вируса в культуре клеток судят по цитопатическому эффекту или цитопатическому действию. ЦПД называются любые изменения клеток в культуре клеток под влиянием размножающегося в них вируса. Физиологические изменения клеток установить довольно сложно, а морфологические изменения обнаруживаются довольно легко. Для этого достаточно положить на предметный столик микроскопа пробирку или матрас слоем клеток вверх и, используя малое увеличение (объектив х8-10, окуляр х7-10), осмотреть слой. Полезно сравнить клетки, зараженные вирусом, с такими же клетками в пробирке, не подвергавшимися заражению. В этом случае практически любые наблюдаемые в микроскоп отличия зараженной культуры клеток от контрольной можно считать проявлением ЦПД. Эти отличия могут захватывать весь монослой или отмечаться только в виде небольших очажков измененных клеток в слое нормальных клеток. Интенсивность ЦПД выражается тем, какая часть клеточного монослоя изменена вирусом. Хотя общепринятой системы оценки интенсивности ЦПД нет, ее часто оценивают в крестах или баллах. Так, если изменению (по сравнению с контролем) подвергся весь монослой в пробирке или матрасе, ЦПД оценивают на четыре креста, если 3 /4 - на три, если V2 - на два креста, V4 - на один крест. Но эти оценки весьма условны.

Наиболее существенно различаются между собой три формы ЦПД: фрагментация клеток, округление клеток, симпластообразование.

Фрагментация - разрушение клеток на отдельные фрагменты, которые отделяются от стекла и переходят в культуральную жидкость в виде клеточного детрита (вирус везикулярного стоматита).

Округление - потеря клетками способности прикрепляться к стеклу, вследствие чего клетки, обычно распластанные по стеклу, принимают шаровидную форму, отделяются от стекла и свободно плавают в культуральной жидкости, где и погибают (энтеровирусы, аденовирусы и др.).

Симпластообразоеание - растворение клеточных оболочек, вследствие чего цитоплазмы соседних клеток сливаются, образуя одно целое, в котором располагаются (главным образом по периферии) ядра клеток. Такие образования из цитоплазматической массы с многими клеточными ядрами называются симпластами (гигантские многоядерные клетки).

РГАд. Гемадсорбция - соединение эритроцитов с поверхностью пораженных вирусом клеток - впервые была обнаружена Фогелем и Щелоковым (1957) на культуре ткани, инфицированной вирусом гриппа. В основе этого явления лежит родство рецепторов вируса, находящихся на поверхности пораженной клетки, с рецепторами эритроцита, что приводит к их взаимному сцеплению аналогично реакции гемагглютинации. Преимущество этой реакции состоит в том, что она становится положительной еще до появления отчетливых цитопатиче- ских изменений в инфицированных клетках.

Методика РГАд состоит в следующем. На 3-4-й день после инфицирования клеток берут две пробирки с одинаковой культурой клеток, из которых одна заражена вируссодержащим материалом, а вторая контрольная. Из обеих пробирок сливают культуральную жидкость и вносят в обе по 2-3 капли 0,5-процентной суспензии отмытых эритроцитов. Обе пробирки оставляют на 5-10 мин так, чтобы эритроциты были на поверхности клеток (кладут горизонтально на стол), а затем слегка споласкивают физраствором и исследуют под микроскопом (малое увеличение). В контрольной пробирке эритроциты полностью удаляются с физраствором, а некоторые из оставшихся плывут вместе с жидкостью. Если в зараженной пробирке эритроциты не удалились с физраствором и не плывут, а прикреплены к поверхности клеток, следует считать РГАд положительной.

В зависимости от вируса и вида клеток расположение эритроцитов может быть трояким:

Каждый вирус способен адсорбировать эритроциты крови животных определенных видов.

Самостоятельная работа студентов

  • 1) Студенты проводят микроскопию клеточных культур (живая культура клеток, фиксированная).
  • 2) Изучают методы обнаружения вирусов в зараженных клеточных культурах (по ЦПД, по гемадсорбции эритроцитов на монослое, по обнаружению бляшек, по обнаружению телец-включений).

Вирусы – облигатные внутриклеточные паразиты. Они размножаются в живых клетках и не растут на искусственных питательных средах, поэтому методы культивирования вирусов отличаются от методов культивирования бактерий.

1. На лабораторных животных. Заражают животных (подкожно, внутримышечно, внутрибрюшино), которые чувствительны к определенным вирусам: хорьков - вирусом гриппа, кроликов - вирусом бешенства, обезьян - вирусом полиомиелита. Индикация (обнаружение) вируса проводится по признакам заболевания. Недостаток метода - не все вирусы можно культивировать на животных, например, животные невосприимчивы к вирусам человека.

2. В куриных эмбрионах. Заражают куриный эмбрион (аллонтоисная полость, хорион-аллонтоисная оболочка, амниотическая полость, желточный мешок, сам эмбрион). Куриный эмбрион – очень удобен. Он защищен от попадания других микробов (стерильный), техника работы с ним проста, можно накопить большое количество вирусов. Индикация: а) по специфическим поражениям на хорион-аллантоисной оболочке, по гибели эмбриона, б) по реакции склеивания эритроцитов – реакции гемагглютинации (РГА). Недостатки метода: а)не все вирусы (вирус полиомиелита, вирус ящура) можно вырастить в куриных эмбрионах; б) невозможно обнаружить микроб без вскрытия эмбриона; в) в нем много загрязняющих белков и других соединений.

3. В тканевых культурах. Тканевые культуры или клеточные культуры – клетки, выращенные вне организма на искусственных питательных средах. Для их приготовления используют чаще всего эмбриональные и опухолевые ткани. Метод тканевых культур разработан Дж. Эндерсом в 50-е годы. Большинство вирусов способно размножаться в культурах клеток. Для каждого вируса можно подобрать наиболее чувствительную культуру клеток.

Бывают культуры растущих тканей и переживающих тканей (утративших способность к росту).

Существуют три типа растущих тканевых культур:

а) однослойные тканевые культуры – клетки прикрепляются и растут в виде сплошного монослоя по поверхности стекла лабораторной посуды;

б) культуры суспензированных клеток – клетки растут и размножаются во взвешенном состоянии;

в) органные культуры - кусочки органов животных и человека, выращиваемые вне организма.

Однослойные культуры – основные культуры. Различают: а) первичные – клетки этой культуры делятся один раз, поэтому каждый раз необходимо вновь получать культуру ткани; чаще всего используют эмбриональные ткани и опухолевые ткани взрослого человека;

б) полуперевиваемые – клетки делятся до 50 раз, сохраняя диплоидный набор хромосом; их можно перевивать несколько раз; используют диплоидные клетки человека (фибробласты человеческого эмбриона, диплоидные клетки легких человека);

в) перевиваемые – клетки культуры постоянно делятся в условиях in vitro (вне организма), поэтому их можно перевивать непрерывно; их готовят из линий клеток, которые хорошо размножаются в течение многих лет; чаще всего эти культуры получают из опухолевых клеток. Получено около 200 штаммов таких клеток: штамм L (из культуры мышиных фибробластов), штамм HeLa (из карциномы шейки матки), штамм Hep-3 (из лимфоидной карциномы) и т.д.

Первичные и перевиваемые линии клеточных культур могут быть загрязнены неизвестными вирусами, в том числе онкогенными, это ограничивает их применение, особенно в производстве вакцин.

Все работы с культурами клеток требуют строжайшего соблюдения правил асептики. К культуре клеток добавляют антибиотики против бактериального загрязнения.

Способы обнаружения (индикации) вирусов в тканевой культуре.

Вирусы можно обнаружить следующим образом.

1. По цитопатическому действию (ЦПД). В результате размножения вирусов в клетках происходят морфологические изменения клеток (вакуолизация цитоплазмы, деструкция митохондрий, округление клеток). Часть клеток погибает и отслаивается от стекла. Вместо сплошного монослоя остаются отдельные клеточные островки. ЦПД обнаруживают под микроскопом (8). По ЦПД можно не только обнаружить, но и идентифицировать вирусы. Например, вирус полиомиелита вызывает мелкозернистую деструкцию клеток; аденовирусы вызывают образование скоплений клеток в виде виноградных гроздьев; вирус кори вызывает образование симпластов – многоядерных клеток.

2. По образованию включений. Включения - скопления вирусов в клетках. Они имеют различную форму и размеры. Их окрашивают по Романовскому-Гимзе или флюорохромами и наблюдают под микроскопом.

3. По гемадсорбции. Клетки, зараженные вирусами, могут адсорбировать эритроциты. Вирусы выходят на поверхность клеток и связывают эритроциты. Эритроциты добавляют к культуре и через некоторое время промывают физиологическим раствором. На поверхности клеток под микроскопом видны прилипшие эритроциты в виде разнообразных фигур;.

4. По реакция гемагглютинации. Гемагглютинация - склеивание эритроцитов под влиянием вирусов. Эритроциты добавляют к культуральной жидкости. Если в ней есть вирусы, то эритроциты склеиваются.

5. По "цветной" реакции. Клетки культуры выращиваются на жидкой среде с индикатором (метиленовым красным). Индикатор изменяет цвет (с красного на желтый) под действием кислых продуктов метаболизма при росте нормальных клеток. Если клетки заражены вирусом, то нормальный метаболизм нарушается, кислые продукты не образуются и индикатор не изменяет цвет. Таким образом, признаком размножения вирусов в клетках культуры является сохранение красного цвета среды.


КУЛЬТУРА ТКАНЕЙ , тканевая культура, метод выращивания вне организма в искусственно созданных условиях клеток, тканей или органов. Б культурах тканей и органов (гл. обр. органы эмбрионов) поддерживают их жизнеспособность или рост при сохранении дифференциации ткани, структуры и функции органа.

Изолированный кусочек ткани или органа, используемый для культивирования вне организма, наз. эксплантатом. Культура клеток растёт [растет] вне организма без образования тканей.

В биол. исследованиях чаще применяют однослойные К. т. — популяции клеток, растущих на поверхности твёрдого [твердого] субстрата (стекло, металл, пластмасса) в виде непрерывного слоя, и суспензионные К. т., в к-рых клетки сохраняют жизнеспособность или размножаются взвешенными в питат. среде. В зависимости от степени приспособления к условиям культивирования различают пять типов культур клеток: первичная культура клеток, получаемая из тканей или органов, взятых непосредственно из организма (культура считается первичной до тех пор, пока её [ее] не пересеяли), линия клеток — первичная культура со времени получения субкультуры (пересева); стабильная линия клеток — клетки, способные размножаться (пересеваться) in vitro до бесконечности; линия диплоидных клеток — линия клеток, в к-рой не менее 75% клеток сохранили нормальный исходный кариотип; штамм клеток — популяция однородных по одному или нескольким признакам диплоидных клеток, сохраняющая специфич. свойства в течение определённого [определенного] периода (до 50 пассажей). В дальнейшем штамм клеток или погибает, или превращается в стабильную линию клеток; при этом нормальный кариотип сменяется гетероплоидным набором хромосом. В первичных К. т. сохраняется тканевая специфичность клеток. Этим объясняется морфологич. неоднородность таких К. т. (рис. 1). При длительном культивировании тканевая специфичность клеток выражена слабо, поэтому клетки мн. линий сходны друг с другом (рис. 2).

При культивировании наиболее прихотливы К.т. теплокровных животных, наименее — К. т. растений. Для выращивания культур, кроме факторов питания,необходимы соответствующие темп-pa, осмотич. давление, рН, ионный и газовый состав среды. Для клеток большинства млекопитающих и птиц оптимальная t 36—38 °С, для клеток насекомых и холоднокровных позвоночных — 20—25 °С. Для клеток млекопитающих и птиц оптимальное осмотич. давление при t 38 °С — 7,6 атм. Клетки большинства животных хорошо растут при рН 7,0—7,3. Оптимальная концентрация О2 в К. т. близка к содержанию его в воздухе. В питательной среде должны присутствовать ионы натрия, калия, кальция, магния, хлориды, фосфаты и глюкоза. Потребность в питат. веществах определяется характером К. т. Для длительного роста и размножения клеток млекопитающих требуется по меньшей мере 13 аминокислот, витамины группы В и сыворотка крови. Среды для кратковременного культивирования К. т. могут содержать меньше питат. веществ, в их состав не входит сыворотка. Питат. среды, к-рые обеспечивают рост К. т., наз. ростовыми; среды, обеспечивающие сохранение жизнеспособности К. т., — поддерживающими.

Первичные культуры получают из клеток, выделенных из тканей с помощью протеолитич. ферментов (чаще трипсина). Их, как правило, выращивают в среде, состоящей из солевого р-ра Эрла или Хенкса, 0,5% гидролизата лактальбумина, 0,1 % глюкозы и 5—10% сыворотки кр. рог, скота. Для выращивания линии клеток и штамма клеток используют синтетич. среды, содержащие аминокислоты, витамины и обогащённые [обогащенные] сывороткой (среда Игла и др.) и др. важными метаболитами (среда 199 и др.). Такие же среды применяют при длительном культивировании тканей и органов зародышей. К. т. выращивают в стеклянных, пластмассовых или металлич. сосудах различной формы и ёмкости [емкости] (рис, 3). Однослойные культуры чаще выращивают в стеклянных пробирках, матрасах Ру или в круглостенных флаконах.

Клетки растут на внутренней поверхности культурального сосуда, смачиваемой питат. средой. Так как диплоидные культуры растут только на поверхности твёрдого [твердого] субстрата, для их массового выращивания предложены спец. аппараты, обладающие большой внутренней поверхностью. Стабильные линии клеток во мн. отношениях сходны с одноклеточными организмами и с успехом могут расти в перемешиваемой суспензии в металлич. реакторах, полуавтоматических аппаратах.

Тканевые эксплантаты или органы эмбрионов чаще всего помещают на сетчатую подставку (плот), расположенную в чашке Петри и полностью погружённую [погруженную] в питат. среду (рис. 4). Реже готовят суспензию тканевых эксплантатов в жидкой питат. среде.

Однослойные и суспензионные К. т. позволяют изучать различные вопросы биологии, в частности вирусологии, на клеточном уровне. С их помощью расшифрована этиология и разработана диагностика мн. заболеваний и созданы средства специфич. профилактики вирусных болезней человека и животных. К. т. используют как питательный субстрат для размножения вирусов, В произ-ве вакцин широко применяют первичные культуры клеток, штаммы клеток, суспензию тканевых эксплантатов и суспензию клеток трипсинизированной ткани. Тканевые эксплантаты и органы эмбрионов в основном используют при изучении морфогенеза и физиологии тканей. К. т. оказались весьма перспективным методом выведения безвирусных линий растений.

Лит.: Голубев Д. Б., Соминина А. А., Медведева М. Н., Руководство по применению клеточных культур в вирусологии, Л., 1976; Новые методы культуры животных тканей, пер. с англ., М., 1976.

Существуют следующие основные методы индикации вируса в культуре клеток: по цитопатическому эффекту или цитопатическому действию (ЦПЭ, ЦПД); по положительной реакции гемадсорбции (РГАд); по образованию бляшек; по обнаружению внутриклеточных включений; по выявлению вирусов в реакции иммунофлуоресценции (РИФ); по обнаружению интерференции вирусов; по подавлению метаболизма клеток (цветная проба); электронной микроскопией и др.

ЦПД Наиболее широко и часто о размножении вируса в культуре клеток судят по цитопатическому эффекту или цитопатическому действию. ЦПД называются любые изменения клеток в культуре клеток под влиянием размножающегося в них вируса. Физиологические изменения клеток установить довольно сложно, а морфологические изменения обнаруживаются довольно легко. Для этого достаточно положить на предметный столик микроскопа пробирку или матрас слоем клеток вверх и, используя малое увеличение (объектив х8-10, окуляр х7-10), осмотреть слой. Полезно сравнить клетки, зараженные вирусом, с такими же клетками в пробирке, не подвергавшимися заражению. В этом случае практически любые наблюдаемые в микроскоп отличия зараженной культуры клеток от контрольной можно считать проявлением ЦПД. Эти отличия могут захватывать весь монослой или отмечаться только в виде небольших очажков измененных клеток в слое нормальных клеток. Интенсивность ЦПД выражается тем, какая часть клеточного монослоя изменена вирусом. Хотя общепринятой системы оценки интенсивности ЦПД нет, ее часто оценивают в крестах или баллах. Так, если изменению (по сравнению с контролем) подвергся весь монослой в пробирке или матрасе, ЦПД оценивают на четыре креста, если 3 /4 - на три, если V2 - на два креста, V4 - на один крест. Но эти оценки весьма условны.

Наиболее существенно различаются между собой три формы ЦПД: фрагментация клеток, округление клеток, симпластообразование.

Фрагментация - разрушение клеток на отдельные фрагменты, которые отделяются от стекла и переходят в культуральную жидкость в виде клеточного детрита (вирус везикулярного стоматита).

Округление - потеря клетками способности прикрепляться к стеклу, вследствие чего клетки, обычно распластанные по стеклу, принимают шаровидную форму, отделяются от стекла и свободно плавают в культуральной жидкости, где и погибают (энтеровирусы, аденовирусы и др.).

Симпластообразоеание - растворение клеточных оболочек, вследствие чего цитоплазмы соседних клеток сливаются, образуя одно целое, в котором располагаются (главным образом по периферии) ядра клеток. Такие образования из цитоплазматической массы с многими клеточными ядрами называются симпластами (гигантские многоядерные клетки).

РГАд. Гемадсорбция - соединение эритроцитов с поверхностью пораженных вирусом клеток - впервые была обнаружена Фогелем и Щелоковым (1957) на культуре ткани, инфицированной вирусом гриппа. В основе этого явления лежит родство рецепторов вируса, находящихся на поверхности пораженной клетки, с рецепторами эритроцита, что приводит к их взаимному сцеплению аналогично реакции гемагглютинации. Преимущество этой реакции состоит в том, что она становится положительной еще до появления отчетливых цитопатиче- ских изменений в инфицированных клетках.

Методика РГАд состоит в следующем. На 3-4-й день после инфицирования клеток берут две пробирки с одинаковой культурой клеток, из которых одна заражена вируссодержащим материалом, а вторая контрольная. Из обеих пробирок сливают культуральную жидкость и вносят в обе по 2-3 капли 0,5-процентной суспензии отмытых эритроцитов. Обе пробирки оставляют на 5-10 мин так, чтобы эритроциты были на поверхности клеток (кладут горизонтально на стол), а затем слегка споласкивают физраствором и исследуют под микроскопом (малое увеличение). В контрольной пробирке эритроциты полностью удаляются с физраствором, а некоторые из оставшихся плывут вместе с жидкостью. Если в зараженной пробирке эритроциты не удалились с физраствором и не плывут, а прикреплены к поверхности клеток, следует считать РГАд положительной.

В зависимости от вируса и вида клеток расположение эритроцитов может быть трояким:

Каждый вирус способен адсорбировать эритроциты крови животных определенных видов.

Самостоятельная работа студентов

  • 1) Студенты проводят микроскопию клеточных культур (живая культура клеток, фиксированная).
  • 2) Изучают методы обнаружения вирусов в зараженных клеточных культурах (по ЦПД, по гемадсорбции эритроцитов на монослое, по обнаружению бляшек, по обнаружению телец-включений).

*И. А. Ленева 1 , И. Т. Федякина 2 , М. Ю. Еропкин 3 , Н. В. Гудова 1 , А. А. Романовская 4 , Д. М. Даниленко 3 , С. М. Виноградова 1 , А. Ю. Лепешкин 1 , А. М. Шестопалов 4

1 Центр химии лекарственных средств — ВНИХФИ, 2 НИИ вирусологии им. Д. И. Ивановского РАМН, Москва;
3 ГУ НИИ гриппа РАМН, Санкт-Петербург; 4 ФГУН ГНЦ ВБ "Вектор" Роспотребнадзора Новосибирской обл.

*Ленева Ирина Анатольевна, д-р биол. наук, зав. лаб.; e-mail: wnyfd385@yandex.ru. 119815, Москва, ул. Зубовская, д. 7, стр. 1.

Изучение противовирусной активности отечественных противогриппозных химиопрепаратов в культуре клеток и на модели животных

Изучение противовирусной активности российских препаратов в культуре клеток показало, что арбидол и рибавирин подавляли размножение различных штаммов вирусов гриппа A, включая римантадинрезистентные и озельтамивиррезистентные, а также вирусов гриппа B (концентрации препаратов, ингибирующие размножение вируса на 50% (ИК50) составляли 2—8,5 мкг/мл). Римантадин в концентрации 1—5 мкг/мл полностью ингибировал репродукцию эталонных и озельтамивиррезистентного штаммов вируса гриппа A, не влияя на размножение вирусов гриппа B, римантадинрезистентных вирусов гриппа A. Арбидол и рибавирин также подавляли репродукцию пандемических вирусов A/California/04/2009(H1N1), A/California/07/2009(H1N1) и A/Moscow/01/2009(H1N1) swl в культуре клеток MDCK (ИК50 — 1,5—4,0 мкг/мл), в то время как римантадин не влиял на их размножение. Нами не выявлено какой-либо значительной противовирусной активности ингавирина в культуре клеток в нетоксичных для них концентрациях (до 200 мкг/мл) в отношении всех изученных штаммов вирусов гриппа A и B, включая штаммы пандемического вируса гриппа A(H1N1).
На модели гриппозной пневмонии у мышей, инфицированных адаптированным к ним вирусом гриппа A/Аичи/2/69(H3N2), вы явлена активность арбидола, римантадина и ингавирина. Профилактическая эффективность трех изученных препаратов была сходной и наиболее выраженной при использовании их за 96 ч: предотвращена смертность 40—50% животных и потеря их массы тела, увеличилась продолжительность жизни в 1,3—1,5 раза. Арбидол и римантадин были более эффективны при лечебном и лечебно-профилактическом использовании в дозах 30 и 10 мг/кг/день соответственно, защищая от гибели 60—80% инфицированных животных, увеличивая продолжительность их жизни в 1,7—2 раза и предотвращая потерю массы тела по сравнению с группой вирусного контроля. Эффективность ингавирина в этих же опытах была менее выражена, чем у арбидола и римантадина. Таким образом, арбидол и римантадин обладают выраженной противовирусной активностью как в культуре клеток, так и на модели гриппозной пневмонии. Выявленная эффективность ингавирина на интегральной модели гриппозной пневмонии мышей при отсутствии активности в культуре клеток, вероятно, обусловлена не прямым вирусспецифическим действием, а иными фармакологическими свойствами препарата.

Ключевые слова: вирусы гриппа, пандемический вирус гриппа A(H1N1), арбидол, римантадин, ингавирин, рибавирин, вирусингибирующая активность в культуре клеток, гриппозная пневмония мышей

1. Бурцева Е. И., Шевченко Е. С., Ленева И. А. и др. Чувствительность к римантадину и арбидолу вирусов гриппа, вызвавших эпидемические подъемы заболеваемости в России в сезоне 2004—2005 г. // Вопр. вирусол. — 2007. — № 2. — С. 24—29.

2. Гуськова Т. А., Глушков Р. Г. Арбидол-иммуномодулятор, индуктор интерферона, антиоксидант. — М., 1999. — С. 93.

3. Колубухина Л. В., Меркулова Л. Н., Щелканов М. Ю. и др. Эффективность ингавирина при лечении гриппа у взрослых // Тер. арх. — 2009. — Т. 81, № 3. — С. 51—54.

4. Ленева И. А., Гуськова Т. А. Арбидол — эффективный препарат для лечения и профилактики гриппа и ОРВИ: обзор результатов клинических исследований // Рус. мед. журн. — 2008. — Т. 16, № 29. — С. 1972—1976.

5. Логинова С. Я., Борисевич С. В., Максимов В. А. и др. Изучение лечебной эффективности нового отечественного препарата ингавирина в отношении возбудителя гриппа A(H3N2) // Антибиотики и химиотер. — 2008. — Т. 53, № 7—8. — С. 29—30.

6. Логинова С. Я., Борисевич С. В., Лыков М. В. и др. Изучение эффективности ингавирина in vitro в отношении мексиканского пандемического подтипа HINI вируса гриппа A/ штамма A/California/04/2009 и A/штамма A/California/07/ 2009 // Антибиотики и химиотер. — 2009. — Т. 54, № 3— 4. С. 15—20.

7. Львов Д. К., Бурцева Е. И., Прилипов А. Г. и др. Изоляция 24.05.2009 и депонирование в Государственную коллекцию вирусов (ГКВ № 2452 от 24.05.2009) первого штамма A/ Moscow/01/2009(H1N1)sw1, подобного свиному вирусу A(H1N1) от первого выявленного 21.05.2009 больного в г. Москве // Вопр. вирусол. — 2009. — Т. 54, № 6. — С. 10— 14.

8. Методические указания по изучению специфической противовирусной активности фармакологических веществ: Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ / Под ред. Р. У. Хабриева. — М., 2005. — С. 532—557.

9. Романовская А. А., Дурыманов А. М., Шаршов К. А. и др. Изучение чувствительности вирусов гриппа A(H1N1), вызвавших заболевания в апреле—мае 2009 года, к противовирусным препаратам в культуре клеток MDCK // Антибиотики и химиотер. — 2009. — Т. 54, № 5—6. — С. 41—47.

11. Boriskin Y., Leneva I., Pecheur E. et al. Arbidol: a broad-spectrum antiviral compound that bloks viral fusion // Curr. Med. Chem. — 2008. — Vol. 15. — P. 997—1005.

12. Glushkov R. G. Arbidol. Antiviral, immunostimulant, interferon inducer // Drug of the Future. — 1992. — Vol. 17. — P. 1079— 1081.

13. Hayden F. WHO guidelines on the use of vaccines and antivirals during influenza. – Annex 5-Considerations for the use of antivirals during an influenza pandemic, Geneva, 2—4 October, 2002.

14. Leneva I. A., Russell R. J., Boriskin Y. S. et al. Characteristics of arbidol-resistant mutants of influenza virus: implications for the mechanism of anti-influenza action of arbidol // Antiviral Res. — 2009. — Vol. 81. — P. 132—140.

15. Monto A. Viral susceptibility and the choice of influenza antivirals // Clin. Infect. Dis. — 2008. — Vol. 47. — P. 346—348.

16. Shi L., Xiong H., He J. et al. Antiviral activity of arbidol against influenza A virus, respiratory syncytial virus, rhinovirus, coxsackie virus and adenovirus in vitro and in vivo // Arch. Virol. — 2007. — Vol. 152. — P. 1447.

17. Update: drug susceptibility of swine-origin influenza A(H1N1) viruses, April 2009. Centers for Disease Control and Prevention (CDC) // MMWR Morb Mortal Wkly Rep. 2009. — Vol. 58. — P. 433—435.

18. Wang M., Cai B., Li L. et al. Efficacy and safety of arbidol in treatment of naturally acquired influenza // Zhongguo Yi Xue Ke Xue Yuan Xue Bao. — 2004. — Vol. 26. — P. 289—293.

19. Watanabe W., Konno K., Ijichi K. et al. MTT colorimetric assay system for the screening of anti-orthomyxo- and anti-paramyxoviral agents // J. Virol. Meth. — 1994. — Vol. 48, N 2— 3. — P. 257—265.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции