Программирование клеток организма вирусами

Посвящается Олдосу Хаксли.

2050 год. Генетический программер разбирает очередной кусок генной последовательности и видит следующий комментарий:
/* А еti gеnу nаdо bу ubrаt nаhrеn. Аrсhаngеl Gаvriil */

Генная инженерия вышла на экзистенциально новый уровень развития. Если раньше считалось, что записывать информацию в ДНК при жизни существа не возможно, то теперь сломлен и этот закостеневший научный барьер. При этом лазейку в структуре мироздания подготовила сама природа: вирусы, у которых хранилищем наследственной информации служат молекулы РНК (а не ДНК, как у всех прочих организмов), вырабатывают специальные ферменты, которые умеют осуществлять обратную транскрипцию, то есть переписывать информацию из РНК в ДНК. Созданная таким путем ДНК встраивается в хромосомы клетки-хозяина и размножается вместе с ними. Поэтому с подобными РНК-вирусами очень трудно бороться (вирус ВИЧ относится к их числу). ДНК вируса встраивается в геном клетки-хозяина, а потом снова отделяться от него и формировать новые вирусные частицы, которые могут заражать другие клетки. При этом вместе с собственной ДНК вирус захватывает кусочек ДНК хозяина и таким образом перенести его в другую клетку, в том числе – и в клетку другого организма. Таким образом вирусы могут распространять как благоприятные так и неблагоприятные наследственные признаки.

Так или иначе, но то, что способна совершить природа, вполне по силам и человеку. Первый шаг уже сделан – мир заговорил о генетическом допинге для спортсменов. Заявкой на начало эры генетического допинга стало появление препарата репоксигена. Это средство генотерапии представляет собой комплекс ДНК, кодирующей белок эритропоэтин, с обеспечивающим ее доставку в клетку вектором на основе вируса.
Эритропоэтин, вырабатываемый почками и стимулирующий образование эритроцитов (а значит, и повышающий способность крови переносить кислород), уже стал главным действующим лицом многих допинговых разборок. Не далёк тот день, когда генное модифицирование выйдет из стен секретных лабораторий и станет таким же коммерчески успешным продуктом как soft & hard
ware.

Работа генных программистов, скорее всего, будет такой же, как проектировщиков нынешних микропроцессоров: немного лабораторий, в которых создаются программы-гены, и широкая доступность и известность продуктов, полученных на их основе. Десяток генных программистов и одна лаборатория смогут заменить множество НИИ и научных комплексов. КПД их деятельности превысит сотни процентов.

Биотехнологии – одна из самых
таинственных и быстроразвивающихся
отраслей науки, можете вы мне объективно
сказать, что через пару лет программисты не возьмутся за неё всерьёз? Конечно, сегодняшний уровень развития генного программирования напоминает компьютерную отрасль образца 50-х гг. прошлого века: вроде и теория есть и практические наработки, но что со всем этим делать и главное как – пока не понятно. Биотехнологии только делают первые шажки, изготавливая квадратную древесину и особо питательные продукты и жутко непонятные лекарства от ещё не существующих болезней.

Но знайте: придёт сатана – и вы поверите ему. Тьфу ты, кто телевизор забыл выключить? Так вот, знайте: близится момент (о, сингулярность!), когда на рынке появятся первые библиотеки базовых клеточных органов, клеток и организмов, а также рефлексов и инстинктов для первых типовых искусственных организмов. Прогресс цифробиологии только начинается. Мы пока не задумываемся об операционной системе встроенной в мозг (чтобы она выполняла все не слишком приятные человеческие действия – например, добраться на автопилоте до дома после клуба в состоянии сильного наркотического опьянения, чёрт, да я в таком состоянии под GenOS смогу даже машиной управлять), а генная DOS (как и генетически модифицированный Билл Гейтс!) ещё даже не снятся учёным и обывателям. Генный интеллект – не миф и не сказка, а то светлое будущее, в которое мы уверенно шагаем. Вам, пребывающим в тихих и спокойных водах собственной жизни, тяжёло представить процессы, которые формируют нашу цивилизацию – так что даже не пытайтесь задуматься, просто поверьте или не поверьте, но в конце концов вам придётся столкнуться с этим лицом к лицу. Сорок лет назад сотовый телефон будоражил умы писателей фантастов. Теперь он часть нашей жизни, но можете ли вы описать технологии по которым в трубку встраивают две восьмимегапиксельные камеры?

Инвестиционный компас надежно показывает: деньги во всевозрастающих количествах идут в компьютерные, телекоммуникационные и биотехнологии. Человечество приоритетно финансирует появление нового, цифрового мира. Возможно, многие этого не замечают: наблюдать эволюционное процессы следует не глазами, а рассудком.

Миллиарды китайцев не спасутся от голода и не обретём мы всеобщего счастья. Потому что абсолютные возможности применимы только к абсолютной власти. Знаете, в чём заключается кризис современной фантастики? Писатели сказали всё, что хотели сказать – больше добавить нечего. Будущее будет именно таким, каким они его описали. Но мы, не мы программисты, хакеры, писатели и пользователи (а так же редакторы, верстальщики и издатели), а мы – учёные, разработчики и финансовые воротилы так и не прислушались к их советам. Впрочем, в генно-модифицированном будущем найдётся место и для всех нас, а особенно для хакеров. Генные хакеры будут применять техники reverse bioengineering для взлома защиты живых компьютерных систем.

Когда порох появился в Европе, пророки вещали – технологии уничтожат мир. Или динамит. Или атомная бобмба. Или искусственный интеллект. Или нанороботы. Или генные хакеры. Пока нам удавалось сохранить себя на Земле, но не кажется ли вам, что развитие технологий смахивает на игру в русскую рулетку – рано или поздно она выстрелит. И тогда уже будет поздно сожалеть, что мы так и не выложили патрон из барабана.


Эккард Виммер (Eckard Wimmer) и его коллеги из Университета в Стоуни-Брук (Stony Brook University) собрали из небольших фрагментов (олигонуклеотидов) полную РНК вируса полиомелита (полиовируса).

В 2002 году это было не так-то просто сделать. РНК полиомиелита состоит из 7500 нуклеотидов (это сравнительно немного: РНК вируса Эбола состоит из 19 тысяч нуклеотидов). Кусочки РНК-олигонуклеотиды заказывали в биотехнологических компаниях, а потом склеивали.

Когда плотность синтезированной вирусной РНК в этом экстракте достигла критической массы, линейная РНК свернулась в нормальную трехмерную форму, и синтетический вирус ожил.

После того, как вышла статья Виммера и его коллег, ученым пришлось отвечать на вопрос: а не могут ли теперь террористы запросто собрать любой смертельный вирус и провести масштабную атаку?

Виммер утверждал, что вероятность такого поворота событий крайне мала, но полностью отрицать такую возможность не мог. С тех пор прошло уже полтора десятилетия. Достижения генетиков на пути синтеза организмов очень значительны (о них эта заметка), но террористических атак с помощью синтетических вирусов пока не было.

Является ли вирус живым организмом? Ответ Виммера довольно неожиданный – вирус и живой, и неживой, в зависимости от условий, в которых он находится.

Вывод из этого радикальный: окончательная победа над вирусом невозможна, поскольку вне живой клетки он может сохраняться неограниченно долго, а при изменении условий способен воскреснуть (именно так – без кавычек) и сделать свое черное дело. Если даже мы достигли больших успехов в борьбе с полиомелитом не стоит расслабляться и полностью прекращать прививки. Вирусы ждут своего шанса как шарики для пинг-понга, рассыпанные по столу. Стоит ему слегка накрениться, и они начнут прыгать, – и собираться в смертельно опасное оружие.

Для этого необходимо понять, что же все-таки существенно в ДНК, а что – нет. Вентер и его коллеги посчитали, что для нормального развития организма необходимы гены, которые отвечают за четыре важнейших процесса: хранение генетической информации, синтез белков, метаболизм клетки и формирование клеточной мембраны. Все остальные фрагменты ДНК не столь существенны.

Чтобы выделить жизненно необходимый минимум генов, биологи взяли бактерии Mycoplasma и, начиная с 1995 года, провели полную расшифровку нескольких их геномов.

Сравнивая разные геномы, ученые выяснили, что все они содержат примерно 250 основных генов, которые встречаются всегда. Тогда был сформулирована гипотеза о Гипотетическом Минимальном Геноме (ГМГ), который обеспечит живому организму самостоятельное существование и который не содержит никаких несущественных фрагментов. И решено было создать бактерию с таким минимальным геномом.

Бактерии Mycoplasma – это паразиты млекопитающих. Они живут в среде, близкой к идеальной. Все, без чего можно обойтись, эти бактерии уже утратили в процессе эволюции. Стало быть, здесь и надо искать минимальный геном. Но как искать?

В 2010 году геном Mycoplasma mycoides был уже не взят из живой бактерии, а химически синтезирован, и потом пересажен в клетку Mycoplasma capricolum – и Mycoplasma capricolum стала Mycoplasma mycoides.

Трудности на этом пути были отнюдь не только технические. Пришлось изобрести множество совершенно новых методов сборки и отладки кода. Одной из самых трудных задач при написании программы на машинном языке является поиск ошибок.

Если ДНК – это язык программирования (а Крэйг Вентер и его коллеги в этом уверены), то, не умея тестировать, большую программу мы написать не сможем.

То есть исследователи нашли один потерянный нуклеотид из миллиона. Это очень похоже на процесс отладки компьютерной программы, правда, написанной скорее на ассемблере, а не языке высокого уровня. Но, в принципе, ДНК – это и есть ассемблер, а языки высокого уровня еще предстоит создать.

В результате ученым удалось полностью синтезировать работающую ДНК и, используя метод, разработанный в 2007 году, вставить ее в клетку. Клетка модифицировалась и стала жить.



Вполне вероятно, что в обозримом будущем значение этого слова применительно к компьютерным данным получит свое оригинальное значение. Дело в том, что этим летом исследователям из Microsoft и Университета Вашингтона удалось сделать то, что не удавалось сделать до них никому, — записать 200 Мбайт данных в виде последовательности нуклеотидов, входящих в состав искусственно созданной ДНК.

Какое отношение к этому имеют вирусы? Да самое прямое! Вирусы внедряют свой генетический код в ДНК клеток пораженных организмов, заставляя их воспроизводить себя, а не полезные для организма белки (напомню, что жизнь, как учили нас классики, — это форма существования белковых тел).

Особенно агрессивные вирусы настолько мешают нормальной работе пораженного ими организма, что в итоге приводят к его смерти. Точно так же особенно неприятный вредоносный код может привести к невозможности использовать пораженную информационную систему.

Все признаки организма, начиная от цвета волос и глаз и заканчивая предрасположенностью к наследственным заболеваниям, записаны в ДНК. Записаны они в виде последовательности нуклеотидов — молекулярных блоков, содержащих в себе всего лишь четыре разновидности азотистых оснований: аденин, гуанин, тимин, цитозин. Это такие биологические биты.

Как видите, в отличие от человека, матушка-природа использовала не двоичную систему счисления, а четверичную. Кстати, природа хорошо позаботилась о защите от сбоев — у большинства живых существ ДНК представляет собой не одну, а две цепочки нуклеотидов, закрученные друг вокруг друга как витая пара в двойную спираль.

Держатся эти две цепочки друг за друга водородными связями, которые образуются только в том случае, если с каждой из сторон расположен строго определенный нуклеотид, — таким образом автоматически гарантируется взаимное соответствие информации в каждой из двух спиралей. На этом и основан первый механизм защиты от сбоев: при расшифровке или репликации ДНК используется одна из двух спиралей, а вторая играет роль контрольной — на тот случай, если вдруг какая-то последовательность нуклеотидов, кодирующих тот или иной генетический признак, оказалась в одной из спиралей повреждена.

Кроме взаимного соответствия двух цепочек нуклеотидов кодирование наследственных признаков дополнительно производится с применением избыточного алгоритма — можно сказать, что каждый наследственный признак, записанный в виде последовательности биологических битов — оснований, дополнительно снабжен контрольной суммой.

За те полвека, что прошли с момента открытия ДНК, эти последовательности довольно неплохо изучены, что позволяет любому желающему заказать расшифровку основных генетических признаков собственной ДНК онлайн, причем не только в ближайшей лаборатории, но и в Интернете — с помощью сервиса 23andme и аналогичных ему.

Теперь о том, как информацию ДНК считывают. Изначально в распоряжении ученых были такие методы, как рентгеновский структурный анализ, семейство спектроскопических методов и масс-спектрометрия. Все эти методы неплохо работают для небольших молекул, состоящих из двух, трех, четырех атомов, но все становится сильно сложнее, когда количество атомов действительно велико.

Однако ДНК не зря считают самой большой молекулой в нашем организме — в человеческой ДНК из гаплоидной клетки содержится порядка 3 млрд пар оснований. Ее молекулярная масса на несколько порядков больше молекулярной массы самого крупного из известных науке белков.

В общем, это неимоверно огромная куча атомов, поэтому на расшифровку данных при использовании классических методов считывания даже сегодня, с применением суперкомпьютеров, легко уходят месяцы, а то и годы.

Но ученым удалось придумать метод секвенирования, который сильно ускоряет процедуру. Основная его идея — разбиение одной длинной последовательности атомов на много коротких фрагментов, которые можно анализировать параллельно, тем самым кратно увеличивая скорость расшифровки.

Но поскольку нам нужна не просто полная копия ДНК, а нарезка на короткие фрагменты, то дополнительно используют так называемые праймеры и маркеры — соединения, сообщающие полимеразе, где начать клонировать, а где закончить.

Если говорить в компьютерных терминах, то происходит это следующим образом. Допустим, у нас есть комбинация бит 1101100001010111010010111. Предположим, что нашим праймером является комбинация 0000, а маркером — комбинация 11. В результате секвенирования мы получим следующий набор фрагментов, в порядке убывания их вероятности: 0000101011, 00001010111, 0000101011101001011, 00001010111010010111.

Варьируя праймер и маркер, мы в конечном итоге переберем все возможные комбинации бит, считаем их, а после считывания восстановим из отдельных фрагментов всю последовательность.

Выглядит немного сложно и неочевидно, но это действительно работает и обеспечивает неплохую скорость, поскольку в итоге все необходимые действия можно делать параллельно. Неплохая скорость по меркам биологов — это несколько часов. Существенно лучше вышеупомянутых месяцев или даже лет, но по меркам ИТ, скажем так, многовато.

Научившись за полвека неплохо считывать информацию из ДНК, оставалось научиться синтезировать цепочки нуклеотидов. Тут надо уточнить, что исследователи Microsoft были не первыми, кто записал информацию в виде двойной спирали ДНК. Первыми были ученые из европейского института биоинформатики (EMBL-EBI), несколько лет назад записавшие 739 Кбайт.

В чем же новизна достижений Microsoft? Во-первых, в существенном увеличении объема записи — до 200 Мбайт. Уже довольно близко к тем 750 Мбайт, которые содержатся в ДНК человека. Впрочем, главная инновация состоит в том, что исследователи предложили способ, позволяющий считывать не всю ДНК целиком, а ее отдельный участок — порядка 100 битов-оснований за одну операцию.

Пока ученые считают, что основной нишей подобного использования ДНК могут стать модули памяти высокой плотности, предназначенные для длительного хранения информации. В этом есть смысл — плотность записи данных в лучших современных образцах флеш-памяти достигает десятков квадриллионов (

10 16 ) бит на кубический сантиметр, в то время как плотность хранения данных в ДНК на три порядка выше: десятки квинтиллионов (

Дополнительное преимущество состоит в том, что молекулы ДНК достаточно стабильны и, с учетом алгоритмов коррекции ошибок, позволяют хранить информацию годами, а то и веками.

Что это означает с точки зрения информационной безопасности? А означает это, что целостности записанной в таком видео информации угрожают организмы, которые специализируются на порче данных уже миллиарды лет, — вирусы.

А вот надо ли будет думать о защите от обычных вирусов, работая с таким запоминающим устройством, — вопрос открытый. Ведь если в раствор с ДНК попадет, например, вирус насморка, полимераза, скорее всего, будет реплицировать и его тоже.

Поэтому как бы не пришлось, прочитав ДНК-чип лет через десять после его записи, вспоминать, не чихала ли лаборантка во время записи важного архивного документа.

У РНК-содержащих ретровирусов сначала происходит обратная транскрипция генома в ДНК, затем ее интеграция в клеточные хромосомы и лишь после этого транскрипция генов.

Цитопатические эффекты при вирусных инфекциях разнообразны, они определяются как вирусом, так и клеткой и сводятся к разрушению клетки (цитолитический эффект), сосуществованию вируса и клетки без гибели последней (латентная и персистирующая инфекция) и трансформации клетки.

Вовлеченность организма в инфекционный процесс зависит от ряда обстоятельств - количества погибших клеток, токсичности вирусов и продуктов распада клеток, от реакций организма, начиная от рефлекторных и заканчивая иммунными. Количество погибших клеток влияет на тяжесть инфекционного процесса. Например, будут ли поражены при гриппе только клетки носа и трахеи или вирус поразит клетки эпителия альвеол, зависит тяжесть и исход болезни.

Хотя вирусы и не образуют типичных токсинов, однако и вирионы, и вирусные компоненты, накапливающиеся в пораженных тканях, выходя в кровоток, оказывают токсическое действие. Неменьшее токсическое действие оказывают и продукты распада клеток. В этом случае действие вирусной инфекции столь же неспецифично, как и действие патогенных организмов, убивающих клетки и вызывающих их аутолиз. Поступление токсинов в кровь вызывает ответную реакцию - лихорадку, воспаление, иммунный ответ. Лихорадка является преимущественно рефлекторным ответом на поступление в кровь и воздействие на ЦНС токсичных веществ.

Если лихорадка - общий ответ организма на вирусную инфекцию, то воспаление - это местная многокомпонентная реакция. При воспалении происходят инфильтрация пораженных тканей макрофагами, утилизация продуктов распада, репарация и регенерация. Одновременно развиваются реакции клеточного и гуморального иммунитета. На ранних стадиях инфекции действуют неспецифические киллеры и антитела класса IgM. Затем вступают в действие основные факторы гуморального и клеточного иммунитета. Однако гораздо раньше, уже в первые часы после заражения, начинает действовать система интерферона, представляющая семейство секреторных белков, вырабатываемых клетками организма в ответ на вирусы и другие стимулы. Описанные явления относятся к так называемой острой репродуктивной вирусной инфекции. Взаимодействие вируса и клеток может происходить, как отмечалось выше, без гибели последних. В этом случае говорят о латентной, т.е. бессимптомной или персистирующей хронической вирусной инфекции. Дальнейшая экспрессия вируса, образование вирусспецифических белков и вирионов вызывает синтез антител, на этой стадии латентная инфекция переходит в персистирующую и появляются первые признаки болезни.

Репродукция вируса в клетках сопровождается развитием цитопатических процессов, специфичных для разных вирусов и для разных типов инфекционных процессов. Цитопатические процессы при вирусных инфекциях разнообразны, они определяются как вирусом, так и клетками, причем специфика их больше "задается" клеткой, нежели вирусом, и сводится в основном к разрушению клеток, сосуществованию вируса и клеток без гибели последних и трансформация клеток. Несмотря на значительные различия цитоцидного действия разных вирусов, в общем, они сходны. Подавление синтеза клеточных макромолекул - нуклеиновых кислот и белков, а также истощение энергетических ресурсов клетки ведут к необратимым процессам, заканчивающимся гибелью пораженной клетки. Повреждение клеток вирусами, их отмирание и распад переносят вирусную инфекцию с клеточного уровня на уровень организма в целом.

При встрече организма с вирусной инфекцией продукция интерферона (растворимого фактора, вырабатываемого вирус-инфицированными клетками, способного индуцировать антивирусный статус в неинфицированных клетках) становится наиболее быстрой реакцией на заражение, формируя защитный барьер на пути вирусов намного раньше специфических защитных реакций иммунитета, стимулируя клеточную резистентность, - делая клетки непригодными для размножения вирусов.

Продукция и секреция цитокинов относятся к самым ранним событиям, сопутствующим взаимодействию микроорганизмов с макрофагами. Этот ранний неспецифический ответ на инфекцию важен по нескольким причинам: он развивается очень быстро, поскольку не связан с необходимостью накопления клона клеток, отвечающих на конкретный антиген; ранний цитокиновый ответ влияет на последующий специфический иммунный ответ.

Интерферон активирует макрофаги, которые затем синтезируют интерферон-гамма, ИЛ-1, 2, 4, 6, ФНО, в результате макрофаги приобретают способность лизировать вирус-инфицированные клетки.

Интерферон-гамма является специализированным индуктором активации макрофагов, который способен индуцировать экспрессию более 100 разных генов в геноме макрофага.

Продуцентами этой молекулы являются активированные Т-лимфоциты (Тh1-тип) и естественные киллеры (NK-клетки). Интерферон-гамма индуцирует и стимулирует продукцию провоспалительных цитокинов (ФНО, ИЛ-1, 6), экспрессию на мембранах макрофагов, антигенов МНС II; гамма-интерферон резко усиливает антимикробную и противовоспалительную активность путем повышения продукции клетками супероксидных радикалов, а усиление иммунного фагоцитоза и антителоопосредованной цитотоксичности макрофагов под влиянием гамма-интерферона связано с усилением экспрессии Fc-рецепторов для JgG. Активирующее действие интерферона-гамма на макрофаги опосредовано индукцией секреции этими клетками ФНО -альфа. Этот пик наблюдается совместно с ФНО-альфа. Максимум продукции ИЛ-4 наступает через 24-48 ч с момента активации клеток. При этом ИЛ-4 рассматривается как цитокин, ограничивающий иммуновоспалительные реакции и снижающий ответ организма на инфекцию, угнетая при этом экспрессию гамма-интерферона. Интерферон-гамма ин витро усиливает фагоцитарную активность нейтрофилов, что обусловлено усилением экспрессии Fc-рецепторов и поверхностных белков семейства интегринов на нейтрофилы. Это позволяет нейтрофилам осуществлять цитотоксические функции и фагоцитоз. В качестве основных эффекторных клеток воспалительного процесса, они обеспечивают элиминацию инфекта из организма.

Взаимодействие цитокина с клеткой определяется универсальной биологической системой, специфическим механизмом которой является рецепторный аппарат, связанный с восприятием метаболического кода. Для проявления биологической активности цитокина необходимо присутствие на поверхности чувствительных клеток специфических рецепторов, которые могут экспрессироваться параллельно с синтезом цитокина. Рецепторы цитокинов представляют собой комплексы, состоящие из двух и более рецепторных молекул, которые объединяются на мембране клетки-мишени и образуют высокоаффинный рецепторный комплекс. Большинство рецепторов состоит из отдельных молекул, связывающих цитокины, которые ассоциируются после связывания лиганда с сигналпередающим рецепторным компонентом; часть рецепторов существует как растворимые изоформы, способные связывать и растворять цитокины, а часть функционирует как многокомпонентные блоки; механизм комплексирования субъединиц рецепторов объясняет плейотропные и дублирующие эффекты цитокинов, имеющих большое структурное сходство. Рецепторы ИЛ-10 имеют гомологию рецепторов интерферона, и подобно ИЛ-10 индуцирует экспрессию в моноцитах гена Fc- рецептора. Для полного функционирования цитокиновой системы необходимы повышение уровня цитокина в ответ на инфект и экспрессия нормального количества рецепторов к ним на клетках. Изменение рецепторов после их связывания с цитокином заключается в интернализации комплексов цитокин - рецептор внутрь клетки. На поверхности клеток рецептор появляется заново, постепенно синтезируясь в течение 24-36 ч (время появления рецепторов интерферон-альфа). В этот период клетки остаются чувствительными к последующим дозам цитокина, чем объясняется эффективность введения препаратов интерферона и их индукторов три раза в неделю.

Пик продукции цитокинов после стимуляции макрофагов наблюдается через 1-2,6,18-48 ч, а пик продукции интерферон-гамма наступает через 20 ч после первого выхода цитокина из клетки. Поскольку интерферон-гамма ингибирует миелопоэз, то нормализация числа нейтрофилов после элиминации инфекта связана с системой регуляции нейтропоэза. Через 6 ч после стимуляции интерферон-альфа для выполнения своих функций NK-rклетки (активность которых регулируется ИЛ-1, 4, 2) продуцируют гамма-интерферон, в результате чего происходит лизис инфицированных клеток.

При антигенной стимуляции клеток трансдукция сигнала с активированного рецептора на генетический аппарат осуществляется с помощью внутриклеточных регуляторных систем, компоненты которых (белки мембран, ферментов, хроматина) связываются с чувствительными к ним последовательностями ДНК. После связывания цитокина (интерферон) с поверхностными клеточными мембранными рецепторами происходит активация ферментов протеинкиназы-С (ПКС), тирозинкиназы, ц-АМФзависимой протеинкиназы, серин-треонинкиназы. Интерферон-альфа активирует tyk 2 и jak 1-киназы, а интерферон-гамма активирует jak 1 и 2-киназы. Далее факторы транскрипции перемещаются в ядро клетки и связывают гены раннего ответа.

Первый ответ клеток на цитокин - это быстрая индукция генов раннего ответа ("immediate early" генов), в число которых и входит ген интерферон-гамма. Стимуляция экспрессии этих генов важна для выхода клеток из Go-стадии и перехода в Gi-стадию и дальнейшей прогрессии клеточного цикла. Их индукция происходит после активации рецепторов роста на клеточной мембране и активации протеин-киназной системы. Гены раннего ответа являются ключевыми регуляторами клеточной пролиферации и дифференцировки, кодируют белки, регулирующие репликацию ДНК.

Таким образом, при активации клеток происходит стимуляция генов раннего ответа, что ассоциируется с изменением фаз клеточного цикла. Основная протективная роль в иммунном ответе, направленном против внутриклеточных паразитов (грибы, простейшие, вирусы, микобактерии туберкулеза), принадлежит клеточным механизмам. Способность перечисленных возбудителей переживать и размножаться внутри клеток делает их защищенными от действия антител и системы комплемента. Резистентность к антимикробным факторам макрофагов позволяет им длительно переживать внутри этих клеток. Для элиминации возбудителя необходим специфический клеточно-опосредованный ответ. Его специфичность определяется антигенраспознающими СД8+-Т-лимфоцитами, которые пролиферируют, активируются и формируют клон эффекторных цитотоксических лимфоцитов. Решающий момент специфического иммунного ответа - это ответ СД4+Т-лимфоцитов с хелперной направленностью на распознавание антигена. На этом этапе определяется форма иммунного ответа: либо с преобладанием гуморального иммунитета, либо с преобладанием клеточных реакций (ГЗТ). Направление дифференцировки СД4 + -лимфоцитов, от которого зависит форма специфического иммунного ответа, контролируется цитокинами, образующимися в ходе воспалительной реакции. Так, в присутствии ИЛ-12 и интерферон-гамма СД4 + -лимфоциты дифференцируются в воспалительные Тh1-клетки, начинают продуцировать и секретировать интерлейкин-2, интерферон-гамма, ФНО и определяют клеточный характер специфического иммунного ответа. Присутствие ИЛ-12 обеспечивается его продукцией макрофагами, а интерферон-гамма - естественными киллерами, активированными в раннюю фазу ответа на внутриклеточно паразитирующие бактерии и вирусы. В отличие от этого, в присутствии ИЛ-4 СД4 + -лимфоциты дифференцируются в хелперы Тh 2, которые начинают продуцировать и секретировать ИЛ-4, ИЛ-5, ИЛ-6 и запускают гуморальный иммунный ответ, т.е. синтез специфических антител - иммуноглобулинов. Воспалительные Тh 1-лимфоциты нужны для борьбы с внутриклеточными паразитами, а Тh 2 хелперы нужны для элективной защиты от внеклеточных паразитов.

Вирусная инфекция может вызывать быстрое подавление экспрессии ряда клеточных генов (из которых наиболее изучены интерфероновые гены и гены, кодирующие дс-РНК-зависимые ферменты -2,5-ОАС и ПК-дс), принимающих участие в антивирусном действии. Специальные исследования механизма антивирусного действия интерферонов и дс-РНК в клеточных и бесклеточных системах показали ключевую роль в этом процессе вышеуказанных ферментов. ПК-дс, взаимодействуя с дс-РНК, фосфорилируется и в активной форме фосфорилирует регуляторные факторы транскрипции и трансляции, из которых наиболее изучен инициирующий фактор трансляции (eIF2).

ПК-дс выполняет регуляторную роль в системе клеточной пролиферации на уровне факторов трансляции и активации ряда генов цитокинов. Вероятно, существует связь между подавлением транскрипции мРНК и ПК-дс, угнетением общего синтеза клеточного белка при вирусных инфекциях и накоплением в ядрах клеток белка нуклеокапсида и белка NSP2. Фрагментация клеточных хромосом, наблюдающаяся на ранних сроках вирусной инфекции, может быть одной из причин подавления экспрессии генов, участвующих в противовирусном ответе.

Есть основания предполагать участие белков NSP2 в регуляции активности генов цитокинов - низкомолекулярных белковых регуляторных веществ, продуцируемых клетками и способных модулировать их функциональную активность. Нарушения в системе цитокинов приводят к нарушению кооперативных взаимодействий иммунокомпетентных клеток и нарушению иммунного гомеостаза.

В последние годы показано, что ИЛ- 12, относящийся к провоспалительным цитокинам, является ключевым для усиления клеточно-опосредованного иммунного ответа и инициации эффективной защиты против вирусов.

Средства терапии гриппа и ОРЗ можно разделить на этиотропные, иммунокорригирующие, патогенетические и симптоматические. Приоритет принадлежит этиотропным препаратам, действие которых направлено непосредственно на возбудитель инфекции. Все препараты этиотропного действия целесообразно рассматривать с учетом их точек приложения в цикле репродукции вирусов гриппа и других ОРЗ.

Применение химиопрепаратов для профилактики и лечения гриппа и ОРЗ относится к базовой терапии и является общепризнанным мировым стандартом. Многолетние клинические исследования достоверно выявили их высокую лечебно-профилактическую значимость. Химиотерапевтические средства представлены тремя основными группами: это блокаторы М2-каналов (амантадин, ремантадин); ингибиторы нейраминидазы (занамивир, озельтамивир) и ингибиторы протеаз (амбен, аминокапроновая кислота, трасилол). Препараты оказывают прямое антивирусное действие, нарушая различные фазы репликативного цикла вирусов. Несколько особняком стоит группа вирулицидных препаратов, применяемых местно для предотвращения адсорбции и проникновения вирионов в клетки.

  1. Грипп и другие респираторные вирусные инфекции / под ред. О.И. Киселева, И.Г. Мариничева, А.А. Сомининой. - СПб, 2003.
  2. Дриневский В.П., Осидак Л.В., Цыбалова Л.М. Острые респираторные инфекции у детей и подростков // Практическое руководство под редакцией О.И. Киселева. - СПб, 2003.
  3. Железникова Г.Ф., Иванова В.В., Монахова Н.Е. Варианты иммунопатогенеза острых инфекций у детей. СПб, 2007. - 254 с.
  4. Ершов Ф.И. Грипп и другие ОРВИ // Антивирусные препараты. Справочник. - М., 2006. - С.226-247.
  5. Ершов Ф.И., Романцов М.Г. Антивирусные средства в педиатрии. - М., 2005. - С.159-175.
  6. Ершов Ф.И., Киселев О.И. Интерфероны и их индукторы (от молекул до лекарств). М., 2005. - С.287-292.
  7. Иванова В.В. Острые респираторно-вирусные заболевания // Инфекционные болезни у детей. - М., 2002.
  8. Онищенко Г.Г., Киселев О.И., Соминина А.А. Усиление надзора и контроля за гриппом как важнейший элемент подготовки к сезонным эпидемиям и очередной пандемии. - М., 2004. - С.5-9.
  9. Об утверждении стандарта медицинской помощи больным гриппом, вызванным идентифицированным вирусом гриппа (грипп птиц) // Приказ Минздравсоцразвития №460 от 07.06.2006 г.
  10. Романцов М.Г., Ершов Ф.И.Часто болеющие дети: Современная фармакотерапия. - М., 2006. - 192 с.
  11. Стандартизированные принципы диагностики, лечения и экстренной профилактики гриппа и других острых респираторных инфекций у детей / под ред. О.И. Киселева. - Санкт-Петербург. - 2004. - С.82-95.
  12. Лекарственные средства в фармакотерапии патологии клетки / под ред. Т.Г.Кожока. - М., 2007.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции