От попадающих в кровь бактерий и вирусов

Иммунитет – это уникальная способность организма самостоятельно защищаться от болезнетворных бактерий и вирусов, а также уничтожать собственные мутировавшие клетки. Иммунная система представляет собой целый мир в нашем организме, образованный различными органами, тканями и клетками, объединенными одной целью – обнаружить и уничтожить внешние и внутренние потенциальные угрозы в нашем организме. Мало кто знает, но 10% всех наших клеток – это клетки иммунитета.

Иммунитет – это устойчивость организма, его способность противостоять патогенным болезнетворным микробам, токсинам, а также воздействию чужеродных веществ, обладающих антигенными свойствами.

Иммунитет обеспечивает гомеостаз – постоянство внутренней среды организма на клеточном и молекулярном уровне.


Иммунитет – это одна из важнейших характеристик человека и всех живых организмов. Принцип иммунной защиты состоит в распознавании, переработке и удалении чужеродных структур из организма.

Органы иммунной защиты:


Неспецифические механизмы иммунитета – это общие факторы и защитные приспособления организма. К ним относятся кожа, слизистые оболочки, явление фагоцитоза, воспалительная реакция, лимфоидная ткань, барьерные свойства крови и тканевых жидкостей. Каждый из этих факторов и приспособлений направлен против всех микробов.

Неповреждённые кожа, слизистые глаз, дыхательных путей с ресничками мерцательного эпителия, желудочно – кишечного тракта с кислотами и ферментами, половых органов с нормальной микрофлорой являются непроницаемыми для большинства микроорганизмов.

Шелушение кожи – важный механизм её самоочищения.

Слюна содержит лизоцим, обладающий антимикробным действием.

В слизистых оболочках желудка и кишечника вырабатываются кислоты, щелочи, энзимы - ферменты, которые способны уничтожить болезнетворные микробы (патогены), а также вредные вещества, попадающие туда.

На слизистых оболочках существует естественная микрофлора, способная препятствовать прикреплению патогенов к этим оболочкам, и защищать, таким образом, организм.

Кислая среда желудка и кислая реакция кожи – биохимические факторы не специфической защиты.

Слизь также неспецифический фактор защиты. Она покрывает клеточные мембраны на слизистых оболочках, связывает попавшие на слизистую оболочку патогены и убивает их. Состав слизи смертелен для многих микроорганизмов.

Клетки крови , являющиеся факторами неспецифической защиты: нейтрофильные, эозинофильные, базофильные лейкоциты, тучные клетки, макрофаги, тромбоциты.

Кожа и слизистые оболочки первый барьер на пути патогенов. Эта защита довольно эффективна, но есть микроорганизмы, способные её преодолеть. Например, микобактерии туберкулёза, сальмонеллы, листерии, некоторые кокковые формы бактерий. Определённые формы бактерий вовсе не уничтожаются естественной защитой, например, капсулярные формы пневмококка.

Таким образом, улучшая работу желудочно-кишечного тракта и дыхательных путей, улучшая кровообращение, восстанавливая слизистые оболочки, питая печень, поджелудочную железу, нормализуя нервную и эндокринную системы, которые руководят всеми процессами в организме, мы нормализуем самое первое звено иммунной защиты — неспецифический иммунитет.

Специфические механизмы иммунной защиты - это вторая составляющая иммунной системы. Они срабатывают при проникновении чужеродного микроорганизма (патогена) через естественные неспецифические защитные приспособления организма. Появляется воспалительная реакция на месте внедрения патогенов.

Воспаление локализует инфекцию, происходит гибель проникших микробов, вирусов или других частиц. Основная роль в этом процессе принадлежит фагоцитозу.

Фагоцитоз – поглощение и ферментативное переваривание клетками фагоцитами микробов или других частиц. При этом организм освобождается от вредных чужеродных веществ. В борьбе с инфекцией происходит мобилизация всех защитных сил организма.

С 7 – 8 дня болезни включаются специфические механизмы иммунитета. Это образование антител в лимфатических узлах, печени, селезёнке, костном мозге. Специфические антитела образуются в ответ на искусственное введение антигенов при проведении прививок или в результате естественной встречи с инфекцией.

Антитела – белки, которые вступают в связь с антигенами и нейтрализуют их. Они действуют только против тех микробов или токсинов, в ответ на введение которых они вырабатываются. В крови человека содержатся белки альбумины и глобулины. Все антитела относятся к глобулинам: 80 - 90% антител составляют гамма - глобулины; 10 – 20% - бета-глобулины.

Антигены – чужеродные белки, бактерии, вирусы, клеточные элементы, токсины. Антигены вызывают в организме образование антител и вступают с ними во взаимодействие. Эта реакция строго специфичная.

Повышение иммунитета – важнейшая задача каждого человека. Так, если человек болеет острыми респираторными вирусными инфекциями (ОРВИ) чаще четырех раз в год, то ему следует подумать об укреплении иммунных функций организма.

Факторы, ослабляющие иммунные функции организма:

– оперативные вмешательства и наркоз;

– приём любых гормональных препаратов;

– неблагоприятная радиационная обстановка;

– травмы, ожоги, переохлаждения, кровопотери;

– частые простудные заболевания;

– инфекционные заболевания и интоксикации;

– хронические заболевания, в том числе сахарный диабет;

– вредные привычки (курение, частое употребление алкоголя, наркотиков и спайсов);

– малоподвижный образ жизни;

– нерациональное питание - употребление в пищу продуктов , снижающих иммунитет - копченостей, жирного мяса, колбас, сосисок, консервов, мясных полуфабрикатов;

– недостаточное потребление воды (менее 2х литров в сутки).

Задачей каждого человека является укрепление своего иммунитета, как правило, неспецифического иммунитета.

Для укрепления иммунитета следует:

– соблюдать режим труда и отдыха;

– полноценно питаться, в пище должно содержаться достаточное количество витаминов, минералов, аминокислот; для укрепления иммунитета необходимы в достаточном количестве следующие витамины и микроэлементы: А, Е, С, В2, В6, В12, пантотеновая кислота, фолиевая кислота, цинк, селен, железо;

– заниматься закаливанием и физической культурой;

– принимать антиоксиданты и другие препараты для укрепления иммунитета;

– избегать самостоятельного приёма антибиотиков, гормонов, кроме тех случаев, когда они назначены врачом;

– избегать частого употребления в пищу продуктов, снижающих иммунитет;

– употреблять для питья не менее 2х литров воды в сутки.

Создание специфического иммунитета против определённого заболевания можно только с помощью введения вакцины. Вакцинация – надёжный способ защититься от конкретного заболевания. При этом активный иммунитет осуществляется за счёт введения ослабленного или убитого вируса, который заболевание не вызывает, но включает работу иммунной системы.

Иммунитет ребёнка в руках матери. Если мать кормит своего ребёнка грудным молоком до года, то он растёт здоровым крепким и хорошо разв

Наш организм постоянно борется с микробами, вирусами, чужеродными бактериями, которые могут нанести смертельный вред нашему организму и резко сократить продолжительность жизни.

Нарушение иммунной системы можно рассматривать, как причину старения. Это самоуничтожение организма из-за нарушений в иммунной системе.

Даже в молодости, при отсутствии каких – либо заболеваний и ведении здорового образа жизни, в организме непрерывно появляются ядовитые вещества, способные разрушить клетки организма и повредить их ДНК. Большая часть ядовитых веществ образуется в кишечнике. Пища никогда не переваривается на 100%. Непереваренные белки пищи подвергаются процессу гниения, а углеводы – брожению. Токсичные вещества, образующиеся при этих процессах, попадают в кровь и оказывают негативное влияние на все клетки организма.

При нарушении иммунитета и развитии заболеваний возникает энергетический дисбаланс. В определённых меридианах, органах, тканях, частях тела энергии становится больше, она в избытке. В других меридианах, органах, тканях, частях тела её становится меньше, она в недостатке. Это является основой для развития различных заболеваний, в том числе инфекционных, нарушения иммунитета.

Хорошая иммунная система – это предпосылка для долгой и здоровой жизни.

В результате изучения материала данной главы студент будет:

знать

  • • о значении иммунной системы для организма, о механизмах и органах иммунной защиты;
  • • о возрастных морфофункциональных особенностях иммунных органов, об организации иммунного ответа в разные периоды онтогенеза, о факторах, влияющих на их состояние и развитие иммунитета в онтогенезе;
  • • возможные пути организации профилактических мероприятий, направленных на укрепление иммунной защиты в детском и подростковом возрасте;

уметь

  • • анализировать возрастные особенности иммунной защиты и обусловленные ими требования к уходу и воспитанию детей и подростков;
  • • анализировать теоретические предпосылки методов повышения иммунной защиты для обоснованного использования их в практической деятельности;

владеть навыками

• культурно-просветительной работы по вопросам иммунной защиты в детском и подростковом возрасте.

Механизмы иммунной защиты организма

Иммунитет – э го способность распознавать вторжение в организм чужеродных объектов и уничтожать или удалять эти объекты из организма.

В организме человека одновременно работают две иммунные системы, различающиеся своими возможностями и механизмом действия, – специфическая и неспецифическая. Специфические защитные механизмы отличаются тем, что они начинают действовать только после первичного контакта с антигеном, тогда как неспецифические обеззараживают даже тс вещества, с которыми организм прежде не встречался. Однако специфическая иммунная система является наиболее мощной и эффективной.

При проникновении в организм антигена клетки специфической иммунной системы начинают вырабатывать антитела и антитоксины, которые соединяются с антигенами и нейтрализуют их вредное влияние на организм. Антитела, или иммунные тела, представляют собой циркулирующие в крови белковые вещества (иммуноглобулины), образующиеся в организме под действием попавших в него чужеродных тел (бактерий, вирусов, белковых частиц и др.), называемых антигенами. Антитоксины – это антитела, синтезирующиеся в организме при его отравлении токсинами (ядовитыми веществами, продуцируемыми патогенными микроорганизмами).

Основной структурной и функциональной единицей специфической иммунной системы является белая кровяная клетка – лимфоцит, который существует в виде двух независимых популяций (Т-лимфоциты и В-лимфоциты). Лимфоциты, как и другие клетки крови, образуются из стволовых клеток костного мозга. Из части стволовых клеток формируются непосредственно В-лимфоциты. Другая часть поступает в тимус (вилочковую железу), где они дифференцируются в Т-лимфоциты.

В специфической борьбе с чужеродными микроорганизмами участвуют и клетки (клеточный иммунитет), и антитела (гуморальный иммунитет).

Клеточный иммунитет. Т-лимфоциты, несущие на своих мембранах рецепторы соответствующих веществ, распознают иммуноген. Размножаясь, они образуют клон таких же Т-клеток и уничтожают микроорганизм или вызывают отторжение чужеродной ткани.

Гуморальный иммунитет. В-лимфоциты также распознают антиген, после чего синтезируют соответствующие антитела и выделяют их в кровь. Антитела связываются с антигенами на поверхности бактерий и ускоряют их захват фагоцитами либо нейтрализуют бактериальные токсины.

Становление механизмов специфического иммунитета связано с формированием лимфоидной системы, дифференцировкой Т- и В-лимфоцитов, которая начинается с 12-й недели внутриутробной жизни. У новорожденных содержание Т- и В-лимфоцитов в крови выше, чем у взрослого, но они менее активны, поэтому основную роль играют антитела, попадающие в кровь ребенка от матери через плаценту до рождения и поступающие с материнским молоком.

Собственная иммунная система начинает функционировать с началом развития микрофлоры в желудочно-кишечном тракте ребенка. Микробные антигены являются стимуляторами иммунной системы организма новорожденного. Примерно со 2-й недели жизни организм начинает выработку собственных антител. В первые 3–6 месяцев после рождения разрушается материнская и созревает собственная иммунная система. Низкое содержание иммуноглобулинов в течение первого года жизни объясняет легкую восприимчивость детей к различным заболеваниям. Только ко 2-му году организм ребенка обретает способность вырабатывать достаточное количество антител. Иммунная защита достигает максимума на 10-м году. В дальнейшем напряженность иммунитета держится на постоянном уровне и начинает снижаться после 40 лет.

Важнейшим свойством специфической иммунной системы является иммунологическая память. В результате первой встречи запрограммированного лимфоцита с определенным антигеном образуется два вида клеток. Одни из них сразу выполняют свою функцию – секретируют антитела, другие представляют собой клетки памяти, циркулирующие в крови длительное время. В случае повторного поступления этого же антигена клетки памяти быстро превращаются в лимфоциты, вступающие в реакцию с антигеном (рис. 10.1). При каждом делении лимфоцита количество клеток памяти возрастает.


Рис. 10.1. Первичный и вторичный иммунные отклики

(на графике видно, что организм, один раз уже боровшийся с инфекцией, во второй раз реагирует быстрее и более мощно)

Кроме того, после встречи с антигеном Т-лимфоциты активируются, увеличиваются и дифференцируются в одну из пяти субпопуляций, каждая из которых обусловливает определенный ответ. Т-киллеры (убийцы) при встрече с антигеном вызывают его гибель. Т-супрессоры подавляют иммунный ответ В-лимфоцитов и других Т-лимфоцитов на антигены. Для осуществления иммунного ответа В-лимфоцита на антиген необходима его кооперация с Т-хелпером (помощником). Но это взаимодействие возможно только при наличии макрофага – Е-клетки. При этом макрофаг передает антиген В-лимфоциту, который затем продуцирует плазматические клетки, уничтожающие чужеродный микроорганизм.

В-лимфоцит производит сотни плазматических клеток. Каждая такая клетка дает огромное количество антител, готовых уничтожить антиген. Антитела по своей природе являются иммуноглобулинами и обозначаются Ig. Иммуноглобулины бывают пяти видов: IgA, IgG, IgE, IgD и IgM. Около 15% всех антител – это IgG, которые вместе с IgM воздействуют на бактерии и вирусы. IgA защищают слизистые оболочки пищеварительной, дыхательной, мочеполовой систем. IgE ответственны за аллергические реакции. Увеличение количества IgM свидетельствует об остром заболевании, IgG – о хроническом процессе.

Кроме того, лимфоциты продуцируютлимфокипы. Самый известный из них – интерферон, который образуется под действием вируса. Функцией интерферона является стимуляция неинфицированных клеток к выработке противовирусных белков. Интерферон активен против всех видов вирусов и способствует увеличению числа Т-лимфоцитов.

Активация лимфоцитов приводит также к синтезу клетками неспецифических биологически активных веществ, называемых цитокинами, или интерлейкинами. Эти вещества регулируют характер, глубину, продолжительность иммунного ответа и иммунного воспаления. Продолжительность жизни В-лимфоцитов составляет несколько недель, Т-лимфоцитов – 4–6 месяцев.

Специфический иммунитет может быть активным и пассивным, врожденным и приобретенным. Существуют четыре основных типа иммунитета:

  • • естественный пассивный иммунитет (иммунитет новорожденного) – готовые антитела передаются от одного индивидуума к другому (того же вида); вследствие естественного разрушения антител в организме он обеспечивает лишь кратковременную защиту от инфекции;
  • • приобретенный пассивный иммунитет – на основе образованных в организме одного индивидуума антител создают лечебные сыворотки и вводят их в кровь другому; этот вид иммунитета также сохраняется непродолжительное время;
  • • естественный активный иммунитет – организм вырабатывает собственные антитела при инфицировании;
  • • приобретенный активный иммунитет – в организм вводятся небольшие количества иммуногенов в виде вакцины.

Неспецифические факторы защиты включают:

  • • непроницаемость кожного покрова и слизистых оболочек для микроорганизмов;
  • • бактерицидные вещества в слюне, слезной жидкости, крови, спинномозговой жидкости;
  • • выделение вирусов почками;
  • • фагоцитоз – процесс поглощения чужеродных частиц и микроорганизмов специальными клетками: макрофагами и микрофагами;
  • • гидролитические ферменты, расщепляющие микроорганизмы;
  • • лимфокины;
  • • систему комплемента – специальную группу белков, участвующих в "борьбе" с чужеродными микроорганизмами.

Фагоцитарная реакция осуществляется с помощью специальных лейкоцитов, способных к фагоцитозу, т.е. поглощению болезнетворных агентов и комплексов антиген-антитело. У человека фагоцитарную роль выполняют нейтрофилы и моноциты. Как только в организм попадают чужеродные частицы, к месту их внедрения направляются находящиеся поблизости лейкоциты, причем скорость некоторых из них может достигать почти 2 мм/ч. Приблизившись к чужеродной частице, лейкоциты обволакивают ее, втягивают внутрь протоплазмы и затем переваривают с помощью специальных пищеварительных ферментов. Многие из лейкоцитов при этом гибнут, и из них образуется гной. При распаде погибших лейкоцитов выделяются также вещества, вызывающие в ткани воспалительный процесс, сопровождающийся неприятными и болевыми ощущениями. Вещества, обусловливающие воспалительную реакцию организма, способны активировать все защитные силы организма: к месту внедрения чужеродного тела направляются лейкоциты из самых отдаленных частей тела.

Наш организм подобен государству, границы которого ежедневно штурмуют толпы иностранцев, въезд которых в страну нежелателен или даже строго запрещен. Через широко распахнутые входные ворота пищеварительной и дыхательной систем в него проникают многочисленные микроскопические простейшие, споры грибов, пыльца, бактерии и всевозможные вирусы. По счастью, большинство этих невольных иммигрантов не представляют для нас потенциальной угрозы. Организм - государство с четко работающей полицейской инфраструктурой, и прибывающие чужаки встречают более чем суровый прием. Большинство из них гибнет еще на контрольно-пропускных пунктах нашего тела - на влажных оболочках глаз, в гортани. Многие вязнут в трясине слизистых выделений носовых ходов и альвеол легких. "Зайцы", попадающие в организм вместе с пищей, перевариваются в желудке. Наконец, наиболее упорных, добравшихся до кровеносной системы, добивает иммунная система.

Основную массу незванных микроскопических визитеров составляют безобидные дилетанты, вовсе не вынашивающие коварных планов интервенции. Иначе ведут себя хорошо вышколенные профессиональные агенты - патогенные вирусы. Они способны нарушать границы клеточного государства нашего тела в самых труднодоступных для микроорганизмов местах, порой не без помощи человека. Именно так на острие нестерильной иглы шприца в кровь проникают вирусы гепатита и СПИДа.

Некоторые вирусы устроены так, что им для активирования необходимо вмешательство защитных сил организма. Так, например, ротавирусам, вызывающим у детей тяжелые кишечные заболевания, необходима атака протеолитических ферментов пищеварительной системы. При этом разрушаются защитные участки на поверхности вирусов и оголяются специальные белки, обеспечивающие связывание этих вирусов с клетками-мишенями.

Поверхностные белки позволяют вирусам безошибочно находить свои жертвы среди миллиардов клеток по специальным белкам-маркерам на их поверхности. Нередко несколько разных типов клеток несут на своей поверхности одинаковые маркеры, что свидетельствует об их общем происхождении. Вирусы атакуют всех представителей одной клеточной "семьи". Вирус СПИДа, например, проникает не только в лимфоциты, но и в макрофаги, в некоторые костные клетки и даже в те клетки кожи, у которых с клетками иммунной системы имеются общие предки.

После того как вирус проник в организм, его атака на клетки-мишени происходит порой так быстро, что иммунная система просто не успевает организовать группу захвата - то есть выработать специфические антитела. С током крови вирусная частица за сутки может попасть в любой участок тела. А первичный иммунный ответ развивается минимум за неделю, да и то если вирусов много и они постоянно доступны для атак макрофагов и лимфоцитов.

Вирусы же, атаковав свою жертву, часто "ложатся на дно": не размножаются, а лишь встраивают свой генетический материал в виде фрагмента ДНК в геном клетки-мишени. Именно так ведут себя вирусы СПИДа, относящиеся к группе ретровирусов. К сожалению, в клетках нет механизма контроля за "чистотой" собственного генома, и встроенный фрагмент вирусной ДНК может копироваться вместе с геномом клетки-хозяина годами, до поры до времени никак себя не проявляя. Поэтому от момента заражения, например вирусом СПИДа, до начала собственно заболевания могут пройти годы.

На первый взгляд обнаружить специфическую вирусную ДНК в немногих зараженных клетках так же трудно, как найти листик с шифровкой о диверсионных действиях, засунутый между страниц многотомного издания, хранящегося в обширной библиотеке. И тем не менее способ детекции существует. Он основан на уникальности фрагментов ДНК. Достаточно сказать, что отрезок длиной всего в 15 нуклеотидов может иметь миллиард вариантов. Именно благодаря такому разнообразию любой уникальный отрезок ДНК можно опознать по его небольшому фрагменту. Представьте себе, что вам в руки попался маленький клочок бумаги с единственной строчкой: "Мой дядя самых честных правил. ". Совершенно очевидно, что это отрывок из романа А.С. Пушкина "Евгений Онегин" и к творчеству Ф.М. Достоевского он отношения не имеет. Не вдаваясь в методические тонкости, достаточно упомянуть полимеразную цепную реакцию (ПЦР).

Чувствительность молекулярных методов детекции чужеродной ДНК методом ПЦР потрясает воображение - достаточно нескольких десятков молекул ДНК в 1 мл раствора. Таким образом можно, например, обнаружить один зараженный лимфоцит из многих сотен тысяч. Если же учесть, что лимфоциты составляют лишь несколько процентов от всех клеток крови, а единственная копия вирусной ДНК затеряна в клеточном ядре среди сотен тысяч генов самого организма, то успех охоты за вирусом представляется просто фантастическим! Правда, обнаружить вирус таким изощренным способом можно только с помощью дорогих реактивов в хорошо оснащенной биологической лаборатории. К тому же необходимо соблюдать особую чистоту на всех этапах работы.

Дело в том, что окружающий нас мир полон не только микробов и вирусов. Он насыщен молекулами ДНК. Во-первых, каждый человек, включая исследователей, лаборантов, врачей и пациентов, разбрасывает вокруг себя сотни тысяч постоянно слущивающихся клеток кожи. Все они содержат полный геном человека. Во-вторых, в лабораториях, где работают с ДНК, фрагменты этих молекул буквально носятся в воздухе. Попади они в пробы для анализа, и в результате возможна ошибка.

Поэтому уверенная диагностика вирусных инфекций часто становится возможной только тогда, когда вирусы начинают творить свое черное дело - интенсивно размножаться. Делают это они, надо признать, виртуозно. Нередко при этом весь биосинтетический аппарат клетки переключается на производство вирусных частиц. При полиомиелите, например, уже через несколько часов работы в таком режиме из одной лопнувшей клетки выходят сотни тысяч новых вирусных частиц.

И все же, несмотря на такие темпы размножения, попытки поставить диагноз, непосредственно обнаружив разбойничающий вирус, часто обречены на провал. Ведь счет клеток в организме идет на миллиарды, а в поле зрения электронного микроскопа попадают лишь единицы. Поиск вирусов под микроскопом можно уподобить проверке документов у группы случайно задержанных лиц в надежде наткнуться на вражеского шпиона. К тому же некоторые вирусы предпочитают обретаться в местах более чем труднодоступных для взятия проб. К примеру, вирус бешенства в качестве своей штаб-квартиры облюбовал так называемые аммоновы рога - структуру головного мозга, к которой без трепанации черепа не доберешься.

Обычно вирусную инфекцию обнаруживают совершенно иначе. Для того чтобы утверждать, что в организме присутствуют те или иные вирусы, достаточно обнаружить его реакцию на них. Дело в том, что наш организм обеззараживает вирусы примерно так же, как сами вирусы находят клетки-мишени. Все сводится к взаимодействию комплементарных (взаимно соответствующих) поверхностей молекул - они образуют комплекс по принципу "ключ-замок". Сначала иммунная система с помощью макрофагов и Т-лимфоцитов тщательно знакомится с особенностями пространственного устройства отдельных участков вирусных белков (иммунологи называют их антигенами). Затем В-лимфоциты начинают вырабатывать специфические антитела - иммуноглобулины, взаимодействующие только с этими антигенами. Поскольку белки вирусов уникальны, то и образовавшиеся к ним антитела высокоспецифичны. Словно спущенная с цепи свора гончих, иммуноглобулины рыскают по кровеному руслу и протокам лимфатической системы, готовые в любую минуту опознать непрошенных гостей и "вцепиться" в них. Таким образом достаточно доказать существование в организме определенного количества антител к искомому вирусу, и в его присутствии можно не сомневаться.

На первый взгляд такая задача кажется почти неразрешимой. Число различных вариантов антител оценивается специалистами в сотни миллионов, да к тому же все антитела внешне похожи друг на друга. Решить эту проблему можно с помощью специфических взаимодействий антигенов и антител. Дело в том, что вирусные белки реагируют только со специфическими, комплементарными им антителами, а все остальные антитела им безразличны. Таким образом задача исследователя сводится к добавлению в образец плазмы крови своеобразной приманки - вирусных белков. Если комплексы образуются, значит, данный вирус уже успел поразбойничать в организме.

Успех охоты на вирус во многом зависит от качества приманки. Чтобы ее получить, вирусы культивируют в лабораториях на специальных клеточных линиях, затем очищают, концентрируют, после чего лизируют вирусные частицы - "разбирают" их на отдельные части. Некоторые из белков, на которые реагирует иммунная система (обычно это поверхностные белки вируса), тем или иным способом фиксируют на поверхности лунок, сделанных в специальных пластиковых планшетах. После добавления в лунки антител они прочно сядут на подготовленное для них ложе, если там есть вирусные белки.

Приготовление вирусных лизатов - процедура довольно хлопотная и опасная. Особенно когда имеешь дело с таким безжалостным убийцей, как вирус СПИДа. Гораздо безопаснее работать с отдельными вирусными белками, которые можно получить с помощью методов биотехнологии. Для этого соответствующие вирусные гены вводят в кишечную палочку. Она послушно начинает работать "на заказ", синтезируя помимо своих собственных белков некоторое количество вирусных. Кроме того, небольшие фрагменты вирусных белков удается синтезировать биохимическими методами.

Надо, впрочем, честно признаться, что оба этих способа не лишены своих недостатков. Например, трудно полностью отделить вирусные белки от белков кишечной палочки. А к последним в крови людей есть антитела, поэтому возможны ошибки при тестировании. Короткие синтетические пептиды могут оказаться плохими иммуногенами. Ведь крупный белок подчас облепляется антителами словно ежик яблоками. Разные иммуноглобулины садятся на разные участки белка - отсюда и мощный комплексный ответ иммунной системы на чужеродные белки. А на одну "иголочку" синтетического пептида много яблок не наколешь. В идеале следовало бы ловить антитела к вирусу на все его белки одновременно. Однако при таком способе резко возрастает стоимость тестирования.

Предположим, полученные тем или иным способом вирусные белки все-таки связались с комплементарными к ним антителами. Как же теперь выявить эти комплексы в сыворотке крови? Это стало возможно с начала 70-х гг. Именно тогда голландские исследователи Е.Энгвалл, П.Пельман, В.Ван-Вимен и А.Шуурс научились присоединять к антителам молекулы ферментов. Ферменты подбирают таким образом, чтобы легче было регистрировать результат катализируемых ими реакций. Например, они должны заметно менять цвет реакционной смеси. Антитела человека для других животных являются чужеродными белками, т.е. антигенами. Если ввести их, например, кролику, то в его крови появятся антитела на человеческие антитела, которые можно выделить. К полученным антителам животного "пришивают" соответствующий фермент. Получившийся комплекс, называемый конъюгатом, и используют для связывания с антителами человека.

В лунку с зафиксированными в ней вирусными антигенами (белками и их фрагментами) вносят каплю сыворотки крови пациента. Если антитела против вируса присутствуют в сыворотке, они прочно присоединятся к вирусным антигенам. Затем лунку промывают, удаляя все человеческие антитела, не имеющие отношения к данному вирусу. После промывки добавляют заранее полученный конъюгат. Если в лунке остались человеческие антитела, конъюгат к ним обязательно присоединится. Лунки снова промывают и добавляют субстрат для фермента. Если фермент в лунке остался, он изменит цвет реакционной смеси. Это и будет являться свидетельством того, что данный вирус в организм попал и иммунная система на такое вторжение отреагировала!

Описанную схему можно менять на все лады. Например, сажать на поверхность лунок не вирусный антиген, а очищенные антитела к нему. Тогда мы будем искать в сыворотке не антитела к вирусу, а сами вирусные частицы. Вместо кроличьих антител иногда используют белок А золотистого стафилококка, который великолепно связывается с любыми человеческими антителами. Наконец, фермент можно заменить радиоактивной меткой или флуоресцирующей краской. В общем, как говорится, возможны варианты.

В целом же наиболее распространенный в медицинской практике принцип поиска вирусов остается неизменным: на антиген сажают антитело, потом сверху еще одно антитело. Это похоже на приготовление бутерброда, не случайно поэтому иммунологи называют такой прием сэндвич-методом. Существуют и другие, более изощренные приемы. К сожалению, все они, включая дорогую диагностику чужеродной ДНК с помощью ПЦР, пока позволяют лишь констатировать печальный факт наличия вирусной инфекции. Однако диагностика инфекций совершенно необходима при оценке эффективности действия противовирусных препаратов, а также вакцин.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции