Новые вирусы под видом


Основы теории самораспространяющихся программ были заложены еще в 40-х годах ХХ века в трудах американского ученого Джона фон Неймана (John von Neumann), который также известен как автор базовых принципов работы современного компьютера. В этих работах описывались теоретические основы самовоспроизводящихся математических автоматов.

Здесь же мы расскажем о наиболее опасных образцах вредного ПО за всю долгую историю.

Прежде чем обсуждать их, давайте определим, что будет иметься в виду под наиболее опасными?

С точки зрения пользователя, это вирус, нанесший ему максимальный ущерб. А с точки зрения офицера информационной безопасности, это тот вирус, который вы еще не смогли обнаружить.

Данным критерием мы и будем руководствоваться в дальнейшем.

На мой взгляд, наиболее опасное вредоносное ПО — то, которое открывает новые возможности для заражения.

Первый сетевой вирус Creeper появился в начале 70-х годов в военной компьютерной сети Arpanet, прототипе Интернета. Программа была в состоянии самостоятельно выйти в сеть через модем и сохранить свою копию на удаленной машине. На зараженных системах вирус обнаруживал себя сообщением: I'M THE CREEPER: CATCH ME IF YOU CAN. В целом, вирус был безобидным, но раздражал персонал.


Для удаления назойливого, но, в общем-то, безвредного вируса неизвестный создал программу Reaper. По сути, это также был вирус, выполнявший некоторые функции, свойственные антивирусу: он распространялся по вычислительной сети и в случае обнаружения тела вируса Creeper уничтожал его.

Появление Creeper не только положило начало современному злоредному ПО, но и породило этап развития вирусов, на протяжении которого вирусописательство было уделом немногих талантливых программистов, не преследовавших при этом никаких материальных целей.

Brain (1986) — первый вирус для IBM-совместимых компьютеров, вызвавший глобальную эпидемию. Он был написан двумя братьями-программистами — Баситом Фаруком и Амжадом Алви (Basit Farooq Alvi и Amjad Alvi) из Пакистана. Е го о тличительной чертой была функция подмены в момент обращения к нему зараженного сектора незараженным оригиналом. Это дает право назвать Brain первым известным стелс-вирусом.


За несколько месяцев программа вышла за пределы Пакистана, и к лету 1987 г. эпидемия достигла глобальных масштабов. Фактически, это была первая и, увы, далеко не последняя эпидемия вирусов для IBM PC. В данном случае масштабы эпидемии, безусловно, были не сопоставимы с теперешними заражениями, но ведь эпоха Интернета была еще впереди.

Немецкий программист Ральф Бюргер (Ralf Burger) в 1986 г. открыл возможность создания программой своих копий путем добавления своего кода к выполняемым DOS-файлам формата COM. Опытный образец программы, получившей название Virdem, был продемонстрирован на форуме компьютерного андеграунда — Chaos Computer Club (декабрь, 1986, Гамбург, ФРГ). Это послужило толчком к написанию сотен тысяч компьютерных вирусов, частично или полностью использовавших описанные автором идеи. Фактически, данный вирус положил начало массовым заражениям.

Самая известная модификация вирусного семейства резидентных файловых вирусов Suriv (1987) — творения неизвестного программиста из Израиля, Jerusalem, стала причиной глобальной вирусной эпидемии, первой настоящей пандемией, вызванной MS-DOS-вирусом. Таким образом, именно с данного вируса начались первые компьютерные пандемии (от греч. pandemía — весь народ) — эпидемии, характеризующиеся распространением на территорию многих стран мира.


Jerusalem обладал несколькими зловредными функциями. Наиболее известной стала удаляющая с компьютера все программы, запускаемые в пятницу, 13-го числа. Поскольку совпадение пятницы с 13-м числом месяца случается не так уж часто, то большую часть времени Jerusalem распространялся незаметно, без какого-либо вмешательства в действия пользователей. Вместе с тем через 30 мин после загрузки в память вирус замедлял скорость работы компьютеров XT в 5 раз и демонстрировал маленький черный прямоугольник в текстовом режиме экрана.


Роберт Моррис

Червь Морриса (ноябрь, 1988) — первый сетевой червь, вызвавший эпидемию. Он написан 23-летним студентом Корнельского университета (США) Робертом Моррисом, использовавшим ошибки в системе безопасности операционной системы Unix для платформ VAX и Sun Microsystems. С целью незаметного проникновения в вычислительные системы, связанные с сетью Arpanet, использовался подбор паролей (из списка, содержащего 481 вариант). Общая стоимость ущерба оценивается в 96 млн долл. Ущерб был бы гораздо больше, если бы червь изначально создавался с разрушительными целями.

Данное зловредное ПО показало, что ОС Unix также уязвима для подбора паролей, как и другие ОС.

Chameleon (начало 1990 г.) — первый полиморфный вирус. Его автор, Марк Уошбурн (Mark Washburn), за основу для написания программы взял сведения о вирусе Vienna из книги Computer Viruses . The Disease of High Technologies Ральфа Бюргера и добавил к ним усовершенствованные принципы самошифрации вируса Cascade — свойство изменять внешний вид как тела вируса, так и самого расшифровщика.

Данная технология была быстро взята на вооружение и в сочетании со стелс-технологиями (Stealth) и бронированием (Armored) позволила новым вирусам успешно противостоять существующим антивирусным пакетам.

С появлением данной технологии бороться с вирусами стало значительно сложнее.

Concept (август, 1995) — первый макровирус, поражавший документы Microsoft Word. Именно в 1995 г. стало понятно, что заражаться могут не только исполняемые файлы, но и файлы документов.

Среди пользователей бытует мнение, что макровирус — просто безобидная подпрограмма, способная лишь на мелкие пакости вроде замены букв и знаков препинания. На самом же деле макровирус может очень многое: отформатировать винчестер или украсть что-то ценное для него не проблема.

Активизируется jон 26 апреля (дата катастрофы на Чернобыльской АЭС и дата рождения автора вируса).

LoveLetter — скрипт-вирус, 5 мая 2000 г. побивший рекорд вируса Melissa по скорости распространения. Всего в течение нескольких часов были поражены миллионы компьютеров — LoveLetter попал в Книгу рекордов Гиннеса.


Ситуация развивалась стремительно. Количество обращений (и количество пострадавших) росло в геометрической прогрессии.

Данный вирус распространялся с сообщениями электронной почты и по каналам IRC. Письмо с вирусом легко выделить. Тема письма — ILOVEYOU, что сразу же бросается в глаза. В самом письме содержатся текст kindly check the attached LOVELETTER coming from me и присоединенный файл с именем LOVE-LETTER-FOR-YOU.TXT.vbs. Вирус срабатывал только тогда, когда пользователь открывал этот присоединенный файл.

Вирус рассылал себя по всем адресам, которые находил в адресной книге почтовой программы MS Outlook инфицированного компьютера, а также записывал свои копии в файлы на жестком диске (необратимо затирая тем самым их оригинальное содержание). Жертвами вируса являлись, в частности, картинки в формате JPEG, программы Java Script и Visual Basic Script, а также целый ряд других файлов. И еще вирус прятал видео- и музыкальные файлы в форматах MP2 и MP3.

Кроме этого, вирус совершал несколько действий по инсталляции себя в систему и по установке отдельных дополнительных вирусных модулей, которые сам перекачивал из Интернета.

Все это свидетельствует о том, что вирус VBS.LoveLetter очень опасен! Наряду с прямой порчей данных и нарушением целостности защиты операционной системы, он рассылал большое количество сообщений — своих копий. В ряде случаев вирус парализовал работу целых офисов.

Ramen (январь, 2001) — вирус, за считанные дни поразивший большое количество крупных корпоративных систем на базе операционной системы Linux.

Этот опасный интернет-червь атаковал сервера, функционирующие под управлением операционных систем Red Hat Linux 6.2 и Red Hat Linux 7.0. Первые сообщения о появлении данного червя были получены из стран Восточной Европы, что позволяет предполагать его восточноевропейское происхождение. Для своего размножения червь использует некоторые слабые места в приложениях этих операционных систем.

Червь представляет собой архив с именем ramen.tgz, содержащий в себе 26 различных исполняемых файлов и shell-скриптов. Каждый исполняемый файл находится в архиве в двух экземплярах: скомпилированный для запуска в Red Hat 6.2 и для запуска в Red Hat 7.0. Также в архиве имеется исполняемый файл с именем wu62, не использующийся при работе червя.

Червь применяет в своем коде многие слегка модифицированные эксплоиты, доступные ранее на хакерских сайтах, а также на сайтах, посвященных сетевой безопасности.

Именно с его появлением был разрушен миф о том, что вирусов под Linux не бывает.

CodeRed (12 июля, 2001) — представитель нового типа зловредных кодов, способных активно распространяться и работать на зараженных компьютерах без использования файлов. В процессе работы такие программы существуют исключительно в системной памяти, а при передаче на другие компьютеры — в виде специальных пакетов данных.

Червь использовал уязвимость в утилите индексирования, поставлявшейся с веб-сервером Microsoft IIS. Эта уязвимость была описана вендором — Microsoft — на их сайте MS01-033 (англ.). Кроме того, за месяц до эпидемии была опубликована соответствующая заплатка.

Эксперты eEye утверждают, что червь начал свое распространение из Макати-Сити на Филиппинах.

Фактически, данный вирус положил начало целой серии вирусов (и это, увы, продолжается до сих пор). Ее отличительной чертой оказалось то, что вирусы возникают через некоторое время после того, как появляются соответствующие обновления от производителей ПО.

По оценкам CERT (Community Emergency Response Team), число компьютеров, зараженных червем Code Red, достигает примерно 350 тыс. Созданный им трафик в Интернете, по мере того как зараженные компьютеры искали новые жертвы, наложил существенный отпечаток на общую скорость Интернета.

Проявления, изначально заложенные в Code Red, заключались в использовании всех зараженных им компьютеров для организации DOS-атаки против веб-сайта Whitehouse.gov (веб-сайта Белого дома).

Этим было положено начало использованию халатного отношения системных администраторов к установке обновлений ПО.

Cabir (июнь, 2004) — первый сетевой червь, распространяющийся через протокол Bluetooth и заражающий мобильные телефоны, работающие под управлением OS Symbian. С появлением этого червя стало понятно, что отныне заражаемы не только ПК, но и смартфоны. В наши дни угрозы для смартфонов уже исчисляются миллионами. А начиналось все в далеком 2004 г.


Cabir

На рисунке ниже приведена поквартально статистика увеличения количества мобильных зловредов в 2013 г. А начиналось все в 2004 г. с первого вируса Cabir…

Главную эпидемию 2009 г. вызвал червь Kido (Conficker), поразивший миллионы компьютеров по всему миру. Он использовал несколько способов проникновения на компьютер жертвы: подбор паролей к сетевым ресурсам, распространение через флеш-накопители, использование уязвимости Windows MS08-067. Каждый зараженный компьютер становился частью зомби-сети. Борьба с созданным ботнетом осложнялась тем, что в Kido были реализованы самые современные и эффективные технологии вирусописателей. В частности, одна из модификаций червя получала обновления с 500 доменов, адреса которых случайно выбирались из ежедневно создаваемого списка в 50 тыс. адресов, а в качестве дополнительного канала обновлений использовались соединения типа P2P.

Вместе с тем создатели Kido не проявляли большой активности до марта 2009 г., хотя, по разным оценкам, к этому времени он уже смог заразить до 5 000 тыс. компьютеров во всем мире. И в ночь с 8 на 9 апреля 2009 г. зараженным ПК была дана команда на обновление с использованием соединения Р2Р. Помимо обновления Kido, на зараженные ПК загружались две дополнительные программы: почтовый червь семейства Email-Worm.Win32.Iksmas, занимающийся рассылкой спама, и лжеантивирус семейства FraudTool.Win32.SpywareProtect2009, требующий деньги за удаление якобы найденных программ.

Для борьбы с этой угрозой была создана специальная группа Conficker Working Group, объединившая антивирусные компании, интернет-провайдеров, независимые исследовательские организации, учебные заведения и регулирующие органы. Это первый пример столь широкого международного сотрудничества, вышедшего за рамки обычных контактов между антивирусными экспертами.

Эпидемия Kido продолжалась на протяжении всего 2009 г. В ноябре количество зараженных систем превысило 7 000 тыс.

В 2012 г. появилось кибероружие.

Создатели Wiper приложили максимум усилий, чтобы уничтожить абсолютно все данные, которые можно было бы использовать для анализа инцидентов. Поэтому ни в одном из проанализированных нами случаев, которые мы имели после активации Wiper, от зловредной программы не осталось почти никаких следов.

Нет никакого сомнения в том, что существовала программа-зловред, известная как Wiper, которая атаковала компьютерные системы в Иране (и, возможно, в других частях света) до конца апреля 2012 г. Она была написана так профессионально, что, будучи активирована, не оставляла после себя никаких данных. Поэтому, несмотря на то, что были обнаружены следы заражения, сама зловредная программа остается неизвестной: не поступило никаких сведений ни о каких других инцидентах с перезаписью содержимого диска, произошедших по той же схеме, что при заражении Wiper, а также не зарегистрировано ни одного обнаружения этого опасного ПО компонентами проактивной защиты, входящими в состав защитных решений.

Все это, в целом, приводит к мысли о том, что данное решение скорее является продуктом деятельности технических лабораторий ведения компьютерных войн одной из развитых стран, чем просто плодом разработки злоумышленников.

Flame представляет собой весьма хитрый набор инструментов для проведения атак, значительно превосходящий по сложности Duqu. Это троянская программа — бэкдор, имеющая также черты, свойственные червям и позволяющие ей распространяться по локальной сети и через съемные носители при получении соответствующего приказа от ее хозяина.

После заражения системы Flame приступает к выполнению сложного набора операций, в том числе к анализу сетевого трафика, созданию снимков экрана, аудиозаписи разговоров, перехвату клавиатурных нажатий и т.д. Все эти данные доступны операторам через командные серверы Flame.

Червь Flame — это огромный пакет, состоящий из программных модулей, общий размер которых при полном развертывании составляет почти 20 Мбайт. И потому анализ данной опасной программы очень сложен. Причина столь большого размера Flame заключается в том, что в него входит множество разных библиотек, в том числе для сжатия кода (zlib, libbz2, ppmd) и манипуляции базами данных (sqlite3), а также виртуальная машина Lua.

Gauss — это сложный комплекс инструментов для осуществления кибершпионажа, реализованный той же группой, что создала зловредную платформу Flame. Комплекс имеет модульную структуру и поддерживает удаленное развертывание новой функциональности, реализующейся в виде дополнительных модулей.

• перехват cookie-файлов и паролей в браузере;

• сбор и отправку злоумышленникам данных о конфигурации системы;

• заражение USB-носителей модулем, предназначенным для кражи данных;

• создание списков содержимого системных накопителей и папок;

• кражу данных, необходимых для доступа к учетным записям различных банковских систем, действующих на Ближнем Востоке;

• перехват данных по учетным записям в социальных сетях, по почтовым сервисам и системам мгновенного обмена сообщениями.

В общем, читателям следует понимать, что никто и никогда не сможет создать полный список всех наиболее опасных образцов зловредного ПО, потому что самым опасным вирусом для вас будет тот, который вы так и не сумели обнаружить!



Опасен с вашего разрешения

Наиболее опасным для банковских мобильных приложений на сегодняшний день является тип вирусов Spyware. Они крадут данные и отправляют их своим создателям, которые в считанные минуты смогут получить контроль над банковским счетом своей жертвы. Их коллекция регулярно пополняется. Так, в июле этого года, по сообщению журнала Forbes, появилась версия вируса-трояна BianLian, которая может красть данные из банковских приложений мобильных устройств.



Детальный анализ вируса показал, что информацию он способен похищать с помощью скриншотов (снимков) экрана устройства, притворяясь программой для людей с ограниченными возможностями. Но вред он может нанести только в том случае, если сам пользователь разрешит ему доступ к фотофункциям смартфона. Если такое разрешение получено, то контроль за электронным кошельком может быть утерян.

- Защита мобильного устройства от вирусных программ - это в первую очередь внимательность его владельца, - пояснил руководитель направления "Информационная безопасность" компании "Эр-Телеком" Михаил Терешков. - Вирусы, как правило, маскируются под легальные программы, но внимательный человек разоблачит их достаточно легко. Так, например, если программа "Фонарик", которая использует для освещения вспышку смартфона, вдруг запросит у вас разрешение на доступ к списку контактов, это должно вызвать у вас подозрение. Не исключено, что скачанное вами из неофициального магазина приложение может содержать вирус. И лучше его удалить.

По словам эксперта, доступные пользователям платные и бесплатные антивирусные программы не являются 100-процентной гарантией защиты мобильного устройства. Пробелы в безопасности своих программных продуктов закрывают сами разработчики приложений. Для получения свежих исправлений не нужно запрещать своему мобильному устройству скачивать легальные обновления и регулярно их устанавливать.

Банки защищаются

Банки стараются защитить своих клиентов от мошенников и с этой целью разрабатывают новые "умные" инструменты, затрудняющие злоумышленникам доступ к управлению электронным кошельком.



- Чтобы защитить денежные средства своих клиентов, банки сегодня предпринимают дополнительные меры, например внедряют новые антифрод-системы, - рассказывает начальник отдела информационной безопасности банка "Урал - ФД" Александр Ропперт. - Они предназначены для предотвращения мошеннических операций. В режиме реального времени система проверяет каждый платеж, прогоняя информацию через десятки, а порой и сотни фильтров. Но защитные системы банков бессильны перед так называемой социальной инженерией (формой гипноза). Используя различные психологические приемы, злоумышленники вынуждают клиентов сообщать логины и пароли от своего интернет-банка, а также одноразовые пароли для совершения покупок в интернете. У киберпреступников в этом плане большой арсенал методов. Так, например, они могут представляться налоговыми инспекторами и требовать деньги для погашения несуществующей задолженности или войти в образ сотрудника финансовой организации и запросить пин-коды банковской карты.

Но и социальной инженерии мошенников, по мнению эксперта, можно успешно противостоять, если помнить некоторые элементарные правила. Так, банк никогда не потребует от клиента сообщить CVV-код банковской карты, кодовое слово или код из SMS-сообщения, а сотрудник финансовой организации никогда не попросит подойти к банкомату и совершить какие-либо действия со счетом.

При этом владельцу банковской карты всегда стоит обращать внимание на подозрительные списания средств со своего счета. Иногда злоумышленники, получившие доступ к мобильному клиенту банка, маскируют свои транзакции под бытовые покупки, которые клиент банка совершает в одних и тех же магазинах.

Выбор требует жертв

На сегодняшний день в мире мобильных устройств распространены преимущественно две операционные системы: Android и iOS. На долю первой приходится 81,7 процента пользователей, а на долю второй - 17,9 процента. Именно смартфоны, работающие на системе Android, чаще всего становятся объектом атак вирусных программ. Причина этого явления кроется не только в более широком распространении программной оболочки с зеленым роботом.



Пользователи Android могут устанавливать на свой смартфон приложения не только из официального магазина программ Google Play, но и из любых источников в интернете. При этом практически на каждом мобильном устройстве в настройках отключена возможность такой установки, но при желании ее можно включить. То есть производитель позволяет потребителю рискнуть на его усмотрение.

У операционной системы iOS иные правила: установить можно только те программы, которые размещены в официальном магазине приложений App Store. Такой подход существенно ограничивает пользователей в выборе программного обеспечения, но взамен повышает безопасность использования мобильного устройства.

Есть в iOS и другие средства борьбы с вирусными атаками. Одно из них - sandboxing (песочница). Эта утилита внимательно наблюдает за работой приложений и не позволяет им получить доступ к другим программам. При этом практически во всех приложениях iOS изначально исключена функция доступа к правам администратора мобильного устройства. Поэтому нельзя самостоятельно изменять системные настройки и кардинально перестраивать работу смартфона.

Soft-гигиена

Впрочем, даже многоуровневая защита разработчиков iOS не может на 100 процентов гарантировать владельцу смартфона защиту от вирусов, ведь вредоносные программы могут попасть в мобильник через интернет-браузер.



По мнению экспертов управления "К" ГУ МВД России по Пермскому краю, безопасность мобильного устройства во многом зависит от характера его использования при осуществлении доступа к сетевым ресурсам. Если владелец смартфона не соблюдает "интернет-гигиену", то есть регулярно посещает порносайты и открывает подозрительные SMS, то проблемы не заставят себя долго ждать. При этом зараженное мобильное устройство может стать опасным не только для его владельца, но и для всех абонентов в его списке контактов.

Достаточно часто вирусы, распространяющиеся от пользователя к пользователю, похищают не только данные мобильных банковских приложений, но и файлы, распространение которых может в дальнейшем вызвать негативные последствия. Это могут быть, например, фото интимного характера и другие документы, как-либо компрометирующие своих владельцев. За "молчание" злоумышленники потребуют круглую сумму.

Избежать потери информации можно с помощью надежного носителя, который не связан с сетевыми ресурсами. Это может быть флешка или внешний диск компьютера. Мобильное устройство, каким бы размером памяти оно ни обладало, в списке надежных хранителей информации не значится.

Самые опасные вирусы для мобильных устройств

Triada. Незаметно внедряется на смартфон и передает данные своим владельцам. В ответ получает инструкции, как установить контроль за системными приложениями и какую информацию необходимо похитить.



BianLian. Внедряется на смартфон под видом легальной программы. Ориентирован на кражу информации мобильных банковских приложений с помощью скриншотов экрана устройства.

Marcher. Проникает в смартфон вместе с зараженным приложением. Умеет подменять страницы мобильных приложений банков и таким образом похищает логины и пароли.

Loki. Каскад вирусов: первый скачивает второго, второй третьего и так далее. Подменяет собой часть операционной системы и полностью контролирует смартфон. Используется для накрутки посещаемости сайтов и транслирования рекламы.

Научное открытие, состоящее в том, что вирусы часто и неожиданно перемещаются от вида к виду, меняет наши представления об истории их эволюции и может иметь тревожные последствия в виде новых болезней.

Когда формируются новые виды, откуда берутся их вирусы? Вирусы, являющиеся не более чем стадом свободно пасущегося генетического материала, отчаянно нуждаются в клеточных структурах своих хозяев и в ресурсах, чтобы снова и снова воспроизводиться. Вирус без хозяина — это ничто.

В силу такой зависимости некоторые вирусы сохраняют верность своим хозяевам на всем протяжении эволюции, мутируя и немного изменяясь всякий раз, когда хозяин превращается в новый вид. Этот процесс называется содивергенция. Люди и шимпанзе, например, имеют немного отличающиеся друг от друга вирусы гепатита В, причем оба они, скорее всего, мутировали из той версии, которая более четырех миллионов лет назад заразила общего предка человека и обезьяны.

Другой вариант, носящий название межвидовой переход, случается тогда, когда вирус переселяется на хозяина совершенно нового типа, который никак не связан с предыдущим. Такой вид вирусной эволюции связан с новыми тяжелыми болезнями, как то птичий грипп, ВИЧ, лихорадка Эбола и атипичная пневмония. А поскольку такие болезни исключительно опасны, нам повезло, что межвидовой переход это довольно редкое явление.

Однако недавно, когда ученые из Австралии провели первое исследование долговременной эволюции тысяч различных вирусов, они пришли к поразительному заключению: межвидовой переход намного важнее и происходит намного чаще, чем мы себе представляли. Смена видов является движущей силой большинства крупных эволюционных новообразований в вирусах. Между тем, содивергенция распространена меньше, чем мы предполагали, и вызывает она главным образом постепенные изменения.

Эти выводы отнюдь не означают, что новые болезни, возникающие от межвидового перехода, являются более серьезной и неминуемой угрозой, чем предполагала медицина. Однако они показывают, что динамика эволюции вирусов может быть неожиданно сложной. Если ученые недооценивали частоту перехода вирусов к новым хозяевам, то в таком случае очень важным приоритетом становится изучение того, какие вирусы больше всего к этому предрасположены.

Есть множество причин, по которым межвидовые скачки вряд ли могут оказывать существенное влияние на эволюцию вирусов. Препятствия, мешающие вирусу успешно перейти к хозяину из другого вида, весьма серьезные и труднопреодолимые. Если вирус не в состоянии манипулировать генетическим материалом хозяина и воспроизводиться, то это тупик, конец ветви. Вирусу может понадобиться множество попыток инфицировать нового хозяина, которые он предпринимает на протяжении десятилетий или даже больше, аккумулируя в это время соответствующие мутации. Делает он это до тех пор, пока не самоутвердится и не начнет размножаться и распространяться.


Более того, когда вирусы успешно перескакивают с одного вида на другой, они могут стать жертвой собственного успеха. Это прежде всего относится к небольшим изолированным популяциям (именно так зарождались многие новые виды). Опасные вирусы могут очень быстро уничтожить доступных хозяев, после чего исчезнут сами.

Профессор биологии Сиднейского университета Эдвард Холмс (Edward Holmes) и его австралийские коллеги решили разгадать эту загадку. С помощью данных о вирусном геноме они реконструировали историю эволюции 19 основных вирусных семейств, каждое из которых содержит от 23 до 142 вирусов, обитающих в разных хозяевах, начиная с млекопитающих и заканчивая рыбами и растениями. Они создали филогенетические (эволюционные) схемы для семейств вирусов и для видов их хозяев, после чего сравнили их. Ученые рассуждали следующим образом: если вирус в основном содивергирует со своим хозяином, эволюционируя вместе с ним, то в этом случае филогенетическая схема вируса должна быть схожа со схемой его хозяина, поскольку предки вируса должны были инфицировать предков хозяина. Но если вирус скачет от хозяина к хозяину, эволюционные схемы хозяев и вирусов будут выглядеть по-разному. Насколько по-разному? Это зависит от количества межвидовых переходов.

А вот инфекции с участием вируса ДНК часто бывают хроническими. Когда часть популяции хозяина отклоняется от типичной формы, чтобы создать новый вид, у нее больше шансов забрать с собой вирус, так как инфицировано гораздо больше хозяев. Таким образом, вероятность содивергенции вируса и его нового хозяина повышается.

В 1975 году Фрэнсис Блэк (Francis L. Black) из Йельского университета написал научную работу, давшую углубленное представление о том, как динамика популяции хозяев влияет на человеческие болезни. Изучив довольно изолированные и маленькие общины аборигенов Амазонки, ученые обнаружили, что хронические вирусные инфекции у этих людей случаются довольно часто, а вот острые инфекции в основном отсутствуют. Изоляция защищает эти племена от новых вирусов. Те немногочисленные опасные вирусы, которые все же попадали в туземные общины, в скором времени вымирали. Хозяев для выживания у них было немного, и поэтому вирусы исчезали довольно быстро.

Открытие, свидетельствующее о том, что межвидовые переходы происходят часто, может вызвать немалую тревогу, поскольку они связаны с новыми опасными болезнями. В прошлом скачков было много, и происходили они часто. Так что приготовило нам будущее — то же самое, но в больших количествах?


Однако дальнейшие исследования в области истории эволюции вирусов помогут ученым понять, есть ли такие виды, которым мы должны уделять больше внимания как источникам новых инфекций. (Эпидемиологи уже тщательно следят за вирусами, передающимися от домашней птицы человеку, поскольку опасаются птичьего гриппа.) Возможно, вирусы с растений, рыбы и млекопитающих не менее опасны для человека. В равной степени возможно, что в ходе исследований с целью прогнозирования следующей эпидемии ученые сузят сферу своего внимания, ограничив ее несколькими группами повышенного риска.

Материалы ИноСМИ содержат оценки исключительно зарубежных СМИ и не отражают позицию редакции ИноСМИ.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции