Мутация вирусов в информатике









МУТАЦИИ ВИРУСОВ

Роль хромосомы вирусов играет ДНК и РНК. При фрагментированном геноме каждый фрагмент представляет собой один ген. Число генов в геноме зависит от таксономической принадлежности вируса. Ген не является неделимым. У него имеются более мелкие участки – мутоны (наименьшая частица гена, способная давать внешне проявляющуюся мутацию) и реконы (наименьшая единица цитрона, между которыми может происходить перекрест) (рекомбинации)).

Вирусы способны изменять свои свойства, как в естественных условиях, так и в результате экспериментального воздействия. В основе наследственных изменений свойств вирусов лежат два процесса – мутация и рекомбинация.

Мутация, мутационная изменчивость – наследуемые изменения гена или генов, контролирующих определенные наследственные признаки. Рекомбинация – это обмен генетическим материалом между двумя близкими, но отличающимися по наследственным свойствам вирусам [2].

Подобного рода исследования природы антигенной изменчивости проводились с вирусами гриппа. Антигенную изменчивость этих вирусов принято делить на два типа: антигенный дрейф и антигенный шифт [1].

Долгое время дискутировались два механизма возникновения шифтовых изменений, приводящих, по существу, к возникновению новых вирусов. В. М. Жданов и др. (1978), Д. К. Львов (1983), Д. К. Львов, В. М. Жданов (1983) полагали, что новые вирусы образуются в результате рекомбинации (пересортировки генов) между штаммами вирусов человека и животных. А. А. Смородинцев (1975), А. А. Смородинцев и др. (1981), Д. Б. Голубев (1980, 1984) доказали возможность длительной циркуляции вируса гриппа в человеческой популяции, который находится в разной степени биологической активности. Р. Вебстер и др. (1986) допускают и тот, и другой механизм возникновения шифт вариантов [1].

Уязвимое место у вируса – беспредельное размножение, и как следствие этого – разрыв оболочки (мембраны) клетки. После полной гибели клетки, нафаршированной миллионами вирусов, клеточная мембрана рвётся, и вирусы в массовом количестве выбрасываются в межклеточное пространство и в русло крови.

Смогут ли патогенные вирусы-мутанты уничтожить человечество в будущем? Несмотря на то, что до сих пор не существует эффективных медикаментов, которые могли бы уничтожить вирусы, которые паразитируют внутри клеток человеческого организма, человек в большинстве случаев выздоравливает, его иммунитет (его иммуноглобулины) побеждает вирус. Вирусные заболевания не вызывают высокой смертности и практически не влияют на рост населения планеты, которое увеличивается в год на 80 миллионов человек. Пока иммунная система человека побеждает многие грозные вирусные инфекции, но не все. Высокая смертность людей остаётся при заболевании натуральной оспой (если человек не сделал прививку), тифе, геморрагической лихорадке, СПИДе, атипичной пневмонии и так далее. поэтому следует подумать о том, как важен вопрос о мутации вирусных заболевай [4].

Ахматуллина, Н. Б. Генетика вирусов человека и животных [Текст] / Н. Б. Ахматуллина; Ред. И. А. Рапорт. - Алма-Ата : Наука, 1990. - С.155-167. - ISBN 5-628-00485-6.

Кудачева, Н. А. Общая ветеринарная вирусология [Текст] : учебное пособие / Н. А. Кудачева ; МСХ РФ, Самарская ГСХА. - Самара : РИЦ СГСХА, 2010. - С. 289. - ISBN 978-5-88575-253-4.

Мюнтцинг, А. Генетика. Общая и прикладная [Текст]/А.Мюнтцинг; под ред. В.Н. Столетова, перевод со 2-го англ.изд. Ю.С.Бочарова[и др.].- М.: Мир, 1967. - 610 с.

Цель: познакомить ребят с проблемами, связанными с сохранностью информации.

Тип урока: вводный.

План урока:

  • Повторение изученного материала.
  • Объяснение нового материала.
  • Тестирование учащихся по данному материалу.
  • Итог урока.

I. Повторение изученного материала. Беседа (2 мин.)

Вопросы для повторения:

  • Какие виды программного обеспечения вы знаете?
  • Какое самое важное программное обеспечение на компьютере?

II. Объяснение нового материала (30 мин.)

Учитель: Что общего между человеком и компьютером? (Сердцебиение – тактовая частота, мозг – процессор). Действительно, но есть еще одно, что объединяет человека с компьютером. Компьютер – это электронный аналог человека. Человек, как любой биологический организм, подвергается воздействию различных болезнетворных вирусов, т.е. может болеть. И компьютер тоже может болеть.
– Как Вы думаете, какая тема нашего урока? (Компьютерные вирусы)

Учитель: Опишите этапы и последствия заражения человека каким-либо вирусом.

  • Проникновение вируса в организм человека происходит извне;
  • Способность вируса к саморазмножению;
  • Активизация некоторых вирусов не сразу после проникновения в организм, а через некоторое время.

Учитель: Какова тогда основная проблема на уроке? (Как происходит заражение компьютера и как не допустить заражения компьютера вирусами?)
Учитель: Но сначала давайте дадим определение компьютерному вирусу.
Свое название компьютерный вирус получил за некоторое сходство с биологическим вирусом.

Компьютерный вирус – это программа способная создавать свои копии, внедрять их в различные объекты или ресурсы компьютерных систем, сетей и производить определенные действия без ведома пользователя.

Программа, внутри которой находится вирус, называется зараженной программой.

Учитель: Какие особенности работы программ-вирусов?

Доклад (учащийся)

Когда инфицированная программа начинает работу, то сначала управление получает вирус. Вирус заражает другие программы, а так же выполняет запланированные деструктивные действия. Для маскировки своих действий вирус активизируется не всегда, а лишь при выполнении определенных условий (истечение некоторого времени, выполнение определенного числа операций, наступления некоторой даты или дня недели и т.д.).

После того как вирус выполнит нужные ему действия, он передает управление той программе, в которой он находится. Внешне зараженная программа может работать так же, как и обычная программа. Подобно настоящим вирусам компьютерные вирусы прячутся, размножаются и ищут возможность перейти на другие ЭВМ.

Таким образом, вирусы должны инфицировать ЭВМ достаточно незаметно, а активизироваться лишь через определенное время (время инкубации). Это необходимо для того, чтобы скрыть источник заражения.

Вирус не может распространяться в полной изоляции от других программ. Очевидно, что пользователь не будет специально запускать одинокую программу-вирус. Поэтому вирусы прикрепляются к телу других полезных программ.

Рассмотрим первый этап заражения – это проникновение. Что является основным источника вируса?

Основные источники вирусов:

  • Дискета, на которой находятся зараженные вирусом файлы;
  • Компьютерная сеть, в том числе система электронной почты и Internet;
  • Жесткий диск, на который попал вирус в результате работы с заряженными программами;
  • Вирус, оставшийся в оперативной памяти после предшествующего пользователя.

Второй этап – мы сказали – саморазмножение

Учитель: К концу рабочего дня вы выполните всю работу? (Нет)

Учитель: Почему? (Кончилась бумага)

Учитель: Это был вирус? (Да)

Учитель: Почему вы так считаете? (Саморазмножался и наносил вред)

Учитель: Какова его направленность? Цель? (Истратить всю бумагу)

Учитель: Чем ограничено размножение данного вируса в пределах одного компьютера? (Свободным местом)
Именно такой случай произошел в 1988 году в Америке – несколько глобальных сетей передачи информации оказались переполненными копиями сетевого вируса (вирус Морриса), который рассылал себя от компьютера к компьютеру.

Учитель: Можно ли определить источник вируса? (Да)

Доклад (учащийся)

Большой общественный резонанс вызвало первое неконтролируемое распространение вируса в сети. 2 ноября 1988 года двадцатитрехлетний студент последнего курса Корнельского университета Роберт Таппан Моррис запустил в сети свою программу, которая из-за ошибки начала бесконтрольное распространение и многократное инфицирование узлов сети. В результате было заражено около 6200 машин, что составило 7,3% общей численности машин в сети.

Главная опасность самовоспроизводящихся кодов заключается в том, что программы – вирусы начинают жить собственной жизнью, практически не зависящей от разработчика программы. Так же, как в цепной реакции в ядерном реакторе, запущенный процесс трудно остановить.

Самостоятельно проклассифицируйте вирусы по следующим признакам (оформите в виде таблицы):

Учащиеся, используя раздаточный материал, работают в группах (всего групп 5). На электронной доске карточки с названиями вирусов. Представитель каждой группы (после обсуждения в группе) переносит нужные карточки в свой сектор. Учащиеся совместно решают, правильно ли распределены карточки. Затем сравнивают со слайдом-ответом.

По среде обитания они делятся на сетевые, файловые, загрузочные и файлово-загрузочные вирусы.
По способу заражения – на резидентные и нерезидентные вирусы.
По особенностям алгоритма – на вирусы-компаньоны, паразитические вирусы, репликаторы (черви), невидимки (стелс), мутанты, (призраки, полиморфные вирусы, полиморфики), макро-вирусы, троянские программы.

По целостности – на монолитные и распределенные вирусы.

Раздаточный материал (если есть время, то лучше учащимся самостоятельно найти информацию в Интернете):

Сетевые вирусы распространяются по различным компьютерным сетям.

Файловые вирусы инициируют исполняемые файла компьютера, имеющие расширения com и exe. К этому же классу относятся и макровирусы, написанные с помощью макрокоманд. Они заряжают неисполняемые файлы (например, в текстовом редакторе MS Word или в электронных таблицах MS Excel).

Загрузочно-файловые вирусы способны заражать и загрузочные секторы и файлы.

Резидентные вирусы оставляют в оперативной памяти компьютера свою резидентную часть, которая затем перехватывает обращения неинфицированных программ к оперативной системе, и внедряются в них. Свои деструктивные действия и заражение других файлов, резидентные вирусы могут выполнять многократно.

Нерезидентные вирусы не заражают оперативную память компьютера и проявляют свою активность однократно при запуске инфицированной программы.
Значительно опаснее последствия действия вируса, который уничтожает часть файлов на диске.

Очень опасные вирусы самостоятельно форматируют жесткий диск и этим уничтожают всю имеющуюся информацию.

Компаньон-вирусы (companion) – это вирусы, не изменяющие файлы. Алгоритм работы этих вирусов состоит в том, что они создают для ЕХЕ – файлов новые файлы спутники (дубликаты), имеющие тоже самое имя, но с расширением COM, например, для файла XCOPY.EXE создается файл XCOPY.COM. Вирус записываем в СОМ – файл и никак не изменяет одноименный ЕХЕ – файл. При запуске такого файла DOS первым обнаружит и выполнит COM – файл, т.е. вирус, который затем запустит и ЕХЕ – файл.

Вирусы – черви (worm) – распространяются в компьютерной сети и, так же как и компаньон – вирусы, не изменяют файлы или секторы на дисках. Они проникают в память компьютера из компьютерной сети, вычисляют сетевые адреса других компьютеров и рассылают по этим адресам свои копии. Черви уменьшают пропускную способность сети, замедляют работу серверов.

Макро-вирусы используют возможности макроязыков, встроенных в системы обработки данных (текстовые редакторы и электронные таблицы). В настоящее время широко распространяются макро – вирусы, заражающие документ Word и Excel.

Программа монолитного вируса представляет собой единый блок, который можно обнаружить после инфицирования.

Программа распределенного вируса разделена на части. Эти части содержать инструкции, которые указывают компьютеру, как собрать их воедино, чтобы воссоздать вирус. Таким образом, вирус почти все время находится в распределенном состоянии, и лишь на короткое время собирается в единое целое.

И третий этап – активизация

Учитель: Как могут обнаружить себя компьютерные вирусы?

Различные вирусы выполняют различные действия:

  • Выводят на экран мешающие текстовые сообщения (поздравления, политические, фразы с претензией на юмор, высказывания обиды от неразделенной любви, нецензурные выражения, рекламу, прославление любимых певцов, названия городов);
  • Создают звуковые эффекты (проигрывают гимн, гамму или популярную мелодию);
  • Создают видеоэффекты (переворачивают или сдвигают экран, имитируют землетрясение, вызывают падение букв в тексте или симулируют снегопад, имитируют скачущий шарик, прыгающую точку, выводят на экран рисунки и картинки);
  • Замедляют работу ЭВМ, постепенно уменьшают объем свободной оперативной памяти;
  • Увеличивает износ оборудования (например, головок дисководов);
  • Вызывают отказ отдельных устройств, зависание или перезагрузку компьютера и крах работы всей ЭВМ;
  • Имитируют повторяющиеся ошибки работы операционной системы (например, с целью заключения договора на гарантированное обслуживание ЭВМ);
  • Уничтожают FAT-таблицу, форматируют жесткий диск, стирают BIOS, стирают или изменяют установки CMOS, стирают секторы на диске, уничтожают или искажают данные, стирают анти вирусные программы;
  • Осуществляют научный, технический, промышленный, и финансовый шпионаж;
  • Выводят из строя системы защиты информации, дают злоумышленникам тайный доступ к вычислительной машине;
  • Делают незаконные отчисления с каждой финансовой операции и т.д.;

Учитель: Как происходит заражение компьютера и как не допустить заражения компьютера вирусами?

Вывод: К общим средствам, помогающим предотвратить заражение и его разрушительные последствия, относят:

  • Резервное копирование информации (создание копий файлов и системных областей жестких дисков);
  • Избежание пользования случайными и неизвестными программами. Чаще всего вирусы распространяются с компьютерными программами;
  • Перезагрузка компьютера перед началом работы, в частности, с случае, если за этим компьютером работали другие пользователи;
  • ограничение доступа к информации, в частности физическая защита дискеты во время копирования файлов с неё;
  • Разные антивирусные программы.

В мировых электронных сетях циркулируют 55 – 65 тыс. различных вирусов, которые создают 10 – 12 тыс. программистов. Число производителей разрушительных программ увеличивается с каждым днем, поскольку искусством написания вирусов несложно овладеть.
Авторы вирусов живут практически во всех индустриально развитых странах мира. Причем, периодически, эпидемии вирусов начинались в странах, доселе считавшихся не особо преуспевшими в развитии Интернета.
Несмотря на широкую распространенность антивирусных программ, предназначенных для борьбы с вирусами, вирусы продолжают плодиться. В среднем в месяц появляется около 300 новых разновидностей. Естественно, что вирусы появляются не самостоятельно, а их создают кракеры – вандалы (техно – крысы).

Учитель: Что может подтолкнуть человека стать кракером? (Учащиеся высказывают свои мнения)

Доклад (учащийся)

III. Закрепление материала (5 мин.)

Электронный тест (10 вопросов).

IV. Итог урока (оценить работу учащихся на уроке).

V. Домашняя работа (выдается в печатном виде)

Уровень знания: §1.10, выучить таблицу, составленную и заполненную на уроке.

Уровень понимания:

1.Ответьте на вопрос: Какие вирусы могут заразить следующие объекты.

а) файл Характеристика.doc
б) файл Товарооборот.xls
в) файл setup.exe
г) электронное письмо

Вопросы по горизонтали:

1. Антивирусная программа, принцип работы которой основан на проверке файлов загрузочных секторов дисков и оперативной памяти в поиске в них известных и новых ресурсов.
3. Утилита для создания новых компьютерных вирусов.
5. Наука, от которой пришло название вирус.
7. Вирусы, поражающие документы MS Office, основанные на использовании макрокоманд
10. Программа, способная к саморазвитию.
13. Вирусы, не изменяющие файлы, но создающие для .EXE файлов .COM файлы с тем же именем.
16. Мутация вирусов.
17. Антивирусная программа, то же что и полифаг.
18. Утилита для перевода машинных кодов, какой – либо программы в её представлении на языке ассемблера.

Вопросы по вертикали:

Уровень применения:

Перечислите объекты компьютерной системы, заражение которых приведет:
– к незначительным разрушительным последствиям;
– к необратимым разрушительным действиям.


Труды профессора Каваоки наделали много шума во всем мире. Он воссоздал вирус, который столетие назад свел в могилу 40 миллионов человек. Однако, пусть это звучит странно, если к нам придет новая пандемия гриппа, мы будем ждать спасения именно от этого человека.

Холодильник заперт и запечатан внутри специального помещения с бетонными стенами. Помещение находится в лаборатории, которая также имеет бетонные стены толщиной 46 см, вдобавок усиленные металлической арматурой. Войти сюда можно лишь через целую анфиладу комнат, которую открывают герметичные люки, вроде тех, что можно увидеть на подводных лодках. Еще здесь всё уставлено датчиками сигнализации — их более пяти сотен, они распределены по всему зданию и установлены на всевозможных приборах, чтобы в случае нежелательного вторжения оповестить охрану и полицию кампуса. Наблюдение за лабораторией ведется круглые сутки.

Все эти камеры, герметичные двери и датчики должны работать безукоризненно — таково базовое требование ко всему, что находится в Институте по исследованию гриппа стоимостью $12,5 млн. Он расположился на окраине кампуса Университета Висконсин-Мэдисон.


Каваока (слева) работает вместе со своим ассистентом-постдоком. Фото было сделано в 2001 году, еще до того, как была построена нынешняя лаборатория. Новая лаборатория ежегодно закрывается на четыре-шесть недель для проведения обеззараживания

Пройдя начальную проверку на посту ФБР (это обязательное требование ко всем сотрудникам), работники лаборатории перед входом должны снять с себя всё, включая нижнее белье. Затем надеть специальную рабочую одежду и пару резиновых сапог, имеющих внутренний и внешний чехлы. В таком виде уже можно пройти в тамбур перед входом в лабораторию. Чтобы пройти за следующую дверь, нужно облачиться в комбинезон и перчатки из паропропускающей мембраны Tyvek, сменить сапоги и надеть респиратор с фильтром. После работы в лаборатории всю спецодежду надо снять в строго определенном порядке и принять пятиминутный душ. Под душем тщательно вымыть себя с мылом, включая все открытые полости тела, и хорошенько высморкаться.

Здание, в котором хранятся вирусы, относится к классу BSL-3-ag, то есть к сооружениям с почти наивысшей биологической защитой. Здесь же, кстати, содержится вирус Эбола. Ни одна частичка биоматериала не должна покинуть эти стены.


Вирус гриппа H5N1 под микроскопом. Этот тип болезни так и не был зарегистрирован в США, однако грипп других видов постоянно разносят по стране водоплавающие птицы

Угроза гибели человечества? Зачем же профессор занимается всем этим, пусть даже за стенами неприступной крепости? Поначалу Каваока отказался отвечать нам на этот вопрос, но затем согласился на часовую беседу в переговорной напротив двери его лаборатории, причем в присутствии руководителя факультета. Ученый будто ждал вопроса, который задают все, кто знает, чем занимается профессор, даже коллеги из высших научных сфер.

За пределами колец безопасности, университета и города Мэдисон, где власти непоколебимы в своей поддержке профессора и даже построили ему институт за $12,5 млн (отвергнув других соискателей), этот вопрос обсуждался множеством людей, мнению которых можно доверять в разной степени. Отчет о работе над вирусом H5N1, содержавший очень подробное описание методов строительства возбудителей болезни, вызвал столь неоднозначную реакцию, что консультативный совет Национального института здравоохранения рекомендовал засекретить часть этих исследований от широкой публики, в то время как планировалось их обнародование в журнале Nature.

Негативно настроенные ученые считают, что работа Каваоки нарушает Нюрнбергский кодекс по биоэтике в части правил работы с биологическими агентами, а конструирование искусственных биологических патогенов создает опасность катастрофы, в том случае, если из-за какого-либо происшествия в лаборатории вирусы выйдут за ее пределы и попадут в природу. Оппоненты профессора полагают, что эти опасные работы следует прекратить.

Эта и подобные перепубликации в социальных сетях превратили информацию о работе Каваоки в настоящий сетевой вирус. Твиты и посты в блогах, посвященные этой теме, стали распространяться с огромной скоростью, в том числе в тех сетевых сообществах, участники которых понимали в вопросах биологии не больше цыпленка. Ученый постоянно получает по электронной почте угрозы. Каваока пересылает эти письма в ФБР и старается думать только о работе.

Получается, никакой логически обоснованной цели у исследований Каваоки нет. Вирусов гриппа вокруг нас и так достаточно, причем во множестве форм. Вирусы несут в себе водоплавающие птицы, особенно утки, и чаще всего они не обнаруживают никаких симптомов болезни, хотя постоянно его распространяют через свой желудочно-кишечный тракт. Попросту говоря, если утка испражняется в пруду, в воду попадает вирус гриппа. Поскольку водоплавающие птицы есть везде, где есть вода, они не только распространяют вирусы повсеместно, но и создают условия для их мутирования в опасные для человека штаммы.

Ученые во всем мире разрабатывают разные стратегии для противодействия такому сценарию: от подавления возникшей пандемии на начальном этапе до предотвращения ее. Но грипп издревле присутствует на Земле, хоть с самим вирусом человечество познакомилось только в 1902 году. Чтобы процветать и размножаться, гриппу нужны лишь живые клетки. Специальный белок в составе вируса, гемагглютинин, образует особую структуру, которая позволяет присоединиться к клеточной мембране и проникнуть сквозь нее. Затем вирус заражает клетку своим генетическим материалом, использует ее репродуктивный аппарат для строительства своих копий и, наконец, убивает клетку-хозяина. Чаще всего грипп локализуется в верхних дыхательных путях (это то, что мы называем сезонным гриппом), но в более редких случаях вирус, за счет способности к мутациям, способен обойти противодействующие ему механизмы защиты. Новая мутация становится более вирулентной, и вирус прорывается от верхних дыхательных путей к другим органам. Тогда очень вероятна гибель зараженного организма и передача этой опасной формы другим потенциальным жертвам.

В дополнение к водоплавающим птицам вирусом гриппа заражаются и другие виды животных: куры, свиньи, лошади и собаки. В промышленном птицеводстве грипп может погубить сразу миллионы цыплят, и потому контроль за развитием вируса имеет здесь чисто экономический смысл. Поскольку многие штаммы вируса гриппа передаются от животных к человеку, именно в ветеринарии проходит передний край борьбы с заболеванием.

— А что если убить всех уток?


Каваоку огорчает непонимание оппонентов. Ведь он не собирается стирать человечество с лица Земли, а, наоборот, хочет спасти жизни людей

Шаг 1. Обратный инжиниринг вируса столетней давности

Шаг 2. Проверка работоспособности

Шаг 3. Найти, что заставляет вирус распространяться

Шаг 4. Ввести мутации в наиболее важные гены

Каваоке требовалось выяснить, как созданный с помощью генной инженерии вирус будет вести себя, если он обретет мутации, которые позволяют птичьему гриппу заражать млекопитающих. Ученый вводил в геном вируса разные комбинации подобных мутаций и заражал хорьков снова.

Шаг 5. Повторение снова и снова

Одна группа хорьков продемонстрировала симптомы, близкие к реальному гриппу 1918 года. Оказалось, что вирус приобрел дополнительные мутации. Эксперимент с хорьками был повторен. Вирус снова мутировал. Всего он приобрел десять мутаций. Следующий шаг — наблюдать, не появится ли схожая мутация вируса в природе.

— Меня это печалит, — говорит Каваока.

Он объясняет почему. Дело не в том, что критика ранит его чувства или он боится угроз. Ему просто жаль, что оппоненты не понимают — он не собирается стирать человечество с лица Земли, а, напротив, хочет спасти жизни людей. Ученый надеется, что одно из его открытий действительно сможет помочь выжить каким-то безвестным людям, и именно эта надежда заставляет Каваоку упорно продолжать свои труды. С целью понять, что происходит в природе, и сыграть с ней на опережение.

История компьютерных вирусов

К ним уже привыкли. Их не боятся школьные учителя информатики, о них не пишут на первых полосах газет. Но они продолжают выполнять свою разрушительную роль в жизни пользователей компьютеров.

Предвестники электронных эпидемий

Широкое распространение компьютерных сетей стало катализатором появления на свет первых деструктивных программ – компьютерных вирусов.

70-е годы: начало

Другой пример – логическая игра Pervading Animal для операционной системы Exec 8, смысл которой заключался в отгадывании пользователем загаданного программой животного. Если ему это не удавалось, игра предлагала модернизировать ее, после чего появлялась возможность задавать дополнительные наводящие вопросы.

80-е: первые эпидемии

К восьмидесятым годам прошлого столетия компьютер перестал быть роскошью, доступной лишь избранным. Владельцев ПК становится все больше, кроме того, обмен информацией между пользователями с помощью электронных досок объявлений (BBS – Buletin Board System) достиг международного масштаба.

В 1988 году была создана первая вредоносная программа, которая не просто заражала компьютер, но и наносила ему реальный вред. Этот вирус был создан в Лехайском университете, в котором, кстати, работал ранее упоминавшийся Фред Коэн. Вирус Lehigh уничтожал информацию на дисках, поражая системные файлы COMMAND.COM. Наличие квалифицированных специалистов в университете оказалось спасением – за стены учебного заведения он так и не пробрался. Впрочем, немалую роль в устранении угрозы эпидемии сыграл и алгоритм самого Lehigh – во время форматирования винчестеров он самоуничтожался вместе с остальной информацией.

90-е: полиморфные вирусы

В этом же году в Болгарии, которая тогда была центром мирового вирусописания, появилась специализированная BBS, с которой каждый желающий мог скачать вредоносные программы. Конференции, посвященные программированию вирусов, появились и в UseNet.

Конструкторы вредоносных программ

В 1992 году хакер, известный под ником Dark Avenger, выпустил в свет утилиту MtE (Mutation Engine). С её помощью любой, даже самый примитивный вирус можно было сделать полиморфным. Этим же человеком был впервые создан вирус Peach, наделенный способностью обходить антивирусное ПО. Peach удалял базу изменений программы Central Point AntiVirus. Эта программа, не находив свою базу данных, считала, что запущена впервые, и создавала её вновь. Таким образом, вирус обходил защиту и продолжал заражать систему.

Первый арестованный вирусописатель

На протяжении 1993-94 годов свет увидели новые конструкторы вирусов: PS-MPC и G2. Сгенерированные ими вредоносные программы стали самой распространенной опасностью в Интернете.

Лидерство в этой области постепенно завоевала компания Symantec, частью которой стали крупнейшие производители антивирусного программного обеспечения: Central Point и Fifth Generation Systems.

Эпидемия нового полиморфного вируса, Pathogen, уже не была событием из ряда вон выходящим, к подобного рода событиям все уже начали привыкать. Однако это был первый вирус, автор которого был найден и осуждён. Безработный Кристофер Пайл за создание вредоносных программ был приговорен к 18 месяцам тюремного заключения.

Атака на Microsoft

В 1995 году все разосланные бета-тестерам диски с операционной системой Windows 95 были заражены загрузочным вирусом Form. К счастью, один из них обнаружил неладное, и на прилавки магазинов поступила нормальная, незараженная система.

В августе того же года появился первый макровирус, написанный на языке WordBasic, встроенном в текстовый редактор MS Word. Макровирусом Concept были заражены сотни тысяч компьютеров по всему земному шару, вследствие чего он еще долго лидировал в статистических исследованиях компьютерных журналов.

В 1996 году первую эпидемию пережили пользователи Windows 95 – их компьютеры были поражены загрузочным вирусом Boza. В июле того же года создатели макровирусов переключились с Word на редактор электронных таблиц MS Excel, выпустив для него вирус Laroux.

Наиболее разрушительные вирусы

Продолжать подробную историю компьютерных вирусов вплоть до наших дней не имеет смысла, поскольку ежегодно появляются сотни и тысячи новых вредоносных программ. Я ограничусь лишь кратким рассказом о самых известных вирусах, появившихся после 1997 года:

Melissa (1999) – 26 марта 1999 года этот макровирус, распространявшийся по электронной почте, заразил около 20% офисных компьютеров по всему миру. Крупнейшие корпорации, такие как Intel, были вынуждены прекратить работу внутри своих локальных сетей. Ущерб – от 300 до 500 миллионов долларов.

Code Red (2001) – сетевой червь, использующий ошибку в сетевом сервисе Microsoft IIS. В заданный день зараженные компьютеры должны были начать DDOS-атаку по списку различных серверов, среди которых были системы правительства США. Огромные масштабы эпидемии и как итог – убытки в 2,5 миллиарда (!) долларов.

Blaster (2003) – сетевой червь, выводивший на зараженных компьютерах сообщение о необходимости перезагрузки. Через пару дней после его выпуска в Интернет (11 августа) были заражены миллионы компьютеров по всему миру.

MyDoom (2004) – в январе 2004 года этот вирус молниеносно распространился по всему Интернету, в результате чего средняя скорость загрузки сайтов в глобальной сети уменьшилась на 50%. Червю принадлежит рекорд по скорости распространения: менее чем за сутки было заражено около двух миллионов компьютеров. Точную цифру из-за масштабов эпидемии привести невозможно. Вирус был создан неизвестным программистом в качестве эксперимента, и самостоятельно прекратил свою деятельность 12 февраля того же года.

Конца и края нет

История компьютерных вирусов до конца не дописана, продолжаясь и сегодня. Возможно, в то время как вы читаете эти строки, какой-нибудь провинциальный программист пишет новый вирус, еще более хитроумный и разрушительный, чем все вышеперечисленные.

Ну а нам остаётся лишь уповать на милость компаний-производителей антивирусов и следить за защищённостью своих систем.

Вирусы для мобильных устройств

На сегодняшний день не вызывают удивления вредоносные программы для смартфонов. Первым вирусом для ОС Symbian, стал вирус Cabir. Он не совершал никаких деструктивных действий и был создан лишь для демонстрации потенциальной подверженности мобильных устройств к вирусным атакам и эпидемиям. Червь распространялся через Bluetooth-соединения. Сколько ещё осталось ждать до появления по-настоящему разрушительных вирусов для мобильных устройств, покажет время.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции