Изучение вирусов у животных и человека

После того как Д. И. Ивановский установил способность ВТМ проходить через фильтры, задерживающие бактерии, началось изучение в том же плане возбудителей различных болезней животных и человека. Уже в 1898 г. Ф. Лефлер и П. Фрош сообщили о фильтруемости вируса ящура.

В течение нескольких последующих лет была установлена фильтруемость возбудителей чумы кур, желтой лихорадки и чумы свиней.

Поскольку большинство вирусов увидеть при помощи светового микроскопа нельзя, усилия ученых на первых этапах были направлены на изучение более крупных образований, которые формируют некоторые вирусы в пораженных клетках. Подобные включения были описаны еще и XIX в. при контагиозном моллюске человека, при оспе птиц и оспе человека (Г. Гварниери). В 1903 г. А. Негри описал своеобразные тельца, выявляемые в протоплазме нервных клеток при бешенстве. В 1921 г. Б. Липшютц классифицировал вирусные включения по их местоположению в ядре или цитоплазме клетки. Вирусы оспы и бешенства, например, формируют включения в цитоплазме, аденовирусы и герпетические вирусы — в ядре, а вирус кори — в ядре и цитоплазме. Было установлено, что включения различаются и по своей структуре. Они могут представлять собой места синтеза вирусных компонентов, агрегаты вирусных частиц или являться следствием нарушенного клеточного обмена.

Впервые непосредственно вирусные частицы удалось увидеть Дж. Буисту в 1887 г. при исследовании материала от оспенного больного; возбудитель оспы относится к наиболее крупным вирусам, размеры которого находятся на границе разрешающей способности светового микроскопа.

До 1931 г. выделение и культивирование вирусов человека и живот­ных осуществлялось почти исключительно путем заражения восприим­чивых животных. Имелись отдельные успешные попытки размножении вирусов в клеточных культурах (осповакцины, ящура), однако ввиду сложности техники они не нашли широкого применении.

Путем заражения животных были выделены и изучены возбуди­тели оспы, бешенства, простого герпеса, гриппа, полиомиелита, лимфоцитарного хориоменингита, желтой лихорадки, ряда клещевых и комариных энцефалитов, энцефаломиелитов лошадей и некоторые другие. Однако этот метод не позволял получать вирус в больших количествах, необходимых для его детального изучения; к тому же большие трудно­сти представляла очистка материала от тканевых фрагментов. Кроме того, далеко не все вирусные инфекции удавалось воспроизвести на лаборатор­ных животных.

Толчком для дальнейшего развития вирусологии послужило открытие в 1931 г. Эрнстом Гудпасчером возможности культивировать вирус оспы кур в развивающемся курином эмбрионе. Было установлено, что очень многие вирусы хорошо размножаются в этих условиях, накапливаясь в хорионаллантоисной оболочке и жидкостях эмбриона. Очистка вируса от аллантоисной жидкости оказалась сравнительно простой. К тому же у некоторых вирусов (например, у ряда представителей оспенной группы) была обнаружена способность вызывать на хорионаллантоисной оболочке очаговые поражения, по числу которых можно весьма точно определить титр вируса.

В 1941 г. Г. Херст обнаружил у вируса гриппа способность склеивать эритроциты кур. В дальнейшем у многих вирусов была установлена способность агглютинировать эритроциты тех или иных млекопитающих и птиц. Это дало в руки вирусологов простой метод количественного опре­деления многих вирусов и соответствующих антител.

В 30-е годы были разработаны новые методы исследования вирусов. В 1939 г. М. фон Арденн и X. Руска предложили метод электронно-микроскопического исследования вирусных частиц, находящихся во взве­си. Позже была разработана методика получения ультратонких тканевых срезов, позволяющая электронномикроскопически выявлять вирусы внутри пораженных клеток. Для получения концентрированных вирусных суспензий стали использовать ультрацентрифугирование. Путем измерения скорости осаждения различных вирусов оказа­лось возможным определить их размеры и вес. В 1933 г. У. Элфорд предложил использовать для определения размеров вирусов коллодийные мембраны с различной величиной пор. После получения ВТМ в кристал­лическом виде было установлено, что формировать кристаллические струк­туры могут и некоторые мелкие вирусы позвоночных, например вирус полиомиелита.

Р. Дюльбекко и М. Фогт (1952) разработали на основе однослойных клеточных культур методику получения под слоем агара или другого геля колоний вируса (бляшек), образующихся из одной инфекционной вирусной частицы. Метод позволил производить точный подсчет количе­ства инфекционных вирусных частиц, а также выделять отдельные клоны вируса, что необходимо при генетических и иных исследованиях.

Размеры вирусов животных и человека находятся в пределах от 300 нм (оспенные вирусы) до 18—22 нм (аденоассоциированные). Использование электронной микроскопии и рентгеноструктурного анализа в сочетании с рядом других методов позволило расшифровать структуру большинства вирусов. Начало этим исследованиям положили Ф. Крик и Дж. Уотсон в 1956 г. Было установлено, что все вирусы человека и животных состоят из ядра, содержащего один тип нуклеиновой кислоты — ДНК или РНК, и протеиновой оболочки (капсида). Вместе обе эти структуры носят название нуклеокапсида. Капсид любого вируса построен из структурных субъединиц, каждая из которых представляет одну или несколько полипептидных цепей. Существует два типа организации субъединиц — спиральный и кубический. У некоторых крупных вирусов (например, оспенных) могут комбинироваться оба способа соединения субъединиц. При спиральной структуре нуклеокапсид имеет форму тяжа (например, у вируса гриппа), а при кубической — правильного многогранника (например, у аденовирусов).

Большинство РНК-содержащих вирусов животных и человека содержит одну молекулу одноцепочечной РНК. Исключение составляют реовирусы и группа арбовирусов, у которых РНК состоит из двух комплементарных цепей. У большинства ДНК-содержащих вирусов нуклеиновая кислота представляет собой двухцепочечную молекулу и только одна группа ви­русов (парвовирусы) имеют одноцепочечную ДНК. Величина информа­ции, заключенной в нуклеиновой кислоте разных вирусов, различна и зависит от длины тяжа нуклеиновой кислоты. Мелкие вирусы могут синтезировать небольшое число протеинов, более сложные — помимо структурных протеинов еще ферменты. Некоторые вирусы (например, адено-ассоциированные) обладают недостаточной информа­цией даже для собственного воспроизводства: для своего размножепия они нуждаются в аденовирусе-помощнике.

Для изучения процессов репликации вирусов животных и человека и взаимодействия их с клетками большое значение имел разработанный А. Кунсом (1941) метод окраски вирусных антител флюорохромами, на­пример флюоресцеин-изотиоцианатом, который позволяет изучать при по­мощи люминесцентной микроскопии динамику накопления вирусных бел­ков в клетке. На том же принципе основано использование конъюгиро-ванных с ферритином или пероксидазой антител, когда вирусные анти­тела в клетке выявляют при помощи электронной микроскопии.

Адсорбция вирусов животных на клетках происходит в результате дей­ствия электростатических сил, межмолекулярных сил Ван-дер-Ваальса, а также взаимодействия соответствующих друг другу рецепторов вируса и лигандов клетки. Есть вирусы (например, пикорнавирусы), адсорбирующиеся только на восприимчивых клетках; другие (оспенные и аденовирусы) могут соединяться как с восприимчивыми, так и невосприимчивыми клетками. Некоторые клетки, не обладающие рецепторами для взаимо­действия с какими-либо вирусами in vivo, приобретают их при культи­вировании in vitro (почечные клетки приматов к вирусу полиомиелита).

В отличие от бактериофагов, вирусы животных не обладают каким-либо сложным аппаратом для введения в клетку своей нуклеиновой кислоты; они просто фагоцитируются клеткой. Некоторые вирусы (на­пример, полиомиелита) уже при адсорбции на клетке теряют свой кап­сид. Другие (герпетические и оспенные вирусы, миксо- и аденовирусы) проникают в клетку в виде цельных вирионов, и уже там нуклеиновая кислота освобождается из капсида.

Что касается процесса синтеза структурных белков, входящих в со­став вируса, то оказалось, что он протекает несколько отлично у ДНК- и РНК-содержащих вирусов. У первых на од­ной из цепей ДНК после их расхождения синтезируется информационная РНК, передаю­щая информацию от ДНК клеточным рибосомам, где происходит синтез вирусных белков. У РНК-содержащих вирусов функция передачи инфор­мации принадлежит самой вирусной РНК.

Места синтеза вирусных компонентов в клетке у разных вирусов раз­личны. У оспенных вирусов весь процесс протекает в цитоплазме, у аде­новирусов — в ядре, в то время как ДНК герпетических вирусов синте­зируется в ядре, а структурные белки в цитоплазме. Созревание всех вирусов, т. е. соединение нуклеиновой кислоты и белков, происходит в цитоплазме по типу самосборки.

Внешнюю оболочку вирусы приобретают при прохождении через раз­личные клеточные мембраны. Свернутый в клубок нитевидный нуклеокапсид вируса гриппа и других микровирусов облекается оболочкой в мо­мент прохождения через оболочку клетки. Герпетические вирусы приоб­ретают оболочки при прохождении как сквозь ядерные, так и цитоплаз-матические мембраны.

Были описаны различные формы взаимодействия вирусных частиц, на­ходящихся в одной клетке. Г. Берри и X. Дедрик (1936) наблюдали реак­тивацию гретого вируса миксомы, если его вводили кролику одновременно с инфекционным вирусом фибромы. Позже было установлено, что в этом случае активный вирус освобождает нуклеиновую кислоту гретого вируса из капсида, вследствие чего она приобретает способность функциониро­вать. При генетической форме реактивации соединяются два или более поврежденных геномов одного вируса.

В 1956 г. Г. Херст и Т. Готлиб наблюдали рекомбинацию двух гриппозных штаммов с появ­лением генетически стойких вариантов со свойствами обоих родителей. В 1964 г. обнаружили даже образование гибридов между неродственными вирусами — аденовирусом человека и вакуолизирующим вирусом обезьян.

Особый интерес представляют онкогенные вирусы. Как уже отмечалось, в 1911 г. П. Раус перевил саркому кур бесклеточным фильтратом. В 1936 г. Дж. Битнер открыл вирус рака молочных желез мышей. Затем была обнаружена способность вызывать трансформацию клеток in vitro у ДНК-содержащих онкогенных виру­сов — полиомы, SV40 обезьян, аденовирусов.

Все онкогенные РНК-содержащие вирусы относятся к одной группе - лейковирусам, в то время как ДНК-содержащие — к различным груп­пам - оспенным вирусам, паповавирусам, аденовирусам и герпетическим. Общим свойством обеих групп является способность интегрировать свой геном в геном клетки, вследствие чего она приобретает способность к неограни­ченному росту. Эта концепция была выдвинута Р. Дюльбекко (I960) и Л. А. Зильбером (1961). Было установлено, что трансформированные ДНК-содержащими вирусами клетки содержат часть вирусного генома, синтезируют вирусспецифический антиген, но не продуцируют вирусных частиц (исключение составляют оспенные виру­сы).

В отношении РНК-содержащих вирусов X. Темин в 1964 г. показал, что они включают в клеточный геном не РНК, а вновь образованную комплементарную двуспиральную ДНК. У всех лейковирусов был обнаружен необходимый для этого фермент — РНК-зависимая ДНК-полимераза (ревертаза) (Г. Темин, С. Мицетани, 1970). Следует отметить, что большинство онкогенных виру­сов могут функционировать и как инфекционные, вызывая дегенерацию клеток.

Одной из реакций клетки на внедрение вируса является выработка резистентности к заражению другим вирусом (явление интерференции). В 1935 г. М. Хоскинс сообщил о взаимном подавляющем действии ней-ропного и висцеротропного штаммов вируса лихорадки в опытах на обезья­нах, а Ф. Маграсси — двух различных штаммов вируса герпеса простого при введении кроликам. Вскоре интерференция была выявлена и между неродственными вирусами, если опыты ставились с куриными эмбрио­нами или клеточными культурами. Далее было установлено, что рези­стентность клетки может вызвать не только живой, но и инактивированный вирус. В большинстве случаев интерференция оказалась связан­ной с синтезом клеткой особого белка — интерферона, открытого А. Айзаксом и Дж. Линденманном в 1957 г. Интерферон обусловливает невоспри­имчивость клетки к различным вирусам и отличается видоспецифичностью (так, куриный интерферон защищает только куриные клетки).

Надежды использовать интерферон для лечения вирусных заболева­ний не оправдались, хотя он и может применяться как профилактиче­ское средство. Большее значение имеет стимуляция синтеза организмом собственного интерферона; индукторами могут служить определенные хи­мические соединения, например двутяжевые РНК.

Наиболее эффективным методом борьбы с вирусными инфекциями остается активная иммунизация. Предложенная Э. Дженнером в 1796 г. вакцина против оспы является одним из лучших противовирусных препа­ратов. Занимаясь практической вра­чебной деятельностью, англичанин Эдуард Дженнер (1749—1823) изучал известные в народной медицине предохранительные свойства коровьей оспы: люди, переболевшие ею, становятся иммунными как к коро­вьей, так и к человеческой оспе. После долгих и тща­тельных наблюдений 14 мая 1796 г. Дженнер впервые провел прививку коровьей оспы восьмилетнему маль­чику, использовав материал, взятый от женщины (доярки), бо­левшей коровьей оспой. Прививка сопровождалась не­домоганием. А два месяца спустя мальчик был инфи­цирован гноем из пустулы больного натуральной ос­пой— и остался здоровым. В 1798 г., после много­кратного повторения этого опыта, Дженнер опублико­вал результаты своей работы. Он предложил назвать новый метод вакцинацией (от латинского vaccinia — коровья оспа).

Страх перед оспой был так велик, что метод Дженнера приняли с восторгом, а сопротивление наиболее консервативных было быстро сломлено. Вакцинация распространилась по всей Европе, и болезнь отсту­пила. В странах с высокоразвитой медициной врачи уже не чувствовали себя беспомощными в борьбе с оспой. В истории человечества это был первый слу­чай быстрой и радикальной победы над опасной бо­лезнью.

Задолго до открытия вирусов была также разработана Л. Пастером вакцина против бешенства. Очень эффективным препаратом оказалась вакцина против желтой лихорадки, разработанная в 30-е годы XX в. Все эти вакцины готовятся из живых ослабленных штаммов вируса.

Вакцина против желтой лихорадки была получена в 30-е годы южноафриканским микро­биологом Максом Тейлером после длительных внутримозговых пассажей (серии после­довательных заражений) вируса, сначала на обезья­нах, а затем на белых мышах. У мышей вирус желтой лихорадки вызывал энцефалит — воспаление головно­го мозга. После длительного пассирования вируса на мышах Тейлер вновь привил его обезьянам. К этому времени вирус был уже ослаблен, и обезьяны стра­дали лишь очень слабыми приступами желтой лихо­радки. Но у животных вырабатывалась полная невос­приимчивость к большинству вирулентных штаммов вируса.

В 1936 г. Тейлер создал еще более безвредную вакцину против желтой лихорадки, отобрав ослабленный вирусный штамм из штаммов, длительно пассированных (до 200 раз) в культуре ткани куриного эмбриона.

Вирус по­лиомиелита был выделен в 1908 г. Ландштейнером, впервые заразившим этой болезнью обезьян. Однако обезьяны — малопригодный объект для поисков ос­лабленного штамма из-за дороговизны и трудности со­держания большого числа животных.

Американский микробиолог Джон Эндерс с двумя молодыми помощниками, Томасом Веллером и Фреде­риком Роббинсом, в 1948 г. попытался культивировать вирусы в однослойной культуре клеток куриных эмбрионов, обработанных трипсином. Подобные по­пытки делались и раньше, но всегда оканчивались не­удачей, поскольку культура вируса вытеснялась быстро размножающимися бактериями. Однако Эндерс доба­вил к среде открытый незадолго до этого пенициллин. Последний приостанавливал рост бактерий, никак не влияя на вирус. Вначале Эндерсу удалось успешно культивировать вирус паротита, а затем вирус полио­миелита (1949). Появилась возможность выращивать вирус полиомиелита в достаточном количестве, а зна­чит, и надежда напасть среди сотен штаммов на ос­лабленный с желательными свойствами. Американ­ский микробиолог Альберт Сейбин успешно селекционировал и очистил в 1957 г. три типа ослабленных вакцинных штаммов для каж­дого из трех разновидностей полиомиелита и создал эффективную живую вакцину.

Химиотерапия вирусных инфекций достигла определённых успехов, особенно при использовании с профилактической целью. При оспенном и герпетическом поражении роговицы используют 2-иод-2'-дезоксиуридин, блокирующий синтез вирусной ДНК. Метисазон оказался весьма эффективным в отношении оспенной инфекции, подавляя синтез структурных белков вируса. Ингавирин эффективен для профилактики и лечения гриппа и ОРВИ.

Заболевания растений, животных и человека, вирусная природа которых в настоящее время установлена, в течении многих столетий наносили ущерб хозяйству и вред здоровью человека. Хотя многие из этих болезней были описаны, но попытки установить их причину и обнаружить возбудитель остовались безуспешными.

В результате наблюдений Д.И.Ивановский и В.В.Половцев впервые высказали предположение, что болезнь табака, описанная в 1886 году A.D.Mayer в Голландии под название мозаичной, представляет собой не одно, а два совершенно различных заболевания одного и того же растения: одно из них - рябуха , возбудителем которого является грибок, а другое неизвестного происхождения. Исследование мозаичной болезни табака Д.И.Ивановский продолжает в Никитинском ботаническом саду (под Ялтой) и ботанической лаборатории Академии наук и приходит к выводу, что мозаичноя болезнь табака вызывается бактериями, проходящими через фильтры Шамберлана, которые, однако, не способны расти на искусственных субстратах. Возбудитель мозаичной болезни называется Ивановским то “фильтрующимися” бактериями, то микроорганизмами, так как сформулировать сразу существование особого мира вирусов было весьма трудно.

Подчеркивая, что возбудитель мозаичной болезни табака не мог быть обнаружен в тканях больных растений с помощью микроскопа и не культивировался на искусственных питательных средах. Д.И.Ивановский писал, что его предположение о живой и организованной природе возбудителя “формированно в целую теорию особого рода инфекционных заболеваний”, предстаавителем которых, помимо тобачной мазайки, является ящур (использовов тот же метод фильтрации).

Д.И.Ивановский открыл вирусы - новую форму существования жизни. Своими исследованиями он заложил основы ряда научных направлений вирусологии: изучение природы вируса, цитопаталогических вирусных инфекций, фильтрующихся форм микроорганизмов, хронического и латентного вирусоносительства. Один из выдающихся советских фитовирусологов В.Л.Рыжков писал: “Заслуги Д.И.Ивановского не только в том, что он открыл совершенно новый вид заболеваний, но и в том, что он дал методы их изучения”.

В 1935 году У.Стенли из сока табака, пораженного мозаичной болезнью, выделил в кристалическом виде ВТМ (вирус табачной мозайки). За это в 1946 году ему была вручена Нобелевская премия.

В 1958 году Р.Франклин и К.Холм, исследуя строение ВТМ, открыли, что ВТМ является полым цилиндрическим образованием.

В 1960 году Гордон и Смит установили, что некоторые растения заражаются свободной нуклеиновой кислотой ВТМ, а не целой частицей нуклеотида. В этом же году крупный советский ученый Л.А.Зильбер сформулировал основные положения вирусогенетической теории.

В 1962 году американские ученые А.Зигель, М.Цейтлин и О.И.Зегал эксперементально получили вариант ВТМ, необладающий белковой оболочкой, выяснили, что у деффектных ВТМ частиц белки распологаются беспорядочнно, и нуклеиновая кислота ведет себя, как полноценный вирус.

В 1968 году Р.Шепард обнаружил ДНК-содержащий вирус.

Одним из крупнейших открытий в вирусологии является открытие американских ученых Д.Балтимора и Н.Темина, которые нашли в структуре ретровируса ген, кодирующий фермент - обратную транскриптазу. Назначение этого фермента - катализировать синтез молекул ДНК на матрице молекулы РНК. За это открытие они получили Нобелевскую премию.

В знак признания выдающихся заслуг Д.И.Ивановского перед вирусологической наукой Институту вирусологии АМН СССР в 1950 году было присвоено его имя, в Академии медицинских наук учреждена премия имени Д.И.Ивановского, присуждаемая один раз в три года.

По мере изучения природы вирусов в первом полустолетии после их открытия Д.И.Ивановским (1892) формировались представления о вирусах как о мельчайших организмах. Эпитет “фильтрующийся” со временем был отброшен, так как стали известны фильтрующиеся формы или стадии обычных бактерий, а затем и фильтрующиеся виды бактерий. Наиболее правдоподобной и приемлимой является гипотеза о том, что вирусы произошли из “беглой” нуклеиновой кислоты, т.е. нуклеиновой кислоты, которая приобрела способность реплизироваться независимо от той клетки, из которой она возникла, хотя при этом придусматривается , что такая ДНК реплизируется с использованием структур этой или другой клеток.

На основании опытов фильтрации через градуированные линейные фильтры были определены размеры вирусов. Размер наиболее мелких из них оказался равным 20-30 нм., а наиболее крупных - 300-400 нм.

В процессе дальнейшей эволюции у вирусов менялась больше форма, чем содержание.

Таким образом вирусы, должно быть, произошли от клеточных организмов, и их не следует рассматривать, как примитивных предшественников клеточных организмов.

2.Строение и свойства.

Размеры вирусов колеблются от 20 до 300 нм. В среднем они в 50 раз меньше бактерий. Их нельзя увидеть в световой микроскоп, так как их длины меньше длины световой волны.

Вирусы состоят яз различных компанентов:

а)сердцевина-генетический материал (ДНК или РНК). Генетический аппарат вируса несет информацию о нескольких типах белков, которые необходимы для образования нового вируса: ген, кодирующий обратную транскриптазу и другие.

б)белковая оболочка, которую называют каспидом.

Оболочка часто построена из идентичных повторяющихся субъедениц - капсомеров. Капсомеры образуют структуры с высокой степенью симметрии.

в)дополнительная липопротеидная оболочка.

Она образована из плазматической мембраны клетки-хозяина. Она встречается только у сравнительно больших вирусов (грипп, герпес).

Полностью сформированная инфекционная частица называется вирионом.

Положени о том, что вирусы представляют собой полноценные организмы, позволило окончательно объединить все три названных группы вирусов - вирусы животных, растений и бактерий - в одну категорию, зинимающую определенное место среди живых существ, населяющих нашу планету. Тот факт, что их не удалось выращивать на искусственных питательных средах, вне клеток, не вызывал особого удивления, так как вирусы с самого начала были определены как строгие внутриклеточные паразиты. Это свойство признавалось не уникальным, присущим только вирусам, поскольку внутриклеточные паразиты известины и среди бактерий, и среди простейших. Как и другие организмы, вирусы способны к размножению. Вирусы обладают определенной наследственностью, воспроизводя себе подобных. Наследственные признаки вирусов можно учитывать по спектору поражаемых хозяев и симптомам вызываемых заболеваний, а также по специфичности иммунных реакций естественных хозяев или искусственных иммунизируемых эксперементальных животных. Сумма этих признаков позволяет четко определить наследственные свойства любого вируса, и даже больше - его разновидностей, имеющих четкие генетические маркеры, напрмер: нейтропность некоторых вирусов гриппа, сниженную потогенность у вакциональных вирусов и т.п.

Изменчивость является другой стороной наследственности, и в этом отношении вирусы подобны всем другим организмам, населяющим нашу планету. При этом у вирусов можно наблюдать как генотическую изменчивость, связянную с изменением наследственного вещества, так и фенотипическую изменчивость, связянную с проявлением одного и того же генотипа в разных условиях. Примером первого типа изменчивости являются мутанты одного и того же вируса, в частности температурочувствительные мутанты. Примером второго типа изменчивости служит разный тип поражений, вызываемых одним и тем же вирусом у различных животных, растений и бактерий.

Все вирусы по своей природе - паразиты. Они способны воспроизводить себя, но только внутри живых клеток. Обычно вирусы вызывают явные признаки заболевания. Попав внутрь клетки, они “включают” ее ДНК и, используя свою собственную ДНК или РНК, дают клетке команду синтезировать компаненты вируса. Компаненты вируса способны к спантанному образованию вириона. Клетка, израсходовав все жизнетворные соки на синтез вирусов, гибнет, перегруженная паразитами. Вирусы “разрывают” оболочку клетки и передаются в другую клетку в виде инертных частиц. Вирусы вне клетки представляют собой кристаллы, но при попадании в клетку “оживают”.

Ученные, анализируя строение вещества, до сих пор не решили: считать вирусы живыми или мертвым. Вирусы, с одной стороны, обладают способностью размножатся, наследственностью и изменчивостью, но с другой стороны, не имеют обмена веществ, и их можно рассматривать, как гиганские молекулы.

Вирусы как и другие организмы, характеризуются приспосаб-ляемостью к условиям внешней среды. Нужно только не забывать, что для них организм хозяина является средой обитания, поэтому многие условия внешней среды влияют на вирус опосредованно - через организм хозяина. Однако многие факторы внешней среды могут и непосредственно воздействовать на вирусы. Достаточно вспомнить уже названные температурочувствительные мутанты вирусов, которые, например, размножаются при температуре 32-37 С и гибнут при температуре 38-40 С, хотя их хозяева остаются вполне жизнеспособными при этихх температурных режимах. В связи с тем, что вирусы являются паразитами, они подчиняются закономерностям и к ним применнимы понятия экологии паразитизма. Каждый вирус имеет круг естесственных хозяев, иногда очень широкий, как, например, у мелких РНК-геномных фагов: в первом случае поражаются все млекопитающие, во втором - отдельные клоны кишечной палочки. Циркуляция вирусов может быть горизонтальной (распространение среди популяции хозяев) и вертикальной (распространение то родителей потомству). Таким образом, каждый вирус занимает определенную экологическую нишу в биосфере.

а)Вирусы классифицируются по сердцевине:

ДНК-содержащие и РНК-содержащие (ретро) вирусы.

б)По структуре капсомеров.

Изометрические (кубические), спиральные, смешанные.

в)По наличию или отсутсвию дополнительной липопротеидной оболочки

Кроме этих классификаций есть еще много других. На пример, по типу переноса инфекции от одного организма к другому.

Спустя 25 лет после открытия вируса, канадский ученый Феликс Д’Эрел, используя метод фильтрации, открыл новую группу вирусов, поражающих бактерии. Они так и были названны бактериофагами (или просто фагами).

  • 16125
  • 9,3
  • 2
  • 4

Обратите внимание!

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.

Эволюция и происхождение вирусов

В 2007 году сотрудники биологического факультета МГУ Л. Нефедова и А. Ким описали, как мог появиться один из видов вирусов — ретровирусы. Они провели сравнительный анализ геномов дрозофилы D. melanogaster и ее эндосимбионта (микроорганизма, живущего внутри дрозофилы) — бактерии Wolbachia pipientis. Полученные данные показали, что эндогенные ретровирусы группы gypsy могли произойти от мобильных элементов генома — ретротранспозонов. Причиной этому стало появление у ретротранспозонов одного нового гена — env, — который и превратил их в вирусы. Этот ген позволяет вирусам передаваться горизонтально, от клетки к клетке и от носителя к носителю, чего ретротранспозоны делать не могли. Именно так, как показал анализ, ретровирус gypsy передался из генома дрозофилы ее симбионту — вольбахии [7]. Это открытие упомянуто здесь не случайно. Оно нам понадобится для того, чтобы понять, чем вызваны трудности борьбы с вирусами.

Из давних письменных источников, оставленных историком Фукидидом и знахарем Галеном, нам известно о первых вирусных эпидемиях, возникших в Древней Греции в 430 году до н.э. и в Риме в 166 году. Часть вирусологов предполагает, что в Риме могла произойти первая зафиксированная в источниках эпидемия оспы. Тогда от неизвестного смертоносного вируса по всей Римской империи погибло несколько миллионов человек [8]. И с того времени европейский континент уже регулярно подвергался опустошающим нашествиям всевозможных эпидемий — в первую очередь, чумы, холеры и натуральной оспы. Эпидемии внезапно приходили одна за другой вместе с перемещавшимися на дальние расстояния людьми и опустошали целые города. И так же внезапно прекращались, ничем не проявляя себя сотни лет.

Вирус натуральной оспы стал первым инфекционным носителем, который представлял действительную угрозу для человечества и от которого погибало большое количество людей. Свирепствовавшая в средние века оспа буквально выкашивала целые города, оставляя после себя огромные кладбища погибших. В 2007 году в журнале Национальной академии наук США (PNAS) вышла работа группы американских ученых — И. Дэймона и его коллег, — которым на основе геномного анализа удалось установить предположительное время возникновения вируса натуральной оспы: более 16 тысяч лет назад. Интересно, что в этой же статье ученые недоумевают по поводу своего открытия: как так случилось, что, несмотря на древний возраст вируса, эпидемии оспы не упоминаются в Библии, а также в книгах древних римлян и греков [9]?

Строение вирусов и иммунный ответ организма


Рисунок 1. Первооткрыватель вирусов Д.И. Ивановский (1864–1920) (слева) и английский врач Эдвард Дженнер (справа).


Почти все известные науке вирусы имеют свою специфическую мишень в живом организме — определенный рецептор на поверхности клетки, к которому и прикрепляется вирус. Этот вирусный механизм и предопределяет, какие именно клетки пострадают от инфекции. К примеру, вирус полиомиелита может прикрепляться лишь к нейронам и потому поражает именно их, в то время как вирусы гепатита поражают только клетки печени. Некоторые вирусы — например, вирус гриппа А-типа и риновирус — прикрепляются к рецепторам гликофорин А и ICAM-1, которые характерны для нескольких видов клеток. Вирус иммунодефицита избирает в качестве мишеней целый ряд клеток: в первую очередь, клетки иммунной системы (Т-хелперы, макрофаги), а также эозинофилы, тимоциты, дендритные клетки, астроциты и другие, несущие на своей мембране специфический рецептор СD-4 и CXCR4-корецептор [13–15].


Одновременно с этим в организме реализуется еще один, молекулярный, защитный механизм: пораженные вирусом клетки начинают производить специальные белки — интерфероны, — о которых многие слышали в связи с гриппозной инфекцией. Существует три основных вида интерферонов. Синтез интерферона-альфа (ИФ-α) стимулируют лейкоциты. Он участвует в борьбе с вирусами и обладает противоопухолевым действием. Интерферон-бета (ИФ-β) производят клетки соединительной ткани, фибробласты. Он обладает таким же действием, как и ИФ-α, только с уклоном в противоопухолевый эффект. Интерферон-гамма (ИФ-γ) синтезируют Т-клетки (Т-хелперы и (СD8+) Т-лимфоциты), что придает ему свойства иммуномодулятора, усиливающего или ослабляющего иммунитет. Как именно интерфероны борются с вирусами? Они могут, в частности, блокировать работу чужеродных нуклеиновых кислот, не давая вирусу возможности реплицироваться (размножаться).


Причины поражений в борьбе с ВИЧ

Тем не менее нельзя сказать, что ничего не делается в борьбе с ВИЧ и нет никаких подвижек в этом вопросе. Сегодня уже определены перспективные направления в исследованиях, главные из которых: использование антисмысловых молекул (антисмысловых РНК), РНК-интерференция, аптамерная и химерная технологии [12]. Но пока эти антивирусные методы — дело научных институтов, а не широкой клинической практики*. И потому более миллиона человек, по официальным данным ВОЗ, погибают ежегодно от причин, связанных с ВИЧ и СПИДом.


Рисунок 5. Схема развития феномена ADE при вирусных инфекциях. а — Взаимодействие между антителом и рецептором FcR на поверхности макрофага. б — Фрагмент С3 комплемента (компонент комплемента, после присоединения которого весь этот комплекс приобретает способность прилипать к различным частицам и клеткам) и рецептор комплемента (complement receptor, CR) способствуют присоединению вируса к клетке. в — Белки комплемента С1q и С1qR способствуют присоединению вируса к клетке (в составе молекулы C1q имеется рецептор для связывания с Fc-фрагментом молекулы антитела). г — Антитела взаимодействуют с рецептор-связывающим сайтом вирусного белка и индуцируют его конформационные изменения, облегчающие слияние вируса с мембраной. д — Вирусы, получившие возможность реплицироваться в данной клетке посредством ADE, супрессируют противовирусные ответы со стороны антивирусных генов клетки. Рисунок с сайта supotnitskiy.ru.

Подобный вирусный механизм характерен не только для ВИЧ. Он описан и при инфицировании некоторыми другими опасными вирусами: такими, как вирусы Денге и Эбола. Но при ВИЧ антителозависимое усиление инфекции сопровождается еще несколькими факторами, делая его опасным и почти неуязвимым. Так, в 1991 году американские клеточные биологи из Мэриленда (Дж. Гудсмит с коллегами), изучая иммунный ответ на ВИЧ-вакцину, обнаружили так называемый феномен антигенного импринтинга [23]. Он был описан еще в далеком 1953 году при изучении вируса гриппа. Оказалось, что иммунная система запоминает самый первый вариант вируса ВИЧ и вырабатывает к нему специфические антитела. Когда вирус видоизменяется в результате точечных мутаций, а это происходит часто и быстро, иммунная система почему-то не реагирует на эти изменения, продолжая производить антитела к самому первому варианту вируса. Именно этот феномен, как считает ряд ученых, стоит препятствием перед созданием эффективной вакцины против ВИЧ.


Открытие биологов из МГУ — Нефёдовой и Кима, — о котором упоминалось в самом начале, также говорит в пользу этой, эволюционной, версии.


Сегодня не только ВИЧ представляет опасность для человечества, хотя он, конечно, самый главный наш вирусный враг. Так сложилось, что СМИ уделяют внимание, в основном, молниеносным инфекциям, вроде атипичной пневмонии или МЕRS, которыми быстро заражается сравнительно большое количество людей (и немало гибнет). Из-за этого в тени остаются медленно текущие инфекции, которые сегодня гораздо опаснее и коварнее коронавирусов* и даже вируса Эбола. К примеру, мало кто знает о мировой эпидемии гепатита С, вирус которого был открыт в 1989 году**. А ведь по всему миру сейчас насчитывается 150 млн человек — носителей вируса гепатита С! И, по данным ВОЗ, каждый год от этой инфекции умирает 350-500 тысяч человек [33]. Для сравнения — от лихорадки Эбола в 2014-2015 гг. (на состояние по июнь 2015 г.) погибли 11 184 человека [34].

* — Коронавирусы — РНК-содержащие вирусы, поверхность которых покрыта булавовидными отростками, придающими им форму короны. Коронавирусы поражают альвеолярный эпителий (выстилку легочных альвеол), повышая проницаемость клеток, что приводит к нарушению водно-электролитного баланса и развитию пневмонии.


Рисунок 8. Электронная микрофотография воссозданного вируса H1N1, вызвавшего эпидемию в 1918 г. Рисунок с сайта phil.cdc.gov.

Почему же вдруг сложилась такая ситуация, что буквально каждый год появляются новые, всё более опасные формы вирусов? По мнению ученых, главные причины — это сомкнутость популяции, когда происходит тесный контакт людей при их большом количестве, и снижение иммунитета вследствие загрязнения среды обитания и стрессов. Научный и технический прогресс создал такие возможности и средства передвижения, что носитель опасной инфекции уже через несколько суток может добраться с одного континента на другой, преодолев тысячи километров.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции