Делением размножаются только клетки но не органоиды б клетки размножаются делением а вирусы нет


Разработка предназначена для подготовки учащихся одиннадцатых классов к единому государственному экзамену по биологии. А так же может быть использована на уроках биологии учителями-предметниками для закрепления материала. Задания даны в виде тестов. Выполняя данные тесты, можно добиться успешной подготовки к сдаче ЕГЭ.

Верны ли следующие суждения

А. Делением размножаются только клетки, но не органоиды.

Б. Клетки размножаются делением. а вирусы нет.

1. Верно только А

2. Верно только Б

3. Верны обе формулировки

4. Обе формулировки не верны

А. При дигибидном скрещивании у гибридов каждая пара признаков наследуется независимо от других и дает с ними разные сочетания.

Б. Это закон чистоты гамет: в каждую гамету попадает только одна аллель из пары аллелей данного гена родительской особи.

Б. Пары альтернативных признаков не смешиваются и при образовании гамет по одному переходят в них в чистом виде.

А. Результатами эволюции можно считать разнообразие организмов и их приспособленность к условиям окружающей среды.

Б. Результатами эволюции считаются изоляция, борьба за существование и возникновение мутаций.

А. Наследственная изменчивость служит материалом для естественного отбора.

Б. Наследственная изменчивость способствует сохранению в популяции наиболее приспособленных особей

А. Многие белки выполняют каталитическую функцию.

Б. Некоторые гормоны имеют белковую природу.

Упрощение в строении животных, связанные с паразитическим образом жизни, относят к биологическому регрессу.

Б. Возникновение класса Насекомые, сопровождающееся повышением нового уровня их организации, - пример ароморфоза.

А. Генетический код триплетен – один триплет всегда кодирует только одну аминокислоту.

Б. Генетический код однозначен – в молекуле нуклеиновой кислоты одна аминокислота кодируется сочетанием трех последовательно расположенных нуклидов.

А. В результате митоза из одной диплоидной клетки образуется 4 гоплоидные.

Б. Редукция числа хромосом происходит в анафазе I.

А. Мутационная изменчивость носит случайный характер.

А. Митоз обеспечивает рост организма, регенерацию, лежит в основе бесполого размножения.

Б. Мейоз обеспечивает образование гамет, увеличивает генетическое разнообразие и лежит в основе комбинативной изменчивости.

Верны ли следующие суждения о фотосинтезе?

А. В световой фазе фотосинтеза происходит синтез Атор, образуются атомы водорода и молекулярный кислород.

Б. Световая фаза фотосинтеза происходит в строме хлоропласта.

Верны ли следующие суждения о химическом составе клетки?

А. Цинк относится к микроэлементам

Б. В состав хлорофилла входит железо.

Верны ли следующие суждения о строении и функциях органоидов?

А. Лизосомы относятся у двумембранным органоидам.

Б. У кишечной палочки АТФ синтезируются не в митохондриях.

Верны ли следующие суждения об обмене веществ?

А. Второй этап катаболизма – неполное окисление или бескислородный – протекает в цитоплазме..

Б. В результате гликолиза из одной молекулы глюкозы образуется 2 молекулы АТФ.

Верны ли следующие суждения об особенностях ферментов?

А. Ферменты – это специфические белки, которые присутствуют во всех живых организмах и играют роль биологических катализаторов.

Б. Ферменты в отличие от химических катализаторов способны катализировать несколько различных реакций.

Верны ли следующие суждения о приспособленности организмов?

А. К этиологическим приспособлениям относятся, н/п иглы ежа, дикобраза, колючки кактуса, акации, барбариса, которые защищают животных от врагов или препятствуют поеданию растений травоядными животными.

Б. Японские макаки зимой при наступлении холодов спускаются с гор к термальным источникам и подолгу греются в теплой воде – это пример физиологической адаптации.

Верны ли следующие суждения о происхождении жизни?

А. Невозможность самозарождения была доказана опытами Ф. Реди, Л. Пастера и др.

Б. Доказательствами инопланетного происхождения жизни служат НЛО, наскальные изображения летательных аппаратов

А. Молекулы ДНК, находящиеся в митохондриях и хлоропластах, не являются хранителями наследственной информации.

Б. Мутации, возникающие в молекулах ДНК, передаются на и-РНК в соответствии с правилами комплементарности.

А. Плазматическая мембрана состоит из лидидного бислоя и встроенных белков.

Б. Мембранные белки выполняют транспортные, рецепторные и другие функции.

А. В разных фазах мейоза клетка может нести диплоидный или гаплоидный набор хромосом.

Б. В течении всего митоза клетка кожи человека всегда диплоидна.

Верны ли следующие суждения:

№2: Верны обе формулировки

№3: Верно только А (борьба за существование и мутации – это факторы эволюции, а не результат)

№4 верно А (Б – неверно, т.к. сохранению в популяции наиболее приспособленных особей способствует естественный отбор, а наследственная изменчивость представляет собой материал для отбора).

№5 верны оба суждения

№6 Верно Б (А – неверно, т.к. упрощение в строении животных, связанное с паразитическим образом жизни, относят к дегенерации. А дегенерация, как и ароморфоз и идиоадаптация, тоже относится к биологическому процессу.

№7 Оба суждения неверны. А – генетический под триптолетен, т.е. в молекуле НК одна аминокислота кодируется сочетанием 3-х последовательно расположенных нуклеотидов.

Б – генетический код однозначен, т.е. один триплет (кодон) всегда кодирует только одну А.К.

Тема: Общий обзор организма человека

Урок: Клетка: строение, химический состав и жизнедеятельность

Цитология

Организм человека – это огромное многоклеточное государство. Клетка – структурная единица как растительных, так животных организмов. Наука, изучающая клетки, называется цитология.

По форме, строению и функциям клетки чрезвычайно разнообразны, но все они имеют общую структуру. А вот форма, размеры, и особенности строения клетки зависят от выполняемой органом функции.

Впервые о существовании клеток сообщил в 1665 г. выдающийся английский физик, математик и микроскопист Роберт Гук.


После открытия Гука клетки обнаруживали под микроскопом у всевозможных видов животных и растений. И все они имели общий план строения. Но в световой микроскоп можно было увидеть лишь цитоплазму и ядро. Появление электронного микроскопа позволило ученым не только увидеть другие, но и рассмотреть их ультраструктуру.


Основные части клетки

Основные части клетки – ядро, цитоплазма с органоидами и клеточная мембрана.


Рис. 3. Основные компоненты клетки

Мембрана

Клеточная мембрана ограничивает живое содержимое клеток от окружающей среды. Важнейшим свойством плазматической мембраны является ее избирательная проницаемость, т. е. через нее в клетку свободно могут попадать лишь некоторые вещества. За счет этого свойства мембрана регулирует поступление веществ в клетку и обмен с внешней средой.


Цитоплазма

Цитоплазма – это жидкое содержимое клетки с находящими в ней органоидами. Основное вещество цитоплазмы – вода. Цитоплазма живых клеток находится в постоянно движении, что обеспечивает взаимосвязь всех органоидов и доступ к ним различных веществ.

К органоидам клетки относят эндоплазматическую сеть – систему многочисленных канальцев и цистерн, которые пронизывают всю цитоплазму. Эндоплазматическая сеть разделяет клетку на отсеки, обеспечивает сообщение между частями клетки и транспорт веществ.

На эндоплазматической сети располагаются рибосомы. Это очень маленькие органоиды, но их функция очень важна для клетки – в рибосомах синтезируются белки.



Митохондрия

Митохондрии – это достаточно крупные органоиды, которые можно увидеть даже в световой микроскоп. Митохондрии называют энергетическими станциями клетки. В процессе дыхания в них происходит окончательное окисление органических веществ кислородом воздуха. Выделившаяся в этом процессе энергия запасется в образующихся молекулах АТФ, которые способны при распаде отдавать свою энергию туда, где она нужна.


Лизосомы

Еще один важный органоид клетки – это лизосома, которая представляет собой мембранный пузырек, заполненный пищеварительными ферментами, которые расщепляют поступающие в клетки органические вещества (белки, жиры и углеводы). Лизосомы производятся комплексом Гольджи.



Вблизи ядра обычно располагается клеточный центр, который играет важную роль при делении клеток. Он присутствует в клетках животных и низших растений.

Регуляторным центром клетки служит ядро. Оно отделено от цитоплазмы двойной ядерной оболочкой. Внутри ядро заполнено ядерным соком, в котором находятся хромосомы. Хромосомы содержат гены, определяющие наследственность организма. В ядре так же можно увидеть одно или несколько ядрышек. В них происходит формирование рибосом. Ядро регулирует все процессы жизнедеятельности клетки, обеспечивает передачу и хранение наследственной информации.


Химический состав клетки

Клетки состоят из неорганических и органических веществ. К неорганическим веществам клетки относятся вода и минеральные вещества.

Вода служит катализатором (ускорителем) многих реакций и средой, где протекают все химические процессы. Водные растворы веществ образуют внутреннюю среду клетки.

Минеральные вещества присутствуют в клетках в виде ионов или твердых нерастворимых солей. Они создают кислую или щелочную реакцию среды в клетках, входят в состав некоторых структур и влияют на протекание в клетках и в организме различных процессов.

Основную массу органических веществ составляют четыре класса химических соединений: липиды, углеводы, белки и нуклеиновые кислоты.

Основная функция жиров и углеводов – энергетическая, так они являются источником энергии для клеток. Не менее значимы и их строительная и запасающая функции. Но первое место среди органических веществ по разнообразию функций занимают, конечно же, белки.

Они выполняют ферментативную функцию – ускоряют химические реакции в организме. Следующая важная функция белков – строительная. Нет ни одной структуры тела, которая не содержала бы в своем составе белка. Двигательная функция связана с сократительными белками, которые входят в состав мышечных волокон. Белки выполняют и защитную функцию. Они образуют антитела, защищающие организм от болезнетворных бактерий и вирусов. Регуляторные белки это гормоны, регулирующие обмен веществ в организме.

Нуклеиновые кислоты занимают отдельное место среди органических веществ клетки. Они отвечают за хранение и передачу наследственной информации. В них закодирована информация о структуре всех белков организма. Более подробно с химическим составом клетки вы познакомитесь в девятом классе.

Каждая клетка осуществляет все процессы, от которых зависит ее жизнь, т. е. питается, извлекает из пищи энергию, избавляется от отходов жизнедеятельности, воспроизводит себе подобных. В многоклеточном организме каждая клетка выполняет сверх того еще и некоторые специализированные функции, составляющие ее вклад в общую функцию организма. Например, мышечные клетки сокращаются, железистые клетки выделяют различные жидкости (пот, слюну или желудочный сок), нервные клетки вырабатывают нервные импульсы. Клетка – не только структурная, но и функциональная единица живого организма.

Дополнительный материал

Цитология

Цитология (греч. citos – пузырьковидное образование и logos – слово, наука) – раздел биологии, изучающий живые клетки, их органоиды, их строение, функционирование, процессы клеточного размножения, старения и смерти.


Создание микроскопа


Невозможно точно определить, кто изобрел микроскоп. Одни считают, что голландский мастер очков Ханс Янсен и его сын Захарий Янсен изобрели первый микроскоп в 1590 г.


Другие уверенны, что изобретателем микроскопа был Галилео Галилей. Он разработал свой микроскоп в 1609 г.


Удивительным и непохожим на эти изобретения был микроскоп Антонии Левенгука, с помощью которого он в 1681 г. смог разглядеть мир простейших организмов в капле воды.


Вот с таких простых приборов начались великие биологические открытия, которые продолжаются по сей день.

Роль ионов в организме человека

Мнение о том, что в организме человека можно обнаружить практически все элементы периодической системы Д.И. Менделеева, становится привычным. Однако предположения ученых идут дальше – в живом организме не только присутствуют все химические элементы, но каждый из них выполняет какую-то биологическую функцию.

Вполне возможно, что эта гипотеза не подтвердится. Однако по мере того как развиваются исследования в данном направлении, выявляется биологическая роль все большего числа химических элементов. Несомненно, время и труд ученых прольют свет и на этот вопрос.

Итак, функции каких ионов уже известны? Так, ионы кальция входят в состав костей и зубов, влияют на свертываемость крови. Ионы калия и натрия содействуют проведению нервных импульсов. Ионы хлора входят в состав желудочного сока. Йод является компонентом гормона щитовидной железы – тироксина. Железо входит в состав гемоглобина и участвует в переносе кислорода. Медь, марганец, бор участвуют в процессах кроветворения. Фтор входит в состав зубной эмали, при его недостатке развивается кариес, а при избытке – флюороз, размягчение костной ткани. Ионы молибдена, хрома, кобальта, цинка активируют работу ферментов, влияют на обмен веществ. При нехватке этих элементов могут нарушаться процессы жизнедеятельности организмов.

Особенности химического состава клетки более углублённо мы будем изучать в курсе биологии 10 класса.

Список рекомендованной литературы

1. Колесов Д.В., Маш Р.Д., Беляев И.Н. Биология 8 М.:Дрофа

2. Пасечник В.В., Каменский А.А., Швецов Г.Г. / Под ред. Пасечника В.В. Биология 8 М.:Дрофа.

3. Драгомилов А.Г., Маш Р.Д. Биология 8 М.: ВЕНТАНА-ГРАФ

Рекомендованные ссылки на ресурсы интернет

Рекомендованное домашнее задание

1. Колесов Д.В., Маш Р.Д., Беляев И.Н. Биология 8 М.:Дрофа – с. 32, задания и вопрос 2, 3, 5.

2. Какие существуют основные части клетки?

3. Расскажите о клеточных органеллах.

4. Подготовьте сообщение об истории открытия микроскопа.

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Строение и функции оболочки клетки . 2

Оболочка клеток . 2

Плазматическая мембрана . 2

Эндоплазматическая сеть . 4

Аппарат Гольджи . 5

Клеточный центр . 6

Клеточные включения . 6

Химический состав клетки. Неорганические вещества. 6

Атомный и молекулярный состав клетки . 6

Содержание химических элементов в клетке (таблица) . 7

Схема строения животной клетки по данным электронного микроскопа.

Клеточная теория. В середине XIX столетия на основе уже многочисленных знаний о клетке Т. Шванн сформулировал клеточную теорию (1838). Он обобщил имевшиеся знания о клетке и показал, что клетка представляет основную единицу строения всех живых организмов, что клетки животных и растений сходны по своему строению. Эти положения явились важнейшими доказательствами единства происхождения всех живых организмов, единство всего органического мира. Т. Шван внес в науку правильное понимание клетки как самостоятельной единицы жизни, наименьшей единицы живого: вне клетки нет жизни.

Изучение химической организации клетки привело к выводу, что именно химические процессы лежат в основе ее жизни, что клетки всех организмов сходны по химическому составу, у них однотипно протекают основные процессы обмена веществ. Данные о сходстве химического состава клеток еще раз подтвердили единство всего органического мира.

Современная клеточная - теория включает следующие положения:

клетка - основная единица строения и развития всех живых организмов, наименьшая единица живого;

клетки всех одноклеточных и многоклеточных организмов сходны ( гомологичны ) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ;

размножение клеток происходит путем их деления, и каждая новая клетка образуется в результате деления исходной (материнской) клетки;

в сложных многоклеточных организмах клетки специализированы по выполняемой ими функции и образуют ткани; из тканей состоят органы, которые тесно связаны между собой и подчинены нервным и гуморальным системам регуляции.

Исследования клетки имеют большое значение для разгадки заболеваний. Именно в клетках начинают развиваться патологические изменения, приводящие к возникновению заболеваний. Чтобы понять роль клеток в развитии заболеваний, приведем несколько примеров. Одно из серьезных заболеваний человека - сахарный диабет. Причина этого заболевания - недостаточная деятельность группы клеток поджелудочной железы, вырабатывающих гормон инсулин, который участвует в регуляции сахарного обмена организма. Злокачественные изменения, приводящие к развитию раковых опухолей, возникают также на уровне клеток. Возбудители кокцидиоза - опасного заболевания кроликов, кур, гусей и уток - паразитические простейшие - кокцидии проникают в клетки кишечного эпителия и печени, растут и размножаются в них, полностью нарушают обмен веществ, а затем разрушают эти клетки. У больных кокцидиозом животных сильно нарушается деятельность пищеварительной системы и при отсутствии лечения животные погибают. Вот почему изучение строения, химического состава, обмена веществ и всех проявлений жизнедеятельности клеток необходимо не только в биологии, но также в медицине и ветеринарии.

Особую, неклеточную форму жизни составляют вирусы, изучением которых занимается вирусология.

Строение и функции оболочки клетки

Клетка любого организма, представляет собой целостную живую систему. Она состоит из трех неразрывно связанных между собой частей: оболочки, цитоплазмы и ядра. Оболочка клетка осуществляет непосредственное взаимодействие с внешней средой и взаимодействие с соседними клетками (в многоклеточных организмах).

Оболочка клеток. Оболочка клеток имеет сложное строение. Она состоит из наружного слоя и расположенной под ним плазматической мембраны. Клетки животных и растений различаются по строению их наружного слоя. У растений, а также у бактерий, сине-зеленых водорослей и грибов на поверхности клеток расположена плотная оболочка, или клеточная стенка. У большинства растений она состоит из клетчатки. Клеточная стенка играет исключительно важную роль: она представляет собой внешний каркас, защитную оболочку, обеспечивает тургор растительных клеток: через клеточную стенку проходит вода, соли, молекулы многих органических веществ.

Наружный слой поверхности клеток животных в отличие от клеточных стенок растений очень тонкий, эластичный. Он не виден в световой микроскоп и состоит из разнообразных полисахаридов и белков. Поверхностный слой животных клеток получил название гликокаликс.

Гликокаликс выполняет прежде всего функцию непосредственной связи клеток животных с внешней средой, со всеми окружающими ее веществами. Имея незначительную толщину (меньше 1 мкм), наружный слой клетки животных не выполняет опорной роли, какая свойственна клеточным стенкам растений. Образование гликокаликса, так же как и клеточных стенок растений, происходит благодаря жизнедеятельности самих клеток.

В состав плазматической мембраны входят белки и липиды. Они упорядочено расположены и соединены друг с другом химическими взаимодействиями. По современным представлениям молекулы липидов в плазматической мембране расположены в два ряда и образуют сплошной слой. Молекулы белков не образуют сплошного слоя, они располагаются в слое липидов, погружаясь в него на разную глубину.

Молекулы белка и липидов подвижны, что обеспечивает динамичность плазматической мембраны.

Плазматическая мембрана выполняет много важных функций, от которых завидят жизнедеятельность клеток. Одна из таких функций заключается в том, что она образует барьер, отграничивающий внутреннее содержимое клетки от внешней среды. Но между клетками и внешней средой постоянно происходит обмен веществ. Из внешней среды в клетку поступает вода, разнообразные соли в форме отдельных ионов, неорганические и органические молекулы. Они проникают в клетку через очень тонкие каналы плазматической мембраны. Во внешнюю среду выводятся продукты, образованные в клетке. Транспорт веществ- одна из главных функций плазматической мембраны. Через плазматическую мембрану из клети выводятся продукты обмена, а также вещества, синтезированные в клетке. К числу их относятся разнообразные белки, углеводы, гормоны, которые вырабатываются в клетках различных желез и выводятся во внеклеточную среду в форме мелких капель.

Клетки, образующие у многоклеточных животных разнообразные ткани ( эпителиальную, мышечную и др.), соединяются друг с другом плазматической мембраной. В местах соединения двух клеток мембрана каждой из них может образовывать складки или выросты, которые придают соединениям особую прочность.

Соединение клеток растений обеспечивается путем образования тонких каналов, которые заполнены цитоплазмой и ограничены плазматической мембраной. По таким каналам, проходящим через клеточные оболочки, из одной клетки в другую поступают питательные вещества, ионы, углеводы и другие соединения.

На поверхности многих клеток животных, например различных эпителиев, находятся очень мелкие тонкие выросты цитоплазмы, покрытые плазматической мембраной, - микроворсинки. Наибольшее количество микроворсинок находится на поверхности клеток кишечника, где происходит интенсивное переваривание и всасывание переваренной пищи.

Фагоцитоз. Крупные молекулы органических веществ, например белков и полисахаридов, частицы пищи, бактерии поступают в клетку путем фагоцита (греч. “фагео” - пожирать). В фагоците непосредственное участие принимает плазматическая мембрана. В том месте, где поверхность клетки соприкасается с частицей какого-либо плотного вещества, мембрана прогибается, образует углубление и окружает частицу, которая в “мембранной упаковке” погружается внутрь клетки. Образуется пищеварительная вакуоль и в ней перевариваются поступившие в клетку органические вещества.

Цитоплазма. Отграниченная от внешней среды плазматической мембраной, цитоплазма представляет собой внутреннюю полужидкую среду клеток. В цитоплазму эукариотических клеток располагаются ядро и различные органоиды. Ядро располагается в центральной части цитоплазмы. В ней сосредоточены и разнообразные включения - продукты клеточной деятельности, вакуоли, а также мельчайшие трубочки и нити, образующие скелет клетки. В составе основного вещества цитоплазмы преобладают белки. В цитоплазме протекают основные процессы обмена веществ, она объединяет в одно целое ядро и все органоиды, обеспечивает их взаимодействие, деятельность клетки как единой целостной живой системы.

Эндоплазматическая сеть. Вся внутренняя зона цитоплазмы заполнена многочисленными мелкими каналами и полостями, стенки которых представляют собой мембраны, сходные по своей структуре с плазматической мембраной. Эти каналы ветвятся, соединяются друг с другом и образуют сеть, получившую название эндоплазматической сети.

Эндоплазматическая сеть неоднородна по своему строению. Известны два ее типа - гранулярная и гладкая. На мембранах каналов и полостей гранулярной сети располагается множество мелких округлых телец - рибосом, которые придают мембранам шероховатый вид. Мембраны гладкой эндоплазматической сети не несут рибосом на своей поверхности.

Эндоплазматическая сеть выполняет много разнообразных функций. Основная функция гранулярной эндоплазматической сети - участие в синтезе белка, который осуществляется в рибосомах.

На мембранах гладкой эндоплазматической сети происходит синтез липидов и углеводов. Все эти продукты синтеза накапливаются н каналах и полостях, а затем транспортируются к различным органоидам клетки, где потребляются или накапливаются в цитоплазме в качестве клеточных включений. Эндоплазматическая сеть связывает между собой основные органоиды клетки.

Рибосомы. Рибосомы обнаружены в клетках всех организмов. Это микроскопические тельца округлой формы диаметром 15-20 нм. Каждая рибосома состоит из двух неодинаковых по размерам частиц, малой и большой.

В одной клетке содержится много тысяч рибосом, они располагаются либо на мембранах гранулярной эндоплазматической сети, либо свободно лежат в цитоплазме. В состав рибосом входят белки и РНК. Функция рибосом - это синтез белка. Синтез белка - сложный процесс, который осуществляется не одной рибосомой, а целой группой, включающей до нескольких десятков объединенных рибосом. Такую группу рибосом называют полисомой. Синтезированные белки сначала накапливаются в каналах и полостях эндоплазматической сети, а затем транспортируются к органоидам и участкам клетки, где они потребляютя. Эндоплазматическая сеть и рибосомы, расположенные на ее мембранах, представляют собой единый аппарат биосинтеза и транспортировки белков.

Новые митохондрии образуются делением уже существующих в клетке митохондрий.

Пластиды. В цитоплазме клеток всех растений находятся пластиды. В клетках животных пластиды отсутствуют. Различают три основных типа пластид: зеленые - хлоропласты; красные, оранжевые и желтые - хромопласты; бесцветные - лейкопласты.

Хлоропласт. Эти органоиды содержатся в клетках листьев и других зеленых органов растений, а также у разнообразных водорослей. Размеры хлоропластов 4-6 мкм, наиболее часто они имеют овальную форму. У высших растений в одной клетке обычно бывает несколько десятков хлоропластов. Зеленый цвет хлоропластов зависит от содержания в них пигмента хлорофилла. Xлоропласт - основной органоид клеток растений, в котором происходит фотосинтез, т. е. образование органических веществ (углеводов) из неорганических (СО2 и Н2О) при использовании энергии солнечного света.

По строению хлоропласты сходны с митохондриями. От цитоплазмы хлоропласт отграничен двумя мембранами - наружной и внутренней. Наружная мембрана гладкая, без складок и выростов, а внутренняя образует много складчатых выростов, направленных внутрь хлоропласта. Поэтому внутри хлоропласта сосредоточено большое количество мембран, образующих особые структуры - граны. Они сложены наподобие стопки монет.

В мембранах гран располагаются молекулы хлорофилла, потому именно здесь происходит фотосинтез. В хлоропластах синтезируется и АТФ. Между внутренними мембранами хлоропласта содержатся ДНК, РНК. и рибосомы. Следовательно, в хлоропластах, так же как и в митохондриях, происходит синтез белка, необходимого для деятельности этих органоидов. Хлоропласты размножаются делением.

Хромопласты находятся в цитоплазме клеток разных частей растений: в цветках, плодах, стеблях, листьях. Присутствием хромопластов объясняется желтая, оранжевая и красная окраска венчиков цветков, плодов, осенних листьев.

Лейкопласты. находятся в цитоплазме клеток неокрашенных частей растений, например в стеблях, корнях, клубнях. Форма лейкопластов разнообразна.

Хлоропласты, хромопласты и лейкопласты способны клетка взаимному переходу. Так при созревании плодов или изменении окраски листьев осенью хлоропласты превращаются в хромопласты, а лейкопласты могут превращаться в хлоропласты, например, при позеленении клубней картофеля.

Аппарат Гольджи. Во многих клетках животных, например в нервных, он имеет форму сложной сети, расположенной вокруг ядра. В клетках растений и простейших аппарат Гольджи представлен отдельными тельцами серповидной или палочковидной формы. Строение этого органоида сходно в клетках растительных и животных организмов, несмотря на разнообразие его формы.

В состав аппарата Гольджи входят: полости, ограниченные мембранами и расположенные группами (по 5-10); крупные и мелкие пузырьки, расположенные на концах полостей . Все эти элементы составляют единый комплекс.

Аппарат Гольджи выполняет много важных функций. По каналам эндоплазматической сети к нему транспортируются продукты синтетической деятельности клетки - белки, углеводы и жиры. Все эти вещества сначала накапливаются, а затем в виде крупных и мелких пузырьков поступают в цитоплазму и либо используются в самой клетке в процессе ее жизнедеятельности, либо выводятся из нее и используются в организме. Например, в клетках поджелудочной железы млекопитающих синтезируются пищеварительные ферменты, которые накапливаются в полостях органоида. Затем образуются пузырьки, наполненные ферментами. Они выводятся из клеток в проток поджелудочной железы, откуда перетекают в полость кишечника. Еще одна важная функция этого органоида заключается в том, что на его мембранах происходит синтез жиров и углеводов (полисахаридов), которые используются в клетке и которые входят в состав мембран. Благодаря деятельности аппарата Гольджи происходят обновление и рост плазматической мембраны.

Лизосомы. Представляют собой небольшие округлые тельца. От Цитоплазмы каждая лизосома отграничена мембраной. Внутри лизосомы находятся ферменты, расщепляющие белки, жиры, углеводы, нуклеиновые кислоты.

К пищевой частице, поступившей в цитоплазму, подходят лизосомы, сливаются с ней, и образуется одна пищеварительная вакуоль , внутри которой находится пищевая частица, окруженная ферментами лизосом. Вещества, образовавшиеся в результате переваривания пищевой частицы, поступают в цитоплазму и используются клеткой.

Обладая способностью к активному перевариванию пищевых веществ, лизосомы участвуют в удалении отмирающих в процессе жизнедеятельности частей клеток, целых клеток и органов. Образование новых лизосом происходит в клетке постоянно. Ферменты, содержащиеся в лизосомах, как и всякие другие белки синтезируются на рибосомах цитоплазмы. Затем эти ферменты поступают по каналам эндоплазматической сети к аппарату Гольджи, в полостях которого формируются лизосомы. В таком виде лизосомы поступают в цитоплазму.

Клеточный центр. В клетках животных вблизи ядра находится органоид, который называют клеточным центром. Основную часть клеточного центра составляют два маленьких тельца - центриоли, расположенные в небольшом участке уплотненной цитоплазмы. Каждая центриоль имеет форму цилиндра длиной до 1 мкм. Центриоли играют важную роль при делении клетки; они участвуют в образовании веретена деления.

Клеточные включения. К клеточным включениям относятся углеводы, жиры и белки. Все эти вещества накапливаются в цитоплазме клетки в виде капель и зерен различной величины и формы. Они периодически синтезируются в клетке и используются в процессе обмена веществ.

Ядро. Каждая клетка одноклеточных и многоклеточных животных, а также растений содержит ядро. Форма и размеры ядра зависят от формы и размера клеток. В большинстве клеток имеется одно ядро, и такие клетки называют одноядерными. Существуют также клетки с двумя, тремя, с несколькими десятками и даже сотнями ядер. Это - многоядерные клетки.

Ядерный сок - полужидкое вещество, которое находится под ядерной оболочкой и представляет внутреннюю среду ядра.

Химический состав клетки. Неорганические вещества

Атомный и молекулярный состав клетки. В микроскопической клетке содержится несколько тысяч веществ, которые участвуют в разнообразных химических реакциях. Химические процессы, протекающие в клетке,- одно из основных условий ее жизни, развития и функционирования.

Все клетки животных и растительных организмов, а также микроорганизмов сходны по химическому составу, что свидетельствует о единстве органического мира.

Содержание химических элементов в клетке

Элементы Количество (в %) Элементы Количество (в %)

Кислород 65-75 Кальций 0,04-2,00

Углерод 15-16 Магний 0,02-0,03

Водород 8-10 Натрий 0,02-0,03

Азот 1,5-3,0 Железо 0,01-0,015

Фосфор 0,2-1,0 Цинк 0,0003

Калий 0,15-0,4 Медь 0,0002

Сера 0,15-0,2 Йод 0,0001

Хлор 0,05-0,1 Фтор 0,0001

В таблице приведены данные об атомном составе клеток. Из 109 элементов периодической системы Менделеева в клетках обнаружено значительное их большинство. Особенно велико содержание в клетке четырех элементов - кислорода, углерода, азота и водорода. В сумме они составляют почти 98% всего содержимого клетки. Следующую группу составляют восемь элементов, содержание которых в клетке исчисляется десятыми и сотыми долями процента. Это сера, фосфор, хлор, калий, магний, натрий, кальций, железо. В сумме они составляют 1.9%. Все остальные элементы содержатся в клетке в исключительно малых количествах (меньше 0,01%)

Таким образом, в клетке нет каких-нибудь особенных элементов, характерных только для живой природы. Это указывает на связь и единство живой и неживой природы. На атомном уровне различий между химическим составом органического и не органического мира нет. Различия обнаруживаются на более высоком уровне организации - молекулярном.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции