Что такое простейшие список простейших вирусов

Бактерии – одноклеточные организмы, не имеющие оформленного ядра. То есть, их ДНК находится не в отдельном компартменте, а погружена прямо в содержимое клетки. Это ключевое отличие бактерий от ядерных организмов, или эукариот, на основании которого бактерий выделили в отдельное царство.

Бактерии имеют относительно простую клеточную организацию, и именно они стали одними из первых существ, заселившими нашу планету. За миллионы лет бактерии смогли освоить практически все экологические ниши. Чтобы приспособиться к необычным местам обитания, им пришлось развить необычные функции. Они научились питаться светом, нефтью, жить в арктическом холоде и в кипящей воде, собирать свой геном из кусков и синтезировать сотни тысяч геномов.

Бактерии – древнейшая известная группа организмов
Слоистые каменные структуры – строматолиты, – датируемые в ряде случаев началом археозоя (архея), т.е. возникшие 3,5 млрд. лет назад, – результат жизнедеятельности бактерий, обычно фотосинтезирующих, т.н. сине-зеленых водорослей. Подобные структуры (пропитанные карбонатами бактериальные пленки) образуются и сейчас, главным образом у побережья Австралии, Багамских островов, в Калифорнийском и Персидском заливах, однако они относительно редки и не достигают крупных размеров, потому что ими питаются растительноядные организмы, например брюхоногие моллюски. Первые ядерные клетки произошли от бактерий примерно 1,4 млрд. лет назад.

Самыми древними из ныне существующих живых организмов считаются археобактерии термоацидофилы (thermoacidophiles). Они живут в воде горячих источников с высоким содержанием кислоты. При температуре ниже 55oC (131oF) они гибнут!

Несколько десятилетий назад ученые обнаружили в океане "черные курильщики" – уникальные геотермальные источники. "Черные курильщики" образуются, как правило, в рифтовых зонах, где сквозь трещины литосферных плит прорывается раскаленный газ, нагревающий воду до экстремально высоких температур – 300-400 градусов по Цельсию. В воде "курильщиков" растворены сероводород и сульфиды металлов, которые окрашивают ее в черный цвет.

Ученые не ожидали обнаружить жизнь в таких условиях, однако, к их удивлению, фауна "черных курильщиков" оказалась очень разнообразной. Каменистые склоны вокруг "курильщиков" населяют многочисленные бактерии. Температура воды вокруг склонов немного холоднее, чем в сердце "курильщика", – всего около 120 градусов Цельсия. Приспособившиеся к кипятку бактерии процветают – естественных конкурентов у них нет.

В толще льда, покрывающей подледное озеро Восток в Антарктиде, были найдены несколько видов бактерий. Они, правда, были скорее мертвыми, чем живыми. Ученые определили, что найденные бактерии являются термофильными – то есть, предпочитают жить при повышенных температурах. Исследователи выдвинули гипотезу, согласно которой в озере Восток есть или были теплые источники, которые подогревали воду озера.

Кстати, именно бактерии оказались ответственными за образование снежинок. Недавно ученые обнаружили, что "затравкой" для их формирования во многих случаях являются патогенные для растений микроорганизмы Pseudomonas syringae. Лучше всего они "стимулируют" рост кристаллических ледяных структур при температурах от минус семи градусов по Цельсию до нуля.

На дне самой глубокой в мире Марианской впадины в центре Тихого океана обнаружены 13 видов неведомых науке одноклеточных, существующих в неизменном виде уже почти миллиард лет. Микроорганизмы были найдены в пробах грунта, которые осенью 2002 года взял в разломе Челленджера японский автоматический батискаф "Кайко" на глубине 10.900 метров. В 10 кубических сантиметрах почвы обнаружены 449 ранее неизвестных первобытных одноклеточных круглой или удлиненной формы размером 0,5 - 0,7 мм. После нескольких лет исследований их подразделили на 13 видов. Все эти организмы практически полностью соответствуют т.н. "неведомым биологическим окаменелостям", которые в 80-х годах были обнаружены в России, Швеции и Австрии в слоях почвы древностью от 540 млн до миллиарда лет.

На основании генетического анализа японские исследователи утверждают, что найденные на дне Марианской впадины одноклеточные существуют в неизменном виде уже более 800 млн, а то и миллиард лет. Судя по всему, это самые древние из всех известных сейчас обитателей Земли. Одноклеточные из разлома Челленджера ради выживания были вынуждены уйти на крайние глубины, поскольку в мелких слоях океана не могли конкурировать с более молодыми и агрессивными организмами.

В принципе, большой размер для бактерий является недостатком, так как у них отсутствуют специальные механизмы поглощения питательных веществ. Большинство бактерий получает пищу путем простой диффузии. Чем больше размер бактериальной клетки, тем меньше для нее отношение площади поверхности к объему, а значит тем труднее для нее получить необходимое количество пищи. То есть, большие бактерии обречены на голодание. Правда, у гигантов есть своя правда. Благодаря размеру они являются трудной добычей для бактерий-хищников, которые поедают жертв, "обтекая" и переваривая их.

Самые маленькие бактерии по размеру сравнимы с крупными вирусами. Например, микоплазма Mycoplasma mycoides не превышает 0,25 микрометра. Согласно теоретическим подсчетам, сферическая клетка диаметром менее 0,15-0,20 микрометров становится неспособной к самостоятельному воспроизведению, поскольку в ней физически не помещаются все необходимые структуры.


Рентгеновское или гамма-излучение смертельно опасно для живых организмов. Оно вызывает разрывы в ДНК, а в больших дозах в буквальном смысле разрывает ее на куски. Однако некоторые бактерии прекрасно переносят гамма-излучение. Речь идет о Deinococcus radiodurans. Эта бактерия размножается после получения дозы радиации, почти в тысячу раз превышающей смертельную для человека дозу. Уникальный организм полностью восстанавливает свой геном всего за шесть часов. Секрет заключается в том, что Deinococcus radiodurans несет не одну, как большинство бактерий, а несколько копий своей ДНК. При облучении разрывы в каждой из копий происходят в разных местах, поэтому бактерия может сложить целую мозаику из имеющихся кусков.

Halobacterium salanarium NRC-1 способна пережить облучение в 18 тысяч греев. Чтобы убить человека, достаточно 10 греев

Из-за быстрого размножения бактерии постоянно находятся в условиях жесткой конкуренции. Чтобы выжить, они научились находить источники пищи практически во всем. Самым очевидным и доступным стал солнечный свет. С его помощью получают энергию, например, цианобактерии, которых также называют сине-зелеными водорослями. Они получают необходимую для жизни энергию с помощью процесса оксигенного фотосинтеза, для которого необходимы только свет, вода и углекислый газ. В качестве побочного продукта фотосинтеза выделяется кислород. Именно цианобактерии насытили атмосферу Земли кислородом, без которого не может существовать большинство организмов.

Стремясь обеспечить себе спокойное существование, некоторые бактерии предпочли найти другие источники питания. Для этого им потребовалось серьезно изменить свою клеточную организацию, однако такая перестройка позволила занять свободную экологическую нишу. Несколько групп бактерий развили способность перерабатывать нефть. Бактерии, относящиеся к родам Pseudomonas, Bacillus, Serratia, Alcaligenes, осложняют жизнь нефтяникам, разлагая различные составляющие нефти до простых углеводородов. Однако бактерии с такими нестандартные пищевыми пристрастиями могут приносить и пользу. В настоящее время ученые из разных стран активно разрабатывают технологии очистки воды после разливов нефти с помощью нефтеокисляющих бактерий.

Некоторые бактерии, живущие в почве, научились питаться веществами, специально созданными для их уничтожения. Ученые обнаружили несколько сотен видов бактерий, которые могут использовать антибиотики в качестве единственного источника питания. Такие бактерии потенциально опасны для человека, даже если сами они не вызывают никаких заболеваний. Любители антибиотиков могут передавать свои гены патогенным микроорганизмам – такая практика весьма распространена среди бактерий.

Генетически модифицированная обычная кишечная палочка способна поедать фосфорорганические соединения - ядовитые вещества, токсичные не только для насекомых, но и для человека. К классу фосфорорганических соединений относятся некоторые виды химического оружия, например, газ зарин, обладающий нервно-паралитическим действием.

Расправляться с фосфорорганикой модифицированной кишечной палочке помогает особый фермент - разновидность гидролазы, первоначально найденный у некоторых "диких" почвенных бактерий. Протестировав множество генетически близких разновидностей бактерий, ученые выбрали штамм, который уничтожает пестицид метилпаратион в 25 раз эффективнее, чем исходные почвенные бактерии. Чтобы пожиратели токсинов не "разбежались", их закрепили на матрице из целлюлозы - неизвестно, как поведет себя трансгенная кишечная палочка, оказавшись на свободе.

Колонии микробов обнаружены на камнях в районе северного и южного полюсов. Места эти не слишком подходят для жизни - сочетание крайне низких температур, сильных ветров и жесткого ультрафиолетового излучения выглядят устрашающе. Но 95 процентов исследованных учеными каменистых равнин заселены микроорганизмами!

Этим микроорганизмам хватает того света, который попадает под камни через щели между ними, отражаясь от поверхностей соседних камней. Из-за перепадов температур (камни нагреваются солнцем и остывают, когда его нет) происходят подвижки в каменных россыпях, некоторые камни оказываются в полной темноте, а другие, наоборот, попадают на свет. После таких подвижек микроорганизмы "мигрируют" с затемненных камней на освещенные.


Самые щелочелюбивые живые организмы на планете живут в загрязненной воде в США. Ученые обнаружили микробиальные сообщества, благоденствующие в шлаковых отвалах в области озера Калюме на юго-западе Чикаго, где уровень кислотности воды (рН) составляет 12,8. Жизнь в такой среде сравнима с обитанием в каустической соде или жидкости для мытья пола. В подобных отвалах воздух и вода вступают в реакцию со шлаками, в которой возникает гидроксид кальция (каустическая сода), повышающая рН. Бактерий обнаружили в ходе изучения загрязненных грунтовых вод, накопившихся за более чем столетие хранения промышленных железных отвалов, поступающих из Индианы и Иллинойса.

Генетический анализ показал, что часть этих бактерий – близкие родственники видов Clostridium и Bacillus. Эти виды ранее обнаруживали в кислотных водах озера Моно в Калифорнии, туфовых столбах в Гренландии и загрязненных цементом водах глубинного золотого рудника в Африке. Некоторые из этих организмов используют водород, выделяющийся при коррозии металлических железных шлаков. Как именно необычные бактерии попали в шлаковые отвалы, осталось загадкой. Не исключено, что местные бактерии приспособились к своей экстремальной среде обитания за последний век.


. размножаться самостоятельно — за них это делают внутренние механизмы клетки, которую вирус заражает. Сам работать со своими генами вирус также не может — не в состоянии синтезировать белки, хотя имеет белковую оболочку. Он просто похищает готовые белки у клеток. В состав некоторых вирусов даже входят углеводы и жиры — но опять-таки ворованные. Вне клетки-жертвы вирус — это просто гигантское скопление пусть и очень сложных молекул, но ни тебе обмена веществ, ни каких-либо ещё активных действий.

Удивительно, но самые простые существа на планете (мы условно всё же будем именовать вирусы существами) — одна из самых больших загадок науки.

Американские ученые экспериментировали с современным вирусом гриппа - неприятной и тяжелой, но не слишком летальной болезни - скрестив его с вирусом печально знаменитой "испанки" 1918 года. Модифицированный вирус убивал мышей наповал с симптомами, характерными для "испанки" (острое воспаление легких и внутренние кровотечения). При этом его отличия от современного вируса на генетическом уровне оказались минимальными.

От эпидемии "испанки" в 1918 году погибло больше людей, чем во время самых страшных средневековых эпидемий чумы и холеры, и даже больше, чем фронтовые потери в Первую мировую войну. Ученые предполагают, что вирус "испанки" мог возникнуть из вируса так называемого "птичьего гриппа", соединившись с обычным вирусом, например, в организме свиней. Если же птичий грипп успешно скрещивается с человеческим и получает возможность переходить от человека к человеку, то мы получаем болезнь, которая способна вызвать глобальную пандемию и убить несколько миллионов человек.


Amoeba proteus – пресноводная амеба длиной около 0,25 мм, один из самых распространенных видов группы. Его часто используют в школьных опытах и для лабораторных исследований. Обыкновенная амеба встречается в иле на дне прудов с загрязненной водой. Она похожа на маленький, едва заметный простым глазом бесцветный студенистый комочек.

У обыкновенной амебы (Amoeba proteus) обнаружен так называемый вибротаксис в виде положительной реакции на источник механических колебаний частотой 50 Гц. Это становится понятны, если учесть, что у некоторых видов инфузорий, служащих амебе пищей, частота биения ресничек колеблется как раз между 40 и 60 Гц. У амебы наблюдается также отрицательный фототаксис. Это явление заключается в том, что животное старается переместиться из освещенной области в тень. Термотаксис у амебы также отрицательный: она перебирается из более теплой в менее нагретую часть водоеа. Интересно наблюдать гальванотаксис амебы. Если через воду пропустить слабый электрический ток, амеба выпускает ложноножки только с той стороны, которая обращена к отрицательному полюсу – катоду.


Амеба - очень простой организм, состоящий из одной клетки, которая размножается простым делением. Сначала клетка амебы удваивает свой генетический материал, создавая второе ядро, а затем меняет форму, образуя посередине перетяжку, которая постепенно делит ее на две дочерние клетки. Между ними остается тонкая связка, которую они тянут в разные стороны. В конце концов связка рвется, и дочерние клетки начинают самостоятельную жизнь.

Но у некоторых видов амебы процесс размножения происходит совсем не так просто. Их дочерние клетки не могут самостоятельно разорвать связку и иногда вновь сливаются в одну клетку с двумя ядрами. Делящиеся амебы взывают о помощи, выделяя особое химическое вещество, на которое реагирует "амеба-акушерка". Ученые считают, что, скорее всего, это комплекс веществ, включающий фрагменты белков, липиды и сахара. По-видимому, когда клетка амебы делится, ее мембрана испытывает напряжение, что и вызывает выделение химического сигнала во внешнюю среду. Тогда делящейся амебе помогает другая, которая приходит по специальному химическому сигналу. Она внедряется между делящимися клетками и давит на связку, пока та не разорвется.

Акантарии (Acantharia), простейшие организмы, относящиеся к радиоляриям, достигают длины 0,3 мм. Их скелет состоит из сульфата стронция.

Суммарная масса фитопланктона всего 1,5 млрд т, тогда как масса зоопалнктона – 20 млрд т.

Скорость движения инфузории-туфельки (Paramecium caudatum) составляет 2 мм в сек. Это означает, что туфелька проплывает за секунду расстояние в 10-15 раз большее, чем длина ее тела. На поверхности инфузории-туфельки находятся 12 тыс. ресничек.

Эвглена зеленая (Euglena viridis) может служить хорошим индикатором степени биологической очистки воды. При снижении бактериальных загрязнений ее численность резко возрастает.


Существа, которые не относятся ни к растениям, ни к животным, называются рангеоморфами. Они впервые поселились на океанском дне около 575 миллионов лет назад, после последнего глобального оледенения (это время называют периодом Эдиакар), и были одними из первых мягкотелых существ. Эта группа существовала до 542 миллионов лет назад, когда стремительно размножающиеся современные животные вытеснили большинство этих видов.

Организмы собирались во фрактальные узоры из разветвляющихся частей. Они были неспособны двигаться и не имели репродуктивных органов, а размножались, по-видимому, создавая новые ответвления. Каждый ветвящийся элемент состоял их множества трубок, удерживаемых вместе полужестким органическим скелетом. Ученые обнаружили рангеоморфы, собранные в несколько разных форм, которые, как он полагает, собирали пищу в разных слоях водяного столба. Фрактальный рисунок представляется достаточно сложным, но, по словам исследователя, сходство организмов друг с другом делало достаточным простой геном для создания новых свободно плавающих ответвлений и для соединения ответвлений в более сложные структуры.

Фрактальный организм, найденный на Ньюфаундленде, имел 1,5 сантиметра в ширину и 2,5 сантиметра в длину.
Такие организмы составляли до 80% всех живущих в Эдиакаре, когда не было подвижных животных. Однако с появлением более мобильных организмов начался их упадок, и в результате они были полностью вытеснены.

Под поверхностью дна морей и океанов существует целая биосфера. Оказывается, на глубинах в 400-800 метров ниже дна, в толще древних отложений и пород живут мириады бактерий. Возраст некоторых конкретных экземпляров оценивается в 16 миллионов лет. Они практически бессметрны — считают учёные.

Исследователи полагают, что именно в подобных условиях, в глубинах донных пород, более чем 3,8 миллиарда лет назад зародилась жизнь и лишь позднее, когда среда на поверхности стала пригодной для обитания — освоила океан и сушу. Следы жизни (окаменелости) в донных породах, взятых с очень большой глубины под поверхностью дна, учёные находили давно. Собрана масса образцов, в которых они нашли живые микроорганизмы. В том числе — в породах, поднятых с глубин более 800 метров ниже уровня океанского дна. Некоторые образцы отложений насчитывали возраст во много миллионов лет, а это означало, что, к примеру, запертая в таком образце бактерия — имеет тот же возраст. Около трети бактерий, которые учёные обнаруживали в глубоких донных породах — живы. В отсутствии солнечного света источником энергии для этих существ являются различные геохимические процессы.

Бактериальная биосфера, расположенная под морским дном, очень велика и по численности превосходит все бактерии, живущие на суше. Потому она оказывает заметное влияние на геологичечские процессы, на баланс диоксида углерода и так далее. Возможно, предполагают исследователи, без таких подземных бактерий у нас не было бы нефти и газа.

Простейшие включены в царство Protozoa, в котором выделяют 7 типов; в состав 3-х из них - Apicomptexa, Ciliophora, Sarcomastigophora входят патогенные для человека виды. Большинство простейших ведет сапрофитический образ жизни, обитают в почве, воде пресных и соленых водоемов. Известно около 25000 различных видов, около 7000 видов патогенны для растений, животных и человека.

Простейшие - одноклеточные организмы размерами от 3 до 150 мкм, находящиеся на более высоком уровне организации по сравнению с бактериями, имеют дифференцированное одно или несколько ядер, специализированные пищеварительные и сократительные вакуоли. Цитоплазма разделена на внутренний слой - эндоплазму, содержащую все структуры клетки, и плотный наружный слой - эктоплазму. Поверхностный слой эктоплазмы образует эластичную, ригидную мембрану -пелликлу, которая покрывает тело простейших. Иногда поверх пелликулы образуется жесткая оболочка (кутикула). Многие простейшие обладают органами движения - жгутиками, ресничками, псевдоподиями. При размножении проходят сложные циклы развития в организме основного хозяина - переносчика инфекции, и промежуточного хозяина - человека, животного. Особенности размножения и строения органов движения позволили объединить патогенные для человека виды в 4 класса: класс I - Ffogellata (жгутиковые); класс II - Sporozoa (споровики); класс Ш - Sarcodina (саркодовые); класс IV - Infusoria (инфузории).

Простейшие, или протисты, состоят из единственной эукариотической клетки. Снаружи тело простейших покрывает ригидная мембрана — пелликула. К ней прилегает внешний более плотный и гомогенный слой цитоплазмы — эктоплазма. У некоторых видов пелликула может содержать опорные фибриллы и даже минеральный скелет. Набор органелл, расположенных в более жидкой эндоплазме, идентичен клеткам многоклеточных животных организмов; исключением может быть наличие у некоторых видов нескольких ядер.


Многие простейшие способны активно передвигаться за счёт псевдоподий (выростов цитоплазмы), жгутиков или ресничек. В неблагоприятных условиях жизненные процессы у простейших резко замедляются, они теряют органеллы и покрываются толстой и прочной оболочкой, образуя цисты. Патогенные простейшие представляют крайний случай паразитизма эукариотов в отношении организма-хозяина. Их паразитические свойства в основных чертах аналогичны таковым у паразитических прокариот — паразит использует хозяина как источник питания.

У человека они способны вызывать различные острые (например, африканская сонная болезнь) и хронические (например, гиардиоз) заболевания. Жизненный цикл паразитических простейших нередко включает образование промежуточных форм в теле различных хозяев, что дает им возможность более эффективно инфицировать восприимчивые организмы. Для идентификации с помощью световой микроскопии простейших красят по методу Романовского-Гимзы или Райта (цитоплазма окрашивается в синий, а ядро — в красный цвет).

МЕТОДЫ ОБНАРУЖЕНИЯ ПРОСТЕЙШИХ

Выявление патогенных простейших основано на идентификации морфологических особенностей возбудителя и в значительной степени зависит от правильного взятия клинического материала и адекватной фиксации. Ошибки при проведении этих мероприятий могут привести к получению ошибочных результатов.

Поиск патогенных простейших обычно проводят в субстратах, являющихся средой их обитания -- испражнениях, крови.

Дли адекватного выявлении паразитов в ЖКТ необходимо исследовать не менее трёх проб, полученных в течение 10 суток. Для диагностики амебиаза этого может оказаться недостаточно, и при подозрении на это заболевание необходимо исследовать шесть проб, полученных в течение 14 суток. Следует избегать попадания в материал воды или мочи, губительно действующих на простейших. Если больному в диагностических целях вводили внутрь сульфат бария, минеральное масло, препараты висмута или проводили специфическую терапию, то за-бор испражнений следует проводить не ранее 8-х суток после последнего введения. Для выявления трофозоитов (подвижных форм) жидкие испражнения необходимо исследовать в течение 30 мин после получения; при более оформленном стуле эти исследования можно провести в течение часа; на более поздних сроках трофозоиты обычно разрушаются. При невозможности своевременного обследования в образцы вносят фиксирующие растворы, сохраняющие морфологию взрослых особей.

Макроскопическое исследование может выявить примесь крови и слизи (частый диагностический признак амебиаза). Выявление же самих паразитов проводят при светооптической микроскопии влажных нативных препаратов либо в окрашенных мазках.

Микроскопия нативных препаратов. Небольшое количество испражнений наносят на предметное стекло, диспергируют в капле физиологического раствора, накладывают покровное стекло и исследуют под микроскопом на наличие трофозоитов (в жидкие испражнения физиологический раствор не вносят). Нативные препараты можно слегка докрашивать раствором Люголя, что облегчает выявление цист. Особенно внимательно необходимо исследовать кровь и слизь; желательно готовить отдельные препараты, не контаминированные (по возможности) фекальными массами.

Методы накопления. Для выявления паразитов, присутствующих в незначительных количествах, применяют различные методы накопления. При исследовании кала наиболее часто используют седиментационный метод. Для исследования забирают каплю надосадочной жидкости, наносят на предметное стекло, где смешивают с равным объёмом физиологического раствора, накрывают покровным стеклом и микроскопируют. Смесь на предметном стекле можно подкрашивать раствором Люголя, раствор разрушает трофозоиты, но позволяет хорошо визуализировать ядра и включения гликогена в цистах.

Микроскопия окрашенных мазков позволяет не только выявлять, но и дифференцировать простейших; окраску наиболее часто проводят гематоксилином и эозином по Хайденхайну.

Капиллярную или венозную кровь помещают в пробирку с антикоагулянтом (например, с этилендиаминтетрауксусной кислотой); исследования необходимо проводить по возможности быстро. Обнаружение простейших проводят микроскопией толстых и тонких мазков. Толстые мазки готовят из больших объёмов крови, нанесённых на предметное стекло; их обычно окрашивают по Романовскому-Гимзе, чего обычно бывает вполне достаточно для выявления паразитов. Тонкие мазки готовят для облегчения морфологической дифференцировки паразитов крови, мазки обычно окрашивают по Романовскому-Гимзе или Райту.

Образцы различных тканей

Образцы различных тканей отбирают, учитывая биологию паразита и его типичную локализацию. Образцы кожных покровов окрашивают обычными гистологическими красителями и микроскопируют. Биоптаты лимфатических узлов, селезёнки, печени, аспираты костного мозга и СМЖ забирают при подозрении на трипаносомозы или лейшманиозы. Часть образцов микро-скопируют в виде нативных мазков, часть окрашивают по Романовскому-Гимзе или Райту. Также возможно окрашивание образцов различными гистологическими красителями, наиболее употребляемыми для изготовления препаратов из исследуемых тканей.

Выделение возбудителей проводят только в специализированных лабораториях, институтах и центрах; проводить эти мероприятия в обычных бактериологических лабораториях недопустимо. На специальных средах и культурах тканей можно выделять и культивировать практически все патогенные простейшие.

Серологические исследования -- наиболее распространённые и доступные диагностические методы. Их часто проводят при подозрении на токсоплазмоз, амебиаз (РИГА, латекс-агглютинация), лейшманиозы (РИГА), трипаносомозы (РИГА, РСК) ,а также ИФА,РИА. Проводят также кожно- аллергические пробы для выявления ПЧЗТ.

Подробно рассмотрев известные способы идентификации различных микроорганизмов, можно сделать вывод, что в основном это длительный и трудоемкий процесс, требующий достаточного набора знаний, оборудования и специальных условий. Но,не смотря на все трудности, диагностика необходима в целях идентификации микроорганизмов при установлении диагноза инфекционных заболеваний или иных вызванных микробами процессов и определения физиологических свойств культуры с другими целями, например при выборе химиотерапевтического препарата. Но жаль, что пока не существует универсального метода для быстрого и качественного определения микроорганизма. Каждый метод подходит для определённого ряда инфекций и не годиться для определения возбудителей других заболеваний. Также мало пока способов внелабораторной диагностики, потому что, например, часто необходимо наличие чистой культуры, что практически невозможно создать в полевых условиях. В мире постоянно появляются или обнаруживаются новые неизвестные микроорганизмы и, возможно, от скорости их идентификации будет зависеть жизнь многих людей. Из всего этого можно сделать вывод, что человечеству необходимо уделять больше внимания развитию микробиологии.

Инфекционные болезни — это заболевания, вызванные проникновением в организм бактерий, грибков или вирусов. Самая важная часть диагностики инфекций — это определение возбудителя и его концентрации. Для этих целей используются разнообразные лабораторные методы, которые позволяют выяснить, чем именно и как давно атакован организм, а в некоторых случаях — спрогнозировать эффективность лечения тем или иным препаратом.

Особенности диагностики инфекционных заболеваний

В клинической практике данный тип заболеваний встречается очень часто. Именно они, по данным Всемирной организации здравоохранения, становятся причиной 26% всех смертей. В список самых распространенных инфекционных заболеваний входят инфекционная пневмония и другие воспалительные заболевания дыхательных путей, гепатит, ВИЧ, туберкулез, малярия, воспаления органов половой системы и мочевыводящих путей, гистоплазмоз, ротавирусные инфекционные заболевания, ветряная оспа, герпес, вирус папилломы человека и еще несколько десятков болезней. Хотя бы раз в жизни каждый из нас сталкивается с инфекционными заболеваниями и необходимостью быстрой постановки диагноза.

Все инфекционные болезни делятся на пять типов — прионные, вирусные, бактериальные, протозойные и грибковые поражения. Далее будут рассмотрены последние четыре типа как наиболее распространенные. Разные возбудители иногда могут вызывать одно и то же заболевание. В частности, пневмония может быть результатом как вирусной, так и бактериальной инфекции. Лечение зависит не от проявлений, а от возбудителя болезни. Противовирусные препараты бесполезны в борьбе с бактериями и грибками, антибиотики не действуют на вирусы. Поэтому основная задача лабораторной диагностики инфекционных заболеваний — выявление типа возбудителя.

Способы лабораторной диагностики инфекционных болезней можно разделить на два типа: неспецифические и специфические методы.

К неспецифическим относятся общий анализ крови и исследование соотношения ее белковых фракций, печеночные пробы, общий анализ мочи и кала. Эти методы не дают информации о виде возбудителя, но позволяют узнать, в какой мере болезнь затронула органы и системы организма, что именно в их работе нарушено и насколько далеко зашел процесс.

Специфические — вирусологический и бактериологический методы, микроскопическое исследование возбудителей, анализы на антигены и антитела — направлены непосредственно на обнаружение возбудителя.

Современная медицина располагает множеством методов выделения возбудителей бактериальной инфекции:

Бактериоскопический . Исследуется окрашенный специальным образом мазок.

Бактериологический . Биоматериал высеивается в питательную среду, и через некоторое время специалист исследует колонию бактерий, выросшую в ней.

Биологический . Направлен на определение патогенности микроорганизмов.

Серологический . Выявляет антитела и антигены в сыворотке крови — особые вещества, которые вырабатываются организмом при контакте с возбудителем определенной болезни.

Чаще всего для исследований используют кровь или сыворотку крови, реже — слюну, мочу, кал, клетки эпителия (мазок и соскоб) и другой биоматериал.

В лабораторной диагностике вирусных заболеваний используются:

Вирусологическое исследование . Световая и электронная микроскопия дает возможность выявить наличие вирусных включений и сами вирусы и идентифицировать их.

Серологическое исследование для обнаружения антител и антигенов. Этот метод дает возможность быстро выявить агрессора, как и в случае с бактериальными инфекциями. Для диагностики используются разнообразные способы исследования материала — реакции гемадсорбции, гемагглютинации или метод непрямой иммунофлюоресценции. Имунноблоттинг, в частности, позволяет выявлять антитела сразу к нескольким инфекциям и считается современным и точным диагностическим методом.

Молекулярно-генетические методы . Последнее слово в лабораторной диагностике. Позволяют обнаружить вирус даже тогда, когда его концентрация ничтожно мала — то есть на самых ранних стадиях. Самым известным из этих методов является ПЦР, при которой фрагмент вируса многократно копируется до тех пор, пока специалист не получит достаточно материала для определения типа вируса и его изначальной концентрации.

Для выявления вирусов обычно требуется сделать анализ крови.

Так называют инфекции, вызванные простейшими паразитами, например, амебами. Малярия, амёбиаз, токсоплазмоз, лямблиоз, трихомониаз, сонная болезнь — вот неполный список самых распространенных протозойных инфекций. Лабораторная диагностика таких заболеваний включает в себя следующие методы:

Микроскопический . Простейшие паразиты выявляются путем исследования под микроскопом окрашенных образцов биоматериала. Самый простой и надежный метод для многих возбудителей.

Культуральный . Посев биоматериала в питательную следу для дальнейшего исследования размножившихся простейших. У этого метода есть существенный недостаток: результатов нужно ждать долго, сам процесс может занять не менее 5-6-ти дней.

Серологический . Используют редко ввиду малой информативности.

Аллергический . Также не является распространенным. Кожные аллергопробы делают для того, чтобы подтвердить лейшманиоз и токсоплазмоз. Это вспомогательный диагностический метод.

В качестве биоматериала для исследований в основном используется кровь, иногда — – кал или моча.

Микроскопическое исследование . Препарат окрашивается и рассматривается под мощным микроскопом. Посредством иммунофлюоресцентной микроскопии исследуется проба, помеченная флюоресцеинами — специальным красителем. Наиболее быстрый способ выявления грибка по сравнению с другими методами.

Культуральный . Происходит посев пробы на питательную среду и дальнейшее исследование полученной в результате колонии грибков.

Серологический . Используется для выявления грибковых поражений, однако для микозов он считается не особенно точным.

Гибридизация нуклеиновых кислот . Самый современный способ выявления грибковых инфекций, его применяют для идентификации основных возбудителей системных микозов. Из культуры извлекается РНК и вносится особым способом помеченная молекула ДНК. Если в пробе наличествует один из основных патогенных грибков, ДНК объединится с его РНК, создав легко различимую структуру. Несомненным преимуществом метода является возможность определить инфекцию на самых ранних стадиях.

Биоматериалом для исследований являются клетки кожи, волос и ногтей, клетки слизистых оболочек (мазок или соскоб), мокрота, моча, секрет простаты, сперма, грудное молоко.

Современные методики диагностики инфекций позволяет выявить их на начальном этапе, Чем раньше болезнь будет обнаружена, тем проще ее вылечить. Поэтому сдавать анализы на инфекции желательно регулярно, даже если вы ни на что не жалуетесь и не замечаете никаких перемен в самочувствии.



Пе­ред сда­чей био­ма­те­ри­а­ла для ис­сле­до­ва­ний иног­да тре­бу­ет­ся опре­де­лен­ная под­го­тов­ка. Так, кровь обыч­но сда­ют с ут­ра, на­то­щак, а пе­ред за­бо­ром маз­ка не ре­ко­мен­ду­ет­ся при­ни­мать душ. Эти тре­бо­ва­ния очень важ­ны: они обес­пе­чи­ва­ют точ­ность ре­зуль­та­та, по­это­му узнай­те у вра­ча за­ра­нее о под­го­то­ви­тель­ных ме­рах и точ­но сле­дуй­те всем его ре­ко­мен­да­ци­ям.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции