Что такое фантом вируса

Шифровальщик Fantom демонстрирует пользователю экран обновления Windows, а сам при этом шифрует его файлы


2 сентября 2016


Мы часто говорим о том, что очень важно обновлять программное обеспечение, чтобы никакой зловред не смог воспользоваться известными уязвимостями в нем. Что ж, шифровальщик, о котором мы говорим сегодня, эксплуатирует саму идею обновления ПО, но к уязвимостям это отношения не имеет.

С точки зрения программирования шифровальщик Fantom похож на своих собратьев как две капли воды. Он использует открытый исходный код EDA2, опубликованный в свое время турецким исследователем Утку Сеном в рамках неудачного эксперимента. Это уже далеко не первый образчик шифровальщиков на базе EDA2, но один из самых интересных: в стремлении скрыть свою деятельность от пользователя он заходит очень далеко.

Пока неизвестно, каким образом распространяется вымогатель. Так или иначе, попав в компьютер жертвы, он ведет себя совершенно типичным образом: сначала создает криптоключ, который затем шифрует и помещает на командный сервер, чтобы обратиться к нему позже.

Затем шифровальщик изучает содержимое компьютера в поисках подходящих файлов — а это более 350 типов, среди которых офисные документы, изображения, музыка и другие популярные форматы. Их он шифрует с помощью того самого ключа, добавляя затем к именам уже зашифрованных файлов расширение .fantom. Но все эти процессы происходят за кулисами, а самое интересное действо разворачивается перед глазами пользователя.

Во-первых, исполняемый файл с шифровальщиком прикидывается критическим обновлением для Windows — это прописано в его свойствах. Во-вторых, при запуске шифровальщика одновременно начинают работу два компонента: собственно шифровальщик и небольшая программа под не вызывающим подозрений названием WindowsUpdate.exe.

Эта программа выполняет свою часть работы — отображает весьма похожий на настоящий экран приложения Windows Update (это тот самый голубой экран, который сообщает пользователю о том, что Windows устанавливает обновления). Пока в фоновом режиме зловред шифрует файлы, ничего не подозревающая жертва наблюдает, как сообщение на экране медленно отсчитывает проценты, отмеряя количество несуществующих обновлений, а на самом деле — процесс шифрования ценных данных на машине пользователя.


Этот маневр призван отвлечь внимание, чтобы жертва не заметила подозрительной активности. При этом поддельный Windows Update отображается в полноэкранном режиме и блокирует доступ к другим программам.

Если пользователь все же почуял неладное, то фальшивый экран обновления можно свернуть привычной комбинацией клавиш Ctrl+F4, но работу шифровальщика это не остановит.

После того как Fantom завершил шифрование, он удаляет свои следы — исполняемые файлы — и создает в каждой папке компьютера html-файл с сообщением о требовании выкупа, а также меняет обои рабочего стола. Злоумышленник предлагает связаться с ним по электронной почте и обсудить условия выкупа, а также получить инструкции — это излюбленный метод русскоговорящих хакеров.


Плохие новости для пользователей: на данный момент способов расшифровать файлы, не платя выкуп, нет. Поэтому самое важное сейчас — не допустить заражения компьютера шифровальщиком. Вот что для этого стоит сделать:

30 октября 2019

  • 400
  • 0,2
  • 0
  • 2

Трудовые будни биофизиков

рисунок автора статьи




Спонсором приза зрительских симпатий выступила компания BioVitrum.

Медицинский фантом — это изделие медицинского назначения, то есть искусственно созданные ткани, органы, конечности, позволяющие имитировать те или иные (механические, оптические, геометрические, биофизические и т.п.) свойства человеческого тела или отдельных его частей для применения в клинической практике.

Как все начиналось? Или история медицинских фантомов

Фантомы — далеко не новое изобретение. Их история развивалась вместе с достижениями в различных областях промышленности. Например, успехи в химической отрасли позволили создавать первые фантомы из пластмассы. Достижения в компьютерных технологиях позволили создавать виртуальные модели. Также некоторые проекты имели военное значение, поэтому финансировались оборонными ведомствами.

По информации, сохранившейся до наших дней, известно, что первый фантом появился во Франции в XVIII веке. Это было устройство для приобретения и последующей отработки акушерских навыков. Автором стала Анжелика дю Кудрэ (1712–1789). Она разработала собственную методику обучения повитух и акушерок, а также выполнила эскизы, по которым был изготовлен первый родовой фантом. Материалами послужили хлопок и кожаные ремни (с их помощью, затягивая или ослабляя, можно было имитировать сложность родов). Плод же имел пальпируемый нос, вышитые глаза, нарисованные волосы и открытый рот с языком (рис. 1).


Рисунок 1. Фантом, созданный по эскизам мадам дю Кудрэ. Выставлен в Руане (музей Гюстава Флобера и истории медицины).

Последовав примеру Франции, другие индустриальные страны начали уделять внимание подготовке медицинского персонала с помощью фантомов.

Появление математических моделей состояний сердечно-сосудистой и дыхательной систем послужило отправной точкой для создания устройства CASE — первого медицинского фантома для анестезиологов [1].

С 80-х годов XX века начинается история тканеимитирующих фантомов. Этому послужило развитие методов диагностирования рака, в частности рака молочной железы в ближнем инфракрасном диапазоне. В 90-е годы фантомы различных тканей использовали для исследований в области спектроскопии и медицинской визуализации биологических объектов [2].

В 2000 году выпустили симулятор VEST (Virtual Endoscopical Surgery Training). Он вобрал в себя все передовые технологии своего времени: это и 3D-визуализация, и механизмы обратной связи, и возможность отработки навыков тактильного и визуального восприятия брюшной полости [1].

Классификация медицинских симуляторов

В 2012 году Российское общество симуляционного обучения в медицине (РОСОМЕД) разработало классификацию симуляционного оборудования по уровням реалистичности (табл. 1). Этот параметр был взят как основополагающий принцип классификации, так как он влияет на цели и результаты учебной работы [1].

Практикующий врач при постановке диагноза опирается не только на свой собственный опыт, но и на результаты медицинской диагностики. В современной медицине скорость развития новых методов визуализации зависит от наличия недорогих, настраиваемых и легко воспроизводимых стандартов биологических тканей, воспроизводящих среду визуализации [3]. К таким объектам относятся тканеимитирующие фантомы, они обеспечивают стандарт для оценки, характеристики или калибровки диагностической системы (рис. 2). Фантом подбирается таким образом, чтобы имитировать свойства и характеристики ткани в определенном спектральном диапазоне длин волн, характерном для того или иного медицинского оборудования (рис. 3) [4]. Дальнейший рассказ этой статьи будет посвящен именно тканеимитирующим фантомам.


Рисунок 2. Фантом мозга в качестве стандарта для калибровки УЗИ-сканера и магнитно-резонансного томографа (МРТ). Рисунок адаптирован.


Рисунок 3. Электромагнитный спектр для медицинского оборудования

Разного рода ткани и их патологии имеют большое количество разнообразных свойств, например: магнитные, акустические, рентгеновские, тепловые и др. Соответственно, под определенное свойство и нужно настраивать медицинскую технику, усиливая или ослабляя способности фантома (пропускать, поглощать и отражать излучение в том или ином диапазоне длин волн) различными добавками для лучшего качества изображения.

Многообразие фантомов для имитации отдельных свойств тканей человека

В данном разделе рассмотрим имитируемые свойства ткани и способ их имитации более подробно:


Рисунок 4. Phannie — это первый фантом для калибровки магнитно-резонансного томографа. Пластиковая сфера имеет размер головы человека и заполнена сотнями маленьких сфер, которые используются в качестве агентов, усиливающих контраст изображения.

  • Для усиления магнитных свойств фантома используют растворы парамагнитных солей, которые способны намагничиваться при попадании в силовое поле. С их помощью улучшается контрастность изображения, разрешение и точность измерений расстояния и объема [5]. Они используются для калибровки МРТ. В качестве примера, фантом может иметь форму шара, заполняемого водой, с большим количеством маленьких сфер с соляными растворами (рис. 4).
  • К акустическим и термоакустическим свойствам биологических тканейотносятся: скорость распространения волн, коэффициент затухания, удельная теплоемкость и теплопроводность. Такие фантомы обычно изготавливают на основе агар-агара с добавлением порошка графита, концентрация которого напрямую влияет на имитируемые свойства [6]. Также для ультразвуковой визуализации фантому нужны добавки в виде сахарной пудры и измельченного песка.
  • Для рентгеновской визуализации используют фантомы на основе эпоксидной смолы, полиэтилена или полиуретана, а добавками для усиления контраста имитируемых тканевых структур являются мука, смешанная с солями, или карбонат кальция[7].
  • Флуоресценцияслужит помощником врачу-хирургу для визуализации метастазов или первичных опухолей. За счет большой глубины проникновения света около инфракрасной области спектра, распределение люминесцентного красителя визуализируется на глубине до 10 мм под поверхностью ткани. С помощью флуоресцентных фантомов начинающие хирурги способны отработать свои навыки.Также подобные фантомы используются в лабораторной диагностике (люминесцентные микроскопы, спектрофотометры). Основа таких фантомов состоит из желатина или эпоксидной смолы с добавлением диоксида титана и черной эпоксидной пасты для регулировки тканеподобных рассеивающих и поглощающих свойств. А в качестве флуоресцентного красителя используется индоциановый зеленый[8].
  • Оптические фантомы — эквиваленты биоткани, то есть калиброванные среды, обладающие близкими к биологическим тканям оптическими свойствами и обеспечивающие сходный характер распространения света [9]. На этом пункте хотелось бы задержаться и рассказать немного подробнее, так как это область моих научных интересов.

Для имитации оптических свойств биологической ткани необходимо знать как минимум значения: показателя преломления (n), коэффициента поглощения (μa) и коэффициента рассеяния (μs). Приведу пример для нахождения коэффициента рассеяния в биологических тканях: межклеточная жидкость (вещество, окружающее рассеивающие структуры) состоит из воды с растворенными в ней солями и органическими веществами. Показатель преломления этого вещества колеблется в пределах от 1,35 до 1,37. Фибриллы или коллагеновые волокна (рассеивающие структуры) имеют более высокий показатель преломления, который колеблется от 1,4 до 1,47. А различие в показателях преломления межклеточной жидкости и структурных элементов (например коллагеновых волокон) и обусловливает рассеяние света биотканями.

Вышеперечисленные параметры косвенно характеризуют биохимические свойства, морфологию, структурные и функциональные особенности биологической ткани [10].

Оптические фантомы используют для поверки оптического когерентного томографа, оборудования для микроскопии и офтальмологических фундус-камер, а также в методах флуоресцентной диффузионной томографии и оптической диффузионной спектроскопии. Эти методы применяются, в частности, для мониторинга развития опухолевых заболеваний у лабораторных мышей, для определения кислородного статуса опухолей различной локализации как у лабораторных животных, так и у людей, и для оценки эффективности при тестировании фармацевтических противоопухолевых препаратов .

Также фантом должен соответствовать определенным требованиям [9]:

  • имитировать геометрию и оптические параметры физиологических структур, важных для распространения света;
  • компоненты, из которых состоит фантом, должны быть совместимы друг с другом в отношении химической стабильности и спектроскопических свойств;
  • физические параметры стандарта должны быть стабильны во времени и независимы от влияния окружающей среды (отсутствие диффузии, испарения и старения);
  • приготовление фантомных образцов должно быть безопасным.


Рисунок 5. Получение и проверка фантомов для сонной артерии. аСверху вниз изображены фантомы здоровой сонной артерии, артерии со стенозом A-типа и артерии со стенозом C-типа. Стеноз — это сужение просвета артерии, которое может быть обусловлено тромбом или атеросклеротической бляшкой. Стеноз A-типа — минимальный, то есть легко проходимый, с отсутствием тромбоза, имеет гладкий контур и не сопровождается кальцинозом. Стеноз C-типа — тяжелый, то есть прохождение крови по участку поражения сильно затруднено, тромб или бляшка имеет неправильный контур, кальциноз выражен. б — Анализ полученных фантомов методом ультразвуковой допплерографии для оценки изменения состояния сосуда.


Рисунок 6. Капилляроподобные фантомы из силикона

Силикон не требует соблюдения специальных условий хранения и наличия дорогостоящего оборудования. Таким фантомам необходимо придать требуемую форму и оставить на сутки для отверждения на воздухе. Но важно отметить, что время отверждения подсчитывается для конкретной температуры и в реальных условиях может отличаться в бóльшую или меньшую сторону. Главный недостаток силиконовых фантомов состоит в сложности обеспечения равномерного распределения наночастиц в вязком силиконе, что делает невозможным управление оптическими свойствами таких фантомов [4].

Более сложной структурой является тканеимитирующий фантом с заданными оптическими параметрами и геометрией имитируемого объекта (например органа).

Жидкими рассеивающими средствами являются интралипид (intralipid) и липозин (по сути то же самое, что интралипид, но от другой компании — Liposyn N (США)) — эти вещества представляют собой жировые эмульсии, содержащие соевое масло, фосфолипиды яйца и глицерин. Основным недостатком данных веществ является то, что они не предусматривают твердое состояние. В качестве рассеивающих средств также применяют: полиакриламидный гель, альбумины, агар-агар, фибрин, эпоксидную смолу, силикон, ПВХ-пластизоль.

Поглощающие среды имитируются с помощью биологических красителей: трипанового синего, голубого красителя Эванса, индоцианинового зеленого, метиленового синего, а также черной китайской туши.

Растворителем обычно являются деионизированная вода и фосфатно-буферные изотонические соляные растворы [4], [9], [11], [12].

Смешав рассеивающие и поглощающие вещества в растворителе, получаем оптический фантом. Следующий шаг в создании — это заполнение форм, которые выполнены с использованием томографических изображений [13].

В случае создания фантома методом литья, по результатам КТ- или МРТ-сканирования имитируемого объекта (органа, ткани и т.п.) изготавливают негативные модели, в которые заливается матрикс (основа фантома) и добавляются специальные добавки и красители. Такой подход обеспечивает высокую точность имитации физических свойств ткани (рис. 7) [14].


Рисунок 7. Фантомы почки человека, изготовленные методом литья и их соответствующие ультразвуковые изображения. Материалы, которые использовались при изготовлении фантомов: силиконовый каучук, агарозный гель и полидиметилсилоксан (ПДМС). Из рисунка следует, что фантом из силиконового каучука наиболее информативен при ультразвуковом исследовании.

Многие методы визуализации применяются к сложным структурам, таким как: система кровеносных сосудов, целые органы или части тела (рис. 8). Одним из сложных объектов для воспроизведения является структура легких. Моделирование распространения света в этом органе затрудняется из-за разветвленной структуры границы раздела двух сред (воздуха и ткани) [3].


Рисунок 8. Создание фантома головы человека для дозиметрии. На первом этапе происходит сбор данных, то есть получение реальных изображений с компьютерного томографа (КТ). Второй этап представляет собой рендеринг (или отрисовку), то есть процесс получения изображения по двумерным данным с помощью компьютерной программы OsiriX. Третий этап — это расстановка дозиметров для оценки степени дозы излучения. На четвертом этапе с помощью программы Slic3r формируется код, который отправляется на 3D-принтер для изготовления физического объекта. И на заключительном этапе происходит печать фантома с помощью принтера Ninjabot FDM-200W.

Решением таких сложных задач является моделирование фантома с помощью 3D-печати. Основные материалы для изготовления подобных фантомов:

  1. Акрилонитрил-бутадиен-стирол (АБС-пластик) — ударопрочная и эластичная термопластическая смола, — где в качестве опорного материала при печати сложных геометрических моделей используется ПВА-пластик. Этот материал растворим в воде, что делает его непригодным для создания долговечных изделий, но удобным для создания временных опор.
  2. Полидиметилсилоксан (ПДМС) — оптически прозрачный полимер, который можно легко смешивать с рассеивающими и поглощающими частицами (например, диоксидом титана или черной тушью).

Дизайн таких фантомов ограничивается только 3D-печатной частью. Для улучшения качества возможно использование принтеров новых поколений, которые позволяют печатать материалы с различной растворимостью, или лазерного принтера с технологией спекания (Selective Laser Sintering), который не нуждается во вспомогательном материале [3], [15].

Однако стоит отметить, что не всегда можно однозначно делить фантомы на полученные литьём и 3D-печатью. Бывает, что негативная форма для литья печатается 3D-принтером.


Проверить точность соблюдения геометрии готового фантома можно с помощью магнитно-резонансной томографии и компьютерной томографии с высоким разрешением. Оба метода обеспечивают трехмерную проверку внутренних структур.

Проверить оптические свойства фантома можно с использованием программного обеспечения, которое работает на принципах Adding-Doubling. Данный метод предполагает знание свойств отражения и пропускания для одного тонкого слоя ткани, затем эти параметры удваиваются, затем еще раз, и так до желаемой толщины ткани. И таким образом получается, что, зная параметры отражения и пропускания одного слоя и используя этот метод, удастся рассчитать данные параметры конечного продукта [3]. При расхождении оптических параметров фантома с имитирующей средой, например, более чем на 15%, рекомендуется внести изменения в рецепт.

Прогресс в сфере медицинских технологий идет, и с каждым годом появляются более совершенные вещества, которые не только способны улучшить имитируемые параметры, но и сделать использование фантомов коммерчески доступным для широкого применения в клинической практике. Таким образом, специалисты рынка медицинских изделий прогнозируют увеличение продаж на хирургические фантомы и фантомы для рентгеновских систем. Связано это с ростом спроса на минимально инвазивные хирургические процедуры и на использование рентгеновских обследований в качестве основного диагностического метода.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции