Чем отличается вибрион от вируса

Холера является диарейным заболеванием, развивающимся в результате инфицирования кишечника бактерией Vibrio cholerae. Холерой могут заболеть и взрослые, и дети.

В большинстве случаев инфекция либо только вызывает легкую диарею, либо не имеет каких-либо симптомов проявления. Однако в 5-10 % случаев через 6 часов - 5 дней после попадания в организм бактерии у пациентов развивается тяжелая водянистая диарея и рвота. В этих случаях потеря больших количеств жидкости может быстро привести к тяжелому обезвоживанию организма. При отсутствии надлежащего лечения через несколько часов может наступить смерть.

Человек может заразиться холерой при питье воды или употреблении в пищу продуктов, зараженных бактериями. Чаще всего источниками инфекций пищевого происхождения являются сырые или не прошедшие достаточную тепловую обработку морепродукты, свежие фрукты и овощи, а также другие продукты, зараженные во время их приготовления или хранения.

Основным источником заражения являются бактерии, присутствующие в фекалиях инфицированного человека. Бактерии могут также жить в окружающей среде, а именно в реках с солоноватой водой и прибрежных водах. Поэтому, в районах, где не проводится надлежащая обработка сточных вод и запасов питьевой воды, болезнь может быстро распространяться.

Во многих странах холера остается постоянной угрозой для здоровья. Вспышки болезни могут спорадически возникать в любой части мира, где отсутствует надлежащее водоснабжение, санитария, безопасность пищевых продуктов и гигиена. Наибольший риск возникновения вспышек холеры существует в перенаселенных общинах и лагерях для беженцев, для которых характерны низкий уровень санитарии и отсутствие безопасной питьевой воды. Для получения информации о наличии холеры в том месте, куда вы собираетесь поехать, обратитесь в ваше учреждение медицинского обслуживания, местное бюро здравоохранения или центр медицинских консультаций для людей совершающих поездки.

Да. Люди, живущие в районах с высоким риском заболевания, могут защитить себя от холеры, соблюдая несколько простых правил надлежащей гигиены и безопасного приготовления пищи. Эти правила включают тщательное мытье рук, особенно перед приготовлением пищи и едой, надлежащую тепловую обработку продуктов и их употребление в пищу в горячем виде, кипячение или специальную обработку питьевой воды, а также использование средств санитарии.

Соблюдая некоторые основные меры предосторожности, лица, совершающие поездки, также могут защитить себя от холеры и большинства других болезней, вызываемых пищевыми продуктами и водой. Главное внимание необходимо уделять пищевым продуктам и воде, включая лед, и при этом соблюдать простое правило: если продукт нельзя вскипятить, сварить/пожарить и очистить (от кожицы, корки и т.п.), то его нельзя употреблять в пищу.

  • Пейте только кипяченую или дезинфицированную хлором, йодом или другими соответствующими средствами питьевую воду. Средства для дезинфекции воды, как правило, продаются в аптеках. Такие напитки, как горячий чай или кофе, вино, пиво, газированная вода или безалкогольные напитки, а также фруктовые соки в бутылках или пакетах, обычно безопасны для питья.
  • Не употребляйте лед, если вы не уверены, что он сделан из безопасной воды.
  • Употребляйте в пищу горячие продукты, прошедшие тщательную тепловую обработку. Приготовленные пищевые продукты, оставленные в течение нескольких часов при комнатной температуре, без дополнительного разогревания могут стать источником инфекции.
  • Не употребляйте в пищу сырые морепродукты и другие продукты в сыром виде. Исключение составляют фрукты и овощи, которые вы должны собственноручно очистить (от кожицы, корки и т.п.).
  • Прежде чем пить непастеризованное молоко, прокипятите его.
  • Мороженое из непроверенных источников часто бывает зараженным и может привести к заболеванию. В случае сомнений, не ешьте его.
  • Убедитесь в том, что пищевые продукты, купленные у уличных торговцев, проходят тщательную тепловую обработку в вашем присутствии и не содержат каких-либо составных частей, не прошедших такую обработку.

Основным лечением является регидратация организма, которая заключается в быстром восстановлении воды и солей, потерянных во время тяжелой диареи и рвоты. Проведенная на ранней стадии заболевания регидратация может спасти жизнь почти всем пациентам. В большинстве случаев регидратацию можно провести быстро и просто, давая пациентам пить в больших количествах раствор солей для пероральной регидратации. Пациентам с тяжелым обезвоживанием организма может потребоваться внутривенное вливание раствора. Пакеты солей для пероральной регидратации имеются во многих городских аптеках и медицинских учреждениях. ВОЗ рекомендует людям, совершающим поездки, иметь соли для пероральной регидратации в своих аптечках.

Если у вас диарея, особенно тяжелая, и вы находитесь в районе, где зарегистрирована холера, немедленно обратитесь за медицинской помощью к врачу или другому медицинскому специалисту. В ожидании медицинской помощи пейте воду и другие несладкие жидкости, такие как, например, суп.

В отдельных случаях тяжелой холеры эффективный антибиотик может сократить длительность болезни, но основой лечения всегда остается регидратация. Массовое превентивное лечение антибиотиками не останавливает распространение холеры в общинах и, поэтому, не рекомендуется. Такие противодиарейные лекарства, как лоперамид, не рекомендуются и никогда не должны применяться.

Инъекционная противохолерная вакцина, применяемая ранее, давала неполную, ненадежную и кратковременную защиту от холеры и более не рекомендуется. В настоящее время для лиц, совершающих поездки, имеются две новые пероральные противохолерные вакцины, предоставляющие хорошую защиту на срок до трех лет. Тем не менее, ввиду того, что эти вакцины не дают стопроцентную защиту, необходимо всегда соблюдать основные гигиенические меры предосторожности. Для дополнительной информации обращайтесь в ваш местный центр медицинских консультаций для людей совершающих поездки.

Ни одна страна не требует для въезда подтверждения противохолерной вакцинации, и в международном сертификате вакцинаций больше не имеется графы для регистрации противохолерной вакцинации.

Бактериофаги – это вирусы, которые поражают только бактерий. В ходе инфекции они влияют на все процессы жизнедеятельности бактериальной клетки, фактически превращая ее в фабрику по производству вирусного потомства. В конце концов клетка разрушается, а вновь образованные вирусные частицы выходят наружу и могут заражать новые бактерии.

Несмотря на огромное число и разнообразие природных фагов, встречаемся мы с ними редко. Однако бывают ситуации, когда деятельность этих вирусов не остается незамеченной. Например, на предприятиях, где производят сыры, йогурты и другие молочно-кислые продукты, часто приходится сталкиваться с вирусной атакой на бактерии, сбраживающие молоко. В большинстве таких случаев фаговая инфекция распространяется молниеносно, и полезные бактерии гибнут, что приводит к значительным экономическим потерям (Neve et al., 1994).

Именно благодаря прикладным исследованиям в интересах молочной промышленности, направленным на получение устойчивых к бактериофагам штаммов молочно-кислых бактерий, был открыт ряд механизмов, с помощью которых бактерии избегают инфекции. Параллельно были изу­чены способы, с помощью которых вирусы, в свою очередь, преодолевают бактериальные системы защиты (Moineau et al., 1993).

Кто защищен – тот вооружен

На сегодня известно пять основных, весьма хитроумных механизмов защиты, которые бактерии выработали в непрестанной борьбе с вирусами: изменение рецептора на поверхности клетки; исключение суперинфекции; системы абортивной инфекции; системы рестрикции-модификации и, наконец, системы CRISPR-Cas.


К средствам противовирусной защиты бактерий относятся и системы рестрикции-модификации, в которые входят гены, кодирующие два белка-фермента – рестриктазу и метилазу. Рестриктаза узнает определенные последовательности ДНК длиной 4—6 нуклеотидов и вносит в них двуцепочечные разрывы. Метилаза, напротив, ковалентно модифицирует эти последовательности, добавляя к отдельным нуклеотидным основаниям метильные группы, что предотвращает их узнавание рестриктазой.

Врага нужно знать в лицо

Системы CRISPR-Cas являются уникальным примером адаптивного иммунитета бактерий. При проникновении в клетку ДНК фага специальные белки Cas встраивают фрагменты вирусной ДНК длиной 25—40 нуклеотидов в определенный участок генома бактерии (Barrangou et al., 2007). Такие фрагменты называются спейсерами (от англ. spacer – промежуток), участок, где происходит встраивание, – CRISPR-кассета (от англ. Clustered Regularly Interspaced Short Palindromic Repeats), а сам процесс приобретения спейсеров – ​адаптацией.

Чтобы использовать спейсеры в борьбе с фаговой инфекцией, в клетке должен происходить еще один процесс, управляемый белками Cas, названный интерференцией. Суть его в том, что в ходе транскрипции CRISPR-кассеты образуется длинная молекула РНК, которая разрезается белками Cas на короткие фрагменты – защитные криспрРНК (крРНК), каждая из которых содержит один спейсер. Белки Cas вместе с молекулой крРНК образуют эффекторный комплекс, который сканирует всю ДНК клетки на наличие последовательностей, идентичных спейсеру (протоспейсеров). Найденные протоспейсеры расщепляются белками Cas (Westra et al., 2012; Jinek et al., 2012).

Системы CRISPR-Cas обнаружены у большинства прокариот – бактерий и архей. Хотя общий принцип действия всех известных систем CRISPR-Cas одинаков, механизмы их работы могут существенно отличаться в деталях. Наибольшие различия проявляются в строе­нии и функционировании эффекторного комплекса, в связи с чем системы CRISPR-Cas делят на несколько типов. На сегодняшний день описаны шесть типов таких неродственных друг другу систем (Makarova et al., 2015; Shmakov et al., 2015).


Наиболее изученной является система CRISPR-Cas I типа, которой обладает излюбленный объект молекулярно-биологических исследований – бактерия кишечная палочка (Esсherichia coli). Эффекторный комплекс в этой системе состоит из нескольких небольших белков Cas, каждый из которых отвечает за разные функции: разрезание длинной некодирующей CRISPR РНК, связывание коротких крРНК, поиск, а затем разрезание ДНК-мишени.

Гонка вооружений

Бактериофаги, как факторы среды, вызывают направленные изменения в геноме бактерий, которые наследуются и дают бактериям явное преимущество, спасая от повторных инфекций. Поэтому системы CRISPR-Cas можно считать примером ламарковской эволюции, при которой происходит наследование благоприобретенных признаков (Koonin et al., 2009)

Некоторые бактериофаги реагируют на наличие в бактериальной клетке систем CRISPR-Cas выработкой особых анти CRISPR-белков, способных связываться с белками Cas и блокировать их функции (Bondy-Denomy et al., 2015). Еще одно ухищрение — обмен участков генома вируса, на которые нацелена система CRISPR-Cas, на участки геномов родственных вирусов, отличающихся по составу нуклеотидной последовательности (Paez-Espino et al., 2015).


Благодаря постоянному совершенствованию биоинформатических алгоритмов поиска, а также включению в анализ все большего количества прокариотических геномов, открытие новых типов CRISPR-Cas систем является делом недалекого будущего. Предстоит также выяснить и детальные механизмы работы многих недавно открытых систем. Так, в статье, опубликованной в 2016 г. в журнале Science и посвященной анализу системы CRISPR-Cas VI типа, описан белок С2с2, образующий эффекторный комплекс с крРНК, который нацелен на деградацию не ДНК, а РНК (Abudayyeh et al., 2016). В будущем такое необычное свойство может быть использовано в медицине для регулирования активности генов путем изменения количества кодируемых ими РНК.

Изучение стратегий борьбы бактерий с бактериофагами, несмотря на свою кажущуюся фундаментальность и отвлеченность от задач практической медицины, принесло неоценимую пользу человечеству. Примерами этого могут служить методы молекулярного клонирования и редактирования геномов – направленного внесения или удаления мутаций и изменения уровня транскрипции определенных генов.

Благодаря быстрому развитию методов молекулярной биологии всего лишь через несколько лет после открытия механизма действия систем CRISPR-Cas была создана работающая технология геномного редактирования, способная бороться с болезнями, ранее считавшимися неизлечимыми. Доступность и простота этой технологии позволяют рассматривать ее как основу для медицины, ветеринарии, сельского хозяйства и биотехнологий будущего, которые будут базироваться на направленных и безопасных генных модификациях.

Нет никаких сомнений, что дальнейшее изучение взаимодействия бактерий и их вирусов может открыть перед нами такие возможности, о которых мы сейчас даже не подозреваем.

Abudayyeh O. O., Gootenberg J. S., Konermann S. et al. C 2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector // Science. 2016. V. 353: aaf5573.

Barrangou R., Fremaux C., Deveau H. et al. CRISPR provides acquired resistance against viruses in prokaryotes // Science. 2007. V. 315. P. 1709–1712.

Bikard D., Marraffini L. A. Innate and adaptive immunity in bacteria: mechanisms of programmed genetic variation to fight bacteriophages // Curr. Opin. Immunol. 2012. V. 1 P. 15–20.

Bondy-Denomy J., Garcia B., Strum S. et al. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins // Nature. 2015. V. 526. P. 136–139.

Calendar R., Abedon S. T. The Bacteriophages // 2nd Ed., Oxford University Press. 2006.

Datsenko K. A., Pougach K., Tikhonov A. et al. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system // Nat. Commun. 2012. V. 3. P. 945

Jiang W., Marraffini L. A. CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems // Annu. Rev. Microbiol. 2015. V. 69. P. 209–28.

Jinek M., Chylinski K., Fonfara I., et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity // Science. 2012. V. 337. P. 816–821.

Koonin E. V., Wolf Y. I. Is evolution Darwinian or/and Lamarckian? // Biol. Direct. 2009. V. 4. P. 42.

Lopez-Pascua L., Buckling A. Increasing productivity accelerates host-parasite coevolution // J. Evol. Biol. 2008. V. 3. P. 853–860.

Makarova K. S., Wolf Y. I., et al. An updated evolutionary classification of CRISPR-Cas systems // Nat. Rev. Microbiol. 2015. V. 11. P. 722–736.

Moineau, S., Pandian S., Klaenhammer T. R. Restriction/modification systems and restriction endonucleases are more effective on lactococcal bacteriophages that have emerged recently in the dairy industry // Appl. Envir. Microbiol. 1993. V. 59. P. 197–202.

Neve H., Kemper U., et al. Monitoring and characterization of lactococcal bacteriophage in a dairy plant // Kiel. Milckwirtsch. Forschungsber. 1994. V. 46. P. 167–178.

Nuñez J. K., Harrington L. B., et al. Foreign DNA capture during CRISPR-Cas adaptive immunity // Nature. 2015a. V. 527. P. 535–538.

Nuñez J. K., Kranzusch P. J., et al. Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity // Nat. Struct. Mol. Biol. 2014. V. 21. P. 528–534.

Nuñez J. K., Lee A. S., Engelman A., Doudna J. A. Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity // Nature. 2015b. V. 519. P. 193–198.

Paez-Espino D., Sharon I., et al. CRISPR Immunity Drives Rapid Phage Genome Evolution in Streptococcus thermophilus // MBio. 2015. V. 6: e00262–15.

Shmakov S., Abudayyeh O. O., Makarova K. S., et al. Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. // Mol. Cell. 2015. V. 60. P. 385–397

Tan D., Svenningsen S. L., Middelboe M. Quorum sensing determines the choice of antiphage defense strategy in Vibrio anguillarum. // mBio 2015. V. 6: e00627–15.

Westra E. R., van Erp P. B., Künne T., et al. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3 // Mol. Cell. 2012. V. 46. P. 595–605.

Работа поддержана грантом РФФИ (№ 16-34-01176)


Наследники холеры

Холера — один из немногих патогенов, который и сегодня наряду с бубонной чумой, гриппом, оспой и ВИЧ способен вызывать пандемии, распространяясь среди огромных масс населения. Однако холера стоит особняком. Во-первых, в отличие от чумы, оспы и гриппа ее возникновение и распространение с самого начала достаточно подробно фиксировалось документально. Два века спустя она все так же неукротима и сеет смерть и хаос с прежней силой, как наглядно показал рейс 952. Во-вторых, относительным новичкам вроде ВИЧ она даст значительную фору по количеству устроенных пандемий. В данный момент на ее счету числится семь — последняя обрушилась на Гаити в 2010 году.

В наше время холера считается болезнью бедных стран, но так было не всегда. В XIX веке холера поражала самые развитые и процветающие города мира, кося бедных и богатых без разбора — от Парижа и Лондона до и Нового Орлеана. В 1836 году она лишила жизни Карла X в Италии, в 1849 году — президента Джеймса Полка в Новом Орлеане, в 1893 году — композитора Петра Ильича Чайковского в . Число заболевших в XIX веке составило сотни миллионов, и больше половины из них скончались. Это была одна из самых стремительных и самых страшных инфекций в мире. ❓ Rita Colwell, “Global Climate and Infectious Disease: The Cholera Paradigm,” Science 274, no. 5295 (1996): 2025–31.

Возбудитель болезни, холерный вибрион Vibrio cholerae, впервые распространился среди населения в эпоху британской колонизации удаленных от побережья районов Южной Азии. Но в потенциальный возбудитель пандемий его превратили стремительные перемены эпохи промышленного переворота. Благодаря новым средствам передвижения — пароходам, каналам, железным дорогам — холерный вибрион проникал в самое сердце Европы и Северной Америки, а сутолока и антисанитария быстро растущих городов позволяли ему без труда заражать сразу десятки людей.

Повторяющиеся эпидемии холеры бросили серьезный вызов социально-политическим институтам охваченных ею государств. Чтобы сдержать болезнь, требовалось объединение сил на международном уровне, эффективное муниципальное управление и социальная сплоченность, до которых городам в разгар промышленного бума было еще далеко. Чтобы отыскать лекарство (им оказалась чистая питьевая вода), врачам и ученым пришлось полностью пересмотреть сложившиеся представления о здоровье и распространении болезней. Почти сто лет ушло у таких городов, как , Париж и Лондон на борьбу со смертельными пандемиями, прежде чем над холерой удалось наконец одержать верх. Для этого понадобилось улучшить жилищные условия, модернизировать водоснабжение и водоотведение, наладить систему здравоохранения, выстроить международные связи и выработать новую медицинскую парадигму.

Такова преобразующая сила пандемий

Холерный вибрион — бактериальный партнер веслоногих. Как и другие представители рода вибрионов, он представляет собой похожую на микроскопическую запятую бактерию. Несмотря на возможность автономного существования в воде, он предпочитает облеплять веслоногих внутри и снаружи, прикрепляясь к их яйцевым камерам и выстилая внутренность кишечника. Там бактерия выполняет важную экологическую функцию. […] Ежегодно веслоногие оставляют на морском дне в общей сложности 100 млрд тонн хитина, который затем поглощают вибрионы, перерабатывая совместными усилиям 90% хитинового мусора. Если бы не горы экзоскелетов, выращенных и затем сброшенных веслоногими, скоро израсходовались бы весь углерод и азот в океане. ❓ C. Yu et al., “Chitin Utilization by Marine Bacteria. A Physiological Function for Bacterial Adhesion to Immobilized Carbohydrates,” The Journal of Biological Chemistry 266 (1991): 24260–67; Carla Pruzzo, Luigi Vezzulli, and Rita R. Colwell, “Global Impact of Vibrio cholerae Interactions with Chitin,” Environmental Microbiology , no. 6 (2008): 1400–10.


Но позже, в 1760-х, Бенгалию, а с ней и Сундарбан, захватила Ост-Индская компания. В мангровые леса устремились английские поселенцы, охотники на тигров и колониалисты

Руками тысяч наемных работников из местного населения они вырубали мангры, строили запруды и сажали рис. Через 50 лет было сведено почти 800 квадратных миль сундарбанских лесов. К концу XIX века человеческие поселения занимали около 90% когда-то девственного, непроходимого — и кишащего веслоногими — Сундарбана. ❓ Eaton, “Human Settlement and Colonization in the Sundarbans”; Richards and Flint, “Long-Term Transformations in the Sundarbans Wetlands Forests of Bengal.”

Наверное, еще никогда контакт между человеком и зараженными вибрионом веслоногими не был таким тесным, как на этих покоренных тропических болотах. Сундарбанские крестьяне и рыбаки жили по колено в солоноватой воде — идеальной среде для вибрионов, так что проникнуть в человеческий организм бактерии не составило труда. Рыбак ополаскивает лицо забортной водой, крестьянин пьет из колодца, подтапливаемого приливом, — оба прихватывают неразличимых в воде веслоногих и с ними — до 7000 вибрионов на каждом. ❓ Rita R. Colwell, “Oceans and Human Health: A Symbiotic Relationship Between People and the Sea,” American Society of Limnology and Oceanography and the Oceanographic Society, Ocean Research Conference, Honolulu, Feb. 16, 2004.

Чтобы вызвать волну последовательных заражений — эпидемию или пандемию в зависимости от масштабов распространения, — патоген должен передаваться непосредственно от человека к человеку

Иными словами, его базовый показатель репродукции должен быть больше единицы. Базовый показатель репродукции (сокращенно — БПР, в науке обозначается как R0) подразумевает среднее число лиц, заражаемых одним инфицированным индивидом (при отсутствии постороннего вмешательства). Скажем, у вас насморк и вы заражаете им своего сына и его друга. Если данный сценарий типичен для всего остального населения, базовый показатель репродукции вашего насморка равен двум. Если вы умудрились заразить еще и дочь, то БПР вашего насморка будет равен трем.

Эти расчеты необходимы при вспышке заболевания, поскольку позволяют немедленно спрогнозировать ее дальнейшее развитие. Если в среднем каждое инфицирование дает менее одного дополнительного заражения — вы заразили сына с приятелем, но они, в свою очередь, больше никого не заражают, — значит вспышка погаснет сама. Можно сказать, вымрет, как поселение, в котором каждая семья рожает меньше двух детей. Смертоносность инфекции в данном случае не влияет на прогноз. Но если в среднем каждое инфицирование порождает одно последующее, то болезнь может, теоретически, распространяться бесконечно. Если каждое инфицирование дает более одного последующего, то для пораженной популяции возникает угроза существованию, требующая немедленных и срочных мер. Ведь это значит, что при отсутствии вмешательства заражение будет расти в геометрической прогрессии.

Холерный вибрион добился этого, научившись вырабатывать токсин

За счет токсина вибрион обеспечил себе две новые возможности, необходимые, чтобы стать человеческим патогеном. Во-первых, избавление от соперников: бурный поток жидкости вымывает остальные кишечные бактерии, позволяя вибриону (микроколонии которого научились намертво цепляться за стенки кишечника) без помех расселиться. Во-вторых, перемещение от одного хозяина к другому. Достаточно крошечной капли испражнений, чтобы вибрион через немытые руки, с зараженной пищей или водой попал к следующей жертве.

Теперь он, возбудив болезнь у одного человека, мог распространить ее и на других, независимо от того, сталкиваются ли они с веслоногими и пьют ли кишащую вибрионами сундарбанскую воду.


Так дебютировала холера.

Поскольку микробы окружают нас повсюду, может показаться, что патогены способны появиться откуда угодно — вызреть в темном углу и двинуться в наступление с самой непредсказуемой стороны. Может быть, опасные микроорганизмы притаились внутри нас и превращаются в патогены за счет новообретенных свойств, а может, развиваются в неживой среде — почве, порах камней, ледяной корке или других экологических нишах.

Однако большинство новых патогенов рождается не так, потому что проникновение их в наш организм не случайно

Патогенные качества микробы обретают с нашей же подачи, следуя определенными путями, которые мы сами для них мостим. Хотя микроорганизмы, обладающие потенциалом перехода в человеческие, водятся в самых разных средах, большинство из них, точно так же, как холерный вибрион или вирус атипичной пневмонии, становятся патогенами в организмах других животных. Более 60% известных патогенов впервые появились у окружающих нас пернатых и хвостатых, в том числе домашних животных — как скота, так и комнатных питомцев. Из них основная масса — свыше 70% — обязана происхождением диким видам. ❓ Jones, “Global Trends in Emerging Infectious Diseases.”

Микробы перебирались от одного вида к другому и превращались в новые патогены на протяжении всего того времени, что человек живет в окружении других животных. Отличную возможность для этого дает охота на животных и употребление их в пищу, т. е. тесный контакт человека с тканями и жидкостями их тел. Неплохим трамплином служат укусы таких насекомых, как комары и клещи, переносящие жидкости из чужих организмов в наш […]

От коров мы получили корь и туберкулез, от свиней — коклюш, от уток — грипп ❓ N.D. Wolfe, C.P. Dunavan, and J. Diamond, “Origins of Major Human Infectious Diseases, Nature 447, no. 7142 (2007): 279–83; Jared Diamond, Guns, Germs, and Steel: The Fates of Human Societies (New York: Norton, 1997), 207.

В 1998 году он опубликовал статью, в которой утверждал, что массовую гибель земноводных по всему миру вызывает патогенный гриб — Batrachochytrium dendrobatidis, провоцирующий грибковое заболевание хитридиомикоз. Скорее всего, распространению патогена способствовало ускорение темпов разрушительной человеческой деятельности, в частности, рост спроса на амфибий как на домашних питомцев и подопытных животных. ❓ Lee Berger et al., “Chytridiomycosis Causes Amphibian Mortality Associated with Population Declines in the Rain Forests of Australia and Central America,” Proceedings of the National Academy of Sciences 95, no. 15 (1998): 9031–36.

Но на этом открытия Дашака не кончились. Те же самые губительные процессы, которые обрушили на амфибий хитридиомикоз, могут спустить с цепи и другие патогены. И на этот раз жертвами могут оказаться люди

По мере осушения болот и сведения лесов, все новые виды животных начинают тесно и продолжительно контактировать с людьми, что позволяет живущим на этих видах микроорганизмам переселяться на нового хозяина — человека. Перемены эти происходят по всему миру, поражая беспрецедентным размахом и темпами. Путь от зооноза к человеческому патогену превращается в скоростную магистраль. ❓ Mark Woolhouse and Eleanor Gaunt, “Ecological Origins of Novel Human Pathogens,” Critical Reviews in Microbiology 33, no. 4 (2007): 231–42.

Коррупция

О появлении нового патогена мир узнал лишь месяцы спустя, когда местный житель случайно упомянул о происходящем в Гуанчжоу в переписке с виртуальным знакомым. Адресат переслал сообщение отставному капитану доктору Стивену Канниону, который 10 февраля 2003 года отправил запрос в Программу мониторинга возникающих заболеваний (Pro-MED) — систему оповещения о распространении инфекций, находящуюся в ведении международного медицинского общества.


Получив сегодня утром это письмо, я обратился к вашим архивам, но ничего на этот счет не обнаружил. Нет ли у вас каких-нибудь сведений? Вы слышали про эпидемию в Гуанчжоу? У меня там живет знакомый по учительскому чату — он говорит, что больницы закрыты и гибнут люди. ❓ Richard Wenzel, “International Perspectives on Infection Control in Healthcare Institutions,” International Conference on Emerging Infectious Diseases, Atlanta, GA, March 12, 2012.

Китайские власти упорно пытались засекретить происходящее, даже когда о вспышке узнали в пекинском представительстве ВОЗ. Признали лишь несколько смертей от атипичной пневмонии. Препятствовали — по крайней мере поначалу — инспекциям следственных групп из ВОЗ в военных госпиталях, куда помещали заболевших SARS. И только когда встревоженная ВОЗ рекомендовала гостям страны воздержаться от посещения Гонконга и Гуандуна, китайский министр здравоохранения публично признал существование нового смертоносного вируса. Но утверждал при этом, что с вирусом уже справились и что южные районы Китая в безопасности: ни то ни другое истине, как потом выяснилось, не соответствовало. ❓ Davis, The Monster at Our Door, 69–75. Точно так же замалчивало вспышку холеры в 2012 году правительство Кубы.


Правительство Саудовской Аравии попыталось заткнуть рот вирусологу, открывшему новый коронавирус, впервые выделенный у пациента больницы в Джидде осенью 2012 года. Обнаружив сходство нового вируса с SARS по характеру его болезнетворного воздействия, больничный вирусолог доктор Али Мухаммед Заки выложил полученные данные на , оповестив тем самым 60 000 пользователей портала по всему миру. Судя по всему, своевременное предупреждение Заки предотвратило потенциальную мировую эпидемию. Коронавирус был быстро секвенирован, разработаны диагностические тесты, и в разных странах мира было обнаружено еще сто с лишним жертв так называемого ближневосточного респираторного синдрома.

Пресекать информацию о новых патогенах норовят не только те власти, которые, в принципе, склонны к репрессиям

Попытки индийских властей зарубить на корню международные исследования NDM-1 привели к тому, что Уолш был вынужден прибегнуть к помощи журналистов, поручив им собирать в Индии образцы для анализа, чтобы он мог продолжить изучение плазмиды ❓ Интервью с Тимоти Уолшем, 21 декабря 2011 года. .

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции