Большинство фитопатогенных вирусов имеют

Вирусы — это мельчайшие (субмикроскопические) возбудители болезней растений, человека и животных. Вирусная частица (вирион) большинства фитопатогенных вирусов имеет палочковидную или нитевидную форму, но могут быть округлые, сферические, многогранные и другие. По химическому составу вирусы являются нуклеопротеидами, то есть они состоят из белка и одной нуклеиновой кислоты (ДНК или РНК). Отмечено, что большинство фитопатогенных вирусов содержит, как правило, РНК (рибонуклеиновая кислота), но некоторым вирусам свойственно наличие ДНК (дезоксирибонуклеиновая кислота).

Нуклеиновая кислота занимает в вирусной частице центральную часть, представляя собой нечто вроде спирали, на которую нанизывается множество симметрично расположенных молекул белка. Нуклеиновая кислота занимает в вирусной частице всего около 5 % в палочковидных вирусах (вирус табачной мозаики), в сферических-17-35 % (вирус мозаики фасоли, желтой мозаики турнепса и др.). Остальная часть вирона −65-95 % состоит из белков, в состав которых входит 20 аминокислот. Белковая оболочка окружает и защищает нуклеиновую кислоту, которая является носителем инфекции и наследственных свойств.

Вирусы живут и размножаются (реплицируются) только в живой клетке, образуя подобные себе новые вирусные частицы. Попав в клетку растения — хозяина, нуклеиновая кислота освобождается от белковой оболочки, реплицируется (размножается), начинается синтез новой нуклеиновой кислоты и вирусного белка, в результате собираются новые вирусы. Они могут перемещаться из клетки в клетку по плазмодесмам или по сосудистой системе.

В растительной клетке нарушается естественный ход обмена веществ, в частности, функция хлоропластов, ростовые процессы и т. д. В растение вирусы могут проникать только через поврежденную растительную ткань:

  • механически в процессе ухода за растениями (пасынкование, черенкование, прищипка и др.),
  • с помощью насекомых колюще-сосущего типа (тли, цикадки, клопы, трипсы).

Насекомые же являются основными переносчиками вирусов от растения к растению, и механизм передачи может быть:

  • механическим,
  • биологическим путем.

При механической передаче насекомое, питаясь на больном растении и загрязняя вирусом свой ротовой аппарат (кончик стилета), может сразу же перенести вирусную инфекцию на другое растение. Такой перенос осуществляется тлями.

Биологический путь- это когда насекомое становится носителем вирусов, то есть вирус, попадая в организм, проходит скрытый период развития и переходит из пищевода в слюнные железы. Насекомое становится способным передать инфекцию не сразу после питания на больном растении, а по истечении какого-то времени. Чаще всего такой путь характерен для цикадок, реже тлей, трипсов, клопов, клещей.

В период вегетации вирусы могут передаваться от растения к растению человеком во время пасынкования, чеканки, прищипки, когда сок с больного вирусной инфекцией растения попадает через ранки в здоровые растения. Сохраняются вирусы в организме насекомого, переносчика вируса, или в семенах, клубнях, корнеплодах, луковицах, редко в растительных остатках (ВТМ).

Вирусы — облигатные паразиты, среди них встречаются узкоспециализированные, например, вирус зеленой мозаики огурца поражает только огурец и немногие виды семейства тыквенных. В то же время есть вирусы, поражающие растения из разных биологических семейств. Признаки вирусных болезней очень разнообразны, чаще всего встречаются:

  • изменение окраски (мозаичная расцветка листьев),
  • деформация органов (морщинистости, скручивание),
  • задержка роста (карликовость),
  • некрозы (полосчатая пятнистость, стрик),
  • нарушение репродуктивных органов (стерильность, бессемянность, опадение цветков и завязи).

Вирусные болезни не вызывают гибели растений, но, угнетая больное растение, они вызывают снижение его продуктивности. Вред проявляется в снижении урожая и ухудшении качества продукции: снижается сахаристость корнеплодов сахарной свеклы, падает содержание крахмала в клубнях картофеля и т. д. Основными мероприятиями по защите растений от вирусных болезней следует считать использование безвирусного посадочного материала, возделывание вирусоустойчивых сортов и борьбу с переносчиками вирусов. Важное значение имеют противовирусные прочистки, то есть удаление больных растений на семенных участках картофеля, овощных и других культур; уничтожение сорных растений — резерваторов вирусных инфекций; соблюдение оптимальных сроков сева, густоты стояния растений.

Наиболее распространенный тип проявления вирусных болезней растений — мозаичная расцветка листьев в результате разрушения хлорофилла: посветление, чередование светло- и темно-зеленых участков, некротические пятна, штрихи, кольца и др. У некоторых растений появляются мелкие участки отмершей ткани. В ряде случаев нарушается форма растений (деформация) за счет морщинистости и курчавости листьев.

Часто встречается другая группа вирусных болезней — желтуха. Ее возбудитель поселяется во флоэме и более глубоко воздействует на обмен веществ растения. Это приводит к карликовости, чрезмерной кустистости, раковым наростам и др. Из-за нарушения нормальной транспортировки углеводов в листьях накапливается крахмал, они становятся толстыми, хрупкими, с характерным блеском, скручиваются вдоль центральной жилки (скручивание листьев).

Вирусы не могут размножаться вне живой клетки растения-хозяина или насекомого-переносчика. Многие вирусы неспособны и сохраняться вне живого организма. Это прежде всего циркулятивные вирусы, т.е. нуждающиеся в биологической (персистентной) передаче. Они
перезимовывают в живых частях растений — корнеплодах, клубнях, луковицах и т.д. (вирусы вегетативно размножающихся растений — картофеля, свеклы, лука и т.д.). Передача их из года в год потомству приводит к резкому снижению продуктивности растений и вырождению сорта. Некоторые вирусы: мозаики табака (TMV), зеленой мозаики огурца (CGMMV) и др., т.е. самые стойкие, способны сохраняться с растительными остатками и в почве. Вирус мозаики сои, мозаики фа-

- соли, кольцевые вирусы косточковых (CGMMV) и др. сохраняются и передаются с семенами. Специализация вирусов может быть узкой и широкой. Так, CGMMV поражает только огурец, a CMV — вирус мозаики огурца, кроме тыквенных, заражает растения из других ботанических семейств (гречиху посевную, томат, примулу и др.).
Распространение вирусов

Известно несколько способов передачи фитопатогенных вирусов от растения к растению: прививка, контактное заражение, с помощью переносчиков, через семена и пыльцу.

Прививка. Таким путем распространяются многие вирусы плодовых культур, размножаемых прививкой на подвои. Поэтому очень важно, чтобы маточные деревья, с которых нарезают черенки, и подвои были свободны от вирусов.

Контактное заражение. При контакте листьев больных и здоровых растений передаются только стойкие вирусы, длительное время не инактивирующиеся в выжатом соке (TMV, PVX картофеля и др.). Они могут распространяться также через сельскохозяйственные орудия, одежду работающих и др. Особенно опасны приемы ухода за растениями, связанные с поранением (пасынкование томатов, ломка листьев табака и др.).

Большинство фитопатогенных вирусов распространяется насекомыми с колюще-сосущим ротовым аппаратом, главным образом тлями. Это также цикадки, трипсы, клопы, белокрылки, жуки и клещи. Механизм переноса насекомыми вирусов неодинаков. Мозаичные (не-персистентные) вирусы распространяются стилетным, или неперсистентным, способом. Насекомые, такие как тли, питаясь на больном растении, через 0,5—2 ч становятся вирофорными, т.е. способными передавать вирусную инфекцию. Это свойство теряется в течение нескольких часов. К неперсистентным вирусам относятся Potato virus Y (PVY), вирус мозаики свеклы, мозаики яблони, CMV и др.

Другие вирусы распространяются только персистентным способом. Насекомые становятся вирофорными через несколько часов или несколько дней, сохраняя инфекционность длительное время —-100 ч и более, а иногда всю жизнь. Вирус распространяется вместе со слюнным секретом в процессе питания насекомого на здоровом растении. Переносчиками, как правило, являются специализированные виды насекомых, чаще всего цикадки, реже — тли, трипсы, клопы, клещи. Вирусы, нуждающиеся в такой передаче, называются персистентными, или циркулятивными. Болезни, вызываемые ими, относят к группе желтух. Это вирус бронзовости томата, мозаики тыквы, курчавости верхушки свеклы и др.

Кроме того, существует полуперсистентная передача, при которой насекомые сохраняют инфекционность в течение 10—100 ч. Ими переносятся PVM картофеля, Potato virus М. и др. Почвенные нематоды, паразитирующие на корнях растений, являются переносчиками вируса полосатой мозаики пшеницы, ряда вирусов плодовых и ягодных культур. Имеются данные о распространении вирусов почвенными грибами: некроз табака, огурца передается зооспорами Olpidium brassicae, Potato virus X (PVX) картофеля — возбудителем рака картофеля (Syn-chytrium endobioticum), вирус мегельчатости верхушки картофеля (моп-топ) — возбудителем порошистой парши (Spongospora subterranea), ряд вирусов злаков и вирус бородавчатости корней свеклы (ризомания) — грибами рода Polymixa. С семенами передается примерно 20% вирусов. Это вирусы бобовых (мозаика фасоли, мозаика сои), томата (TMV), огуречный вирус 2 (CGMMV). Передача вирусов через пыльцу к семенам в процессе опыления растений достоверно доказана лишь дня немногих вирусов (преимущественно плодовых культур).

Влияние условий окружающей среды на развитие вирусных болезней

Неблагоприятные условия (температура, влажность и др.), ослабляя растения, усиливают репродукцию вируса в них, повышают вредоносность заболевания. Так, высокие температуры приводят к развитию большей части вирусных болезней картофеля, желтой карликовости картофеля. Заболевание малины мозаикой, напротив, активизируется при понижении температуры (осенью). Неблагоприятным фактором может быть также несбалансированное внесение удобрений, например, больших доз азотных удобрений.

Основными методами диагностики вирусов и вызываемых ими болезней, являются: 1) установление инфекционности заболевания; 2) серологический метод; 3) метод растений-индикаторов; 4) электронная
микроскопия, а также 5) люминесцентный анализ; 6) анатомический; 7) химический метод.

Установление инфекционности заболевания осуществляется путем передачи на здоровые растения вирусов, распространяющихся контактно-механическим способом. Из листьев больных растений приготавливают сок, втирают его в лист здорового растения пальцем, ватным тампоном или шпателем, обернутым тонким споем ваты. Зараженные растения помещают под изоляторы и наблюдают через определенное время за появлением симптомов заболевания.

Прививки — для передачи вирусной инфекции больной привой прививают на здоровый подвой или наоборот.

Насекомые-переносчики. Насекомых, чаще всего персиковую тлю (Myzodes persicae), выдерживают в течение определенного времени на больных растениях, а затем переносят на здоровые. Растения строго изолируют от заражений извне.

Пересадка растений. К этому приему прибегают для подтверждения или опровержения вирусной природы заболевания. Например, при определении причин хлороза растения пересаживают на заведомо благоприятную почву. Если хлороз был вызван плохими почвенными условиями, то через определенное время у растений восстанавливается типичная зеленая окраска. При вирусном хлорозе она не изменяется.

Серологический метод. Вирусы, как и бактерии, грибы, а также белки животных и растений, приводят к накоплению специфических видоизмененных белков-антител в крови теплокровных животных. Они реагируют только на те антигены, к которым получена антивирусная сыворотка. Реакция между антителом и специфическими антителами носит название серологической реакции (от латинского serum—сыворотка).

В практике широко применяют капельный серологический метод, разработанный М. С. Дуниным и Н. Н. Поповой (1937), и его модификации. Метод заключается в следующем. На предметное стекло наносят 2 капли испытуемого сока. В одну из них добавляют 1—2 капли сыворотки, специфичной к определенному вирусу, а в другую — такое же количество контрольной сыворотки, получаемой от неиммунизи-рованных животных. Капли сока и сыворотки перемешивают уголками чистого предметного стекла. Если в соке растения вирус, соответствующий антителам в сыворотке, присутствует, то в капле через 1— 3 мин образуется хлопьевидный осадок — преципитат (положительная реакция). Если в соке вируса нет, капля остается, как и контрольная, равномерно мутной. В научно-исследовательских институтах и лабораториях для выявления сферических вирусов применяют реакцию преципитации в агаровом геле. Более совершенной и высокочувствительной модификацией является иммуноферментный метод, основанный на цветной ферментативной реакции антител, связанных с моле-кулами фермента (пероксидазы или фосфатазы).

Растения-индикаторы. Для инокуляции используют молодые, интенсивно растущие растения в фазе 3—4 листьев, дающие очень четкую реакцию, строго специфичную к определенному виду вируса. Для этого листья растения-индикатора натирают соком больного (исследуемого) растения. Метод несколько громоздкий, но довольно точный. Для экономии места, материала можно брать не целое растение, а отделенные листья, помещаемые в чашки Петри.

Метод электронной микроскопии. Электронный микроскоп позволил определить не только форму и строение, но и размеры вирусных частиц.

Метод включений. В ряде случаев развитие некоторых вирусов в клетке сопровождается образованием в ней специфичных отложений (вирусных включений). Это могут быть скопления (кристаллы, паракристаллы и т.п.) самих вирусных частиц или образования, состоящие из элементарных частиц вируса и аморфного вещества клетки. Каждому виду вируса свойственна своя форма вирусных включений. Например, для вируса табачной мозаики — игловидные и гексагональные кристаллы, образующиеся в клетках для Х-вируса картофеля и вируса мозаики пшеницы — сферические аморфные тела. Внутриклеточные вирусные включения образуются в основном в клетках волосков или эпидермиса листьев, они обнаруживаются с помощью обычного биологического микроскопа.

Химический метод диагностики разработан для выявления зеленой и белой мозаики огурца, вируса скручивания листьев картофеля и др.

Защитные мероприятия от вирусных болезней

Защитные мероприятия против вирусных заболеваний должны строиться с учетом особенностей культуры и свойств вируса, вызывающего заболевание. Комплекс защитных мероприятий включает профилактические и предупредительные меры. Ведущее место принадлежит выведению и районированию устойчивых сортов, обладающих невосприимчивостью (иммунитетом) к определенным вирусным заболеваниям. Перспективным направлением является использование интерференции (несовместимости) родственных видов или штаммов вируса. Растения, искусственно зараженные слабо агрессивным штаммом, становятся невосприимчивыми к более агрессивным штаммам того же вируса. Для получения здорового семенного или посадочного материала проводят противовирусные прочистки семенных участков, при которых удаляют все растения с симптомами вирусных болезней, выявляемых при визуальной и серологической оценке.

Важное значение имеют агротехнические мероприятия, условия выращивания растений: сроки посева, густота стояния, удобрения, уничтожение сорных растений — резерваторов вирусной инфекции, борьба с насекомыми — переносчиками вирусов. Химические способы борьбы применяются ограниченно, так как вирусы находятся внутри живых клеток растений, и вещества, способные подавить (инактивировать) вирус, оказываются токсичными и для самой клетки. Установлено, что против вирусов мозаики табака и бронзовости листьев томатов эффективны некоторые виды антибиотиков (иманин, аренарин и др.).

Инактивирующее действие на вирусы оказывают также соли металлов и органические кислоты.

Вироидная инфекция распространяется как с зараженным посадочным материалом, так и механическим путем. Основные методы диагностики: метод растений-индикаторов, визуальной оценки по анато-мо-морфологическим изменениям больных растений, электронной микроскопии, выделение вироидной РНК. Многие вопросы, связанные с репликацией вироидов, их специализацией, взаимоотношениями с клеткой и организмом хозяина, еще недостаточно изучены.

Микоплазмы — специфическая группа патогенных организмов, по размерам (80—800 нм) и характеру воздействия на поражаемые растения близких к вирусам. Форма большинства из них овальная или округлая; встречаются также вытянутые, нитевидные, ветвистые и т.д. В отличие от вирусов они обладают полиморфизмом, т.е. один и тот же микоплазменный организм может быть различной формы и размера. Микоплазменные организмы имеют клеточное строение, но вместо настоящей клеточной стенки окружены трехслойной элементарной мембраной, содержат РНК, ДНК и рибосомы, сходные с рибосомами бактерий. Устойчивы к пенициллину, но подавляются антибиотиками группы тетрациклина. Размножение происходит путем почкования или бинарным делением, некоторые способны размножаться на искусственных питательных средах. Распространяются главным образом по проводящим сосудам флоэмы растения. Характерными симптомами этого вредоносного заболевания являются: угнетение роста, деформация вегетативных и генеративных органов и др. Часто отмечается позеленение цветков (столбур пасленовых), превращение отдельных частей цветка в листовидные образования (филлодия клевера, реверсия черной смородины и др.).

Основными переносчиками служат цикадки: Hyalesthes obsoletus, Macrosteles fascifrons и др., которые передают инфекцию по истечении определенного (латентного или инкубационного) периода.

Микоплазменные организмы перезимовывают только в живых органах растений — клубнях, корневищах многолетних сорняков, корнеплодах, луковицах и т.д. С семенами и растительными остатками не передаются.

Многие виды микоплазменных организмов обладают широкой филогенетической специализацией, т.е. способны поражать растения различных семейств. Так, столбур пасленовых поражает томат, картофель, перец, а также сорные растения: вьюнок, молочай, бодяк, цикорий и др. В то же время реверсия смородины опасна только для черной смородины.

Диагностика микоплазменных заболеваний.

1. По внешнему виду (по симптомам проявления).

2. Электронно-микроскопическое исследование.

3. Установление инфекционности патогена (прививкой, посредством насекомых).

4. Биологический метод (выделение возбудителя в чистую культуру, заражение им здорового растения и получение симптомов, идентичных первоначальным, повторное выделение возбудителя из искусственно зараженных растений).

5. Реакция возбудителей на антибиотики группы тетрациклина.

Защитные мероприятия от микоплазменных болезней

1. Уничтожение сорных растений—резерваторов инфекции и борьба с насекомыми-переносчшсами (главным образом цикадками).

2. Использование здорового посадочного материала.

3. Применение антибиотиков группы тетрациклина.

Болезнями растений занимается наука фитопатология.


Фитопатология (от греч. phyton — растение, pathos — болезнь и logos — учение), наука о болезнях растений, средствах и методах их профилактики и ликвидации. Тесно связана с анатомией и физиологией растений, микробиологией, микологией, генетикой, селекцией, растениеводством, химией, физикой и другими естественными науками. Частная Фитопатология включает сельскохозяйственную фитопатологию, которая исследует болезни сельскохозяйственных культур, лесную фитопатологию (болезни деревьев и кустарников) и фитопатологию декоративных культур.
Болезни растений – это патологические процессы, протекающие в растениях под влиянием возбудителей болезней и неблагоприятных условий среды; проявляются в нарушении фотосинтеза, дыхания и других функций, вызывают поражения отдельных органов или преждевременную гибель растений. Болезни снижают урожай и ухудшают его качество. Известно свыше 30 тыс. различных болезней растений.
В развитии инфекционных болезней различают несколько фаз:

  • - прединфекционная (накопление инфекционного начала в окружающей среде),
  • - заражение (внедрение возбудителя болезни в растение),
  • - инкубационный период (скрытое развитие возбудителя болезни внутри растения, без видимых визуально симптомов)
  • - послеинкубационный период (появление внешних признаков заболевания),
  • - защитная реакция растения (иммунные реакции).

Инфекционные болезни часто принимают характер массового развития, или -эпифитотий.

К возбудителям инфекционных болезней растений относятся.
1. Паразитические грибы (по ориентировочным подсчетам, существует не менее 10 000 видов фитопатогенных грибов); Грибы предпочитают кислую среду обитания. Сок растений обычно имеет слабокислую реакцию. Грибы образуют особые структуры, с помощью которых проникают через покровы тканей растений и клеточную стенку. Большинство грибов образуют два вида спор, одни из которых служат для распространения, а другие — для выживания в неблагоприятных условиях.

2. Паразитические бактерии (возбудителями болезней растений являются только 150—200 видов); Бактерии лучше растут в щелочной среде. Но они лишены способности активно проникать в ткани растений. Только часть бактерий образует споры, тогда как у остальных для распространения служат сами бактериальные клетки. Бактерии не имеют также специальных органов для перезимовки, благодаря чему их сохранение от одного вегетационного сезона до другого значительно затрудняется.

3. Паразитические цветковые растения, живущие за счет других растений, носящих название растений-хозяев.

4. Паразитические животные или растительные нематоды.
Чаще всего — это обитающие в почве круглые черви, называемые фитогельминтами. Они прокалывают растение, проникают в него и питаются его содержимым. Фитогельминты выделяют ферменты, превращающие сложные органические вещества растений в простые, пригодные для усвоения. Некоторые нематоды выделяют биологически активные соединения, способствующие притоку к ним питательных веществ. Вокруг места проникновения таких нематод начинается усиленное деление клеток и образуются утолщения — галлы. Нематоды способны выделять токсические вещества, подавляющие устойчивость к ним со стороны растений. Многие нематоды и растения-паразиты являются переносчиками вирусов, и в этом состоит их большая опасность.

5. Вирусы — инфекционные болезнетворные агенты, находящиеся на грани между веществами и существами. Вирусы составляют вторую по вредоносности после грибов группу патогенов растений. В настоящее время известно около 600 фитопатогенных вирусов. Все они заражают только живые ткани растений.

Все возбудители болезней растений в порядке убывающей вредоносности могут быть расположены в следующий ряд:
ГРИБЫ — ВИРУСЫ – БАКТЕРИИ — ПАРАЗИТИЧЕСКИЕ ЦВЕТКОВЫЕ РАСТЕНИЯ

Для того чтобы стать патогеном, микроорганизм должен приспособиться к своему будущему хозяину, или пройти процесс специализации.

Специализация — это приуроченность патогена к одному или нескольким растениям-хозяевам. Различают узко — и широко специализированные группы возбудителей болезней. Широко специализированные вызывают заболевания различных родов внутри одного семейства растений или даже растений различных семейств. Некоторые возбудители болезней, например возбудитель серой гнили (Botrytis cinerea), заселяют и разрушают без разбора всевозможные ткани и органы различных растений. В силу этого их называют полифагами.

Монофаги, или узкоспециализированные патогены, паразитируют только на растениях одного рода или даже одного вида. Внутри вида у таких паразитов часто возникают особые формы, приспособленные только к определенным сортам, которые не отличаются друг от друга во всем, кроме способности поражать одни сорта и не поражать другие. Такие формы получили название специализированных форм или физиологических рас.

Патогены растений отличаются по характеру своих патогенных свойств. Среди них различают несколько групп:

Факультативные сапрофиты в отличие от факультативных патогенов, которые преимущественно ведут сапрофитный образ жизни лишь иногда паразитируют, наоборот, преимущественно паразитируют и лишь иногда переходят к сапрофитному образу жизни. Круг их хозяев уже значительно уже.

Облигатные патогены (обязательные) - в природе живут только за счет живых растительных тканей. Они принадлежат к числу монофагов, т. е. их растением-хозяином является какой-нибудь один растительный род или близкие роды. Облигатами являются примерно 25% всех патогенов растений. Они встречаются во всех главных группах растительных патогенов, за исключением бактерий. Многие облигатные паразиты чрезвычайно вредоносны (ржавчина и мучнистая роса). Облигаты выбирают своей жертвой сильные, активно функционирующие растения. Как правило, эти патогены обладают орудиями, позволяющими им проникать через неповрежденную поверхность растений. Патогены этой группы в природе представлены многочисленными физиологическими расами.

Эта статья - фрагмент издания Елены Евдокимовой "Защита садовых растений". Полную информацию о нем вы можете получить здесь

Эти особенности ставят вирусы в полную зависимость от хозяина: все вирусы — облигатные паразиты бактерий, растений или животных.
Химический состав вирусов значительно более простой, чем состав самых мелких бактерий. Все вирусы содержат одну или несколько молекул нуклеиновой кислоты, покрытых молекулами белка одного типа (у некоторых вирусов имеется несколько типов белков оболочки), которые образуют кристаллические структуры. У наиболее сложно устроенных вирусов эти структуры погружены в наружную мембрану, имеющую в своем составе белки, углеводы и липиды.
Геном вирусов и его функционирование
Основные функции нуклеиновых кислот — репликация, транскрипция и трансляция у клеточных организмов разделены между двумя типами молекул — двухцепочечной ДНК и одноцепочечной РНК. При репликации молекула ДНК расплетается и на каждой цепи с помощью фермента ДНК-поли- меразы строится комплементарная ей вторая цепь. При транскрипции на цепочке ДНК (плюс-нити) фермент РНК-полимераза строит в определенном направлении (от 5-конца молекулы к 3-концу) комплементарную ей цепочку РНК (минус-цепь). При трансляции на молекуле РНК, как на матрице, в обратном направлении (от 3 - к 5-концу) с помощью аппарата рибосом из отдельных аминокислот синтезируется молекула белка.
У вирусов один тип молекулы (у большинства фитопатогенных вирусов — РНК) выполняет все три функции — репликации, транскрипции и трансляции. К тому же у большинства вирусов нуклеиновые кислоты од- ноцепочечны, причем могут нести как (+)-, так и (-)-функции (табл. 2.3).
Как видно, только небольшое число вирусов имеют двухцепочечные информационные молекулы, считывание информации с которых осуществляется аналогично клеточным организмам. Большинство фитопатогенных

вирусов имеет одну полифункциональную (+)-цепь РНК. Ее функции — хранение и реализация информации. Кроме того, (+)-цепь РНК является инфекционной молекулой. После попадания в клетку вирусной частицы, содержащей (+)-цепь РНК, прежде всего происходит декапсуляция, т. е. освобождение молекулы РНК от покрывающей ее белковой оболочки. Этот процесс осуществляется на рецепторах клетки протеазами растения-хозяина. Следующий процесс — репликация катализируется ферментом РНК- зависимой РНК-полимеразой (репликазой), которая у большинства вирусов кодируется собственным геномом. РНК типичного для этой группы вируса табачной мозаики (ВТМ) кодирует 4 белка (рис. 2.1).


Трансляция начинается с 5-конца молекулы — синтеза 126 и 183 кДа белков — компонентов репликазы. Эти белки появляются в клетке на ранних этапах инфекционного процесса, поэтому их называют ранними белками. У другого вируса — желтой мозаики турнепса (ВЖМТ) — в зараженной клетке образуется гибридная репликаза: один ее компонент (115 кДа) кодируется вирусным геномом, а второй — белок с молекулярной массой 45 кДа — геномом клетки хозяина. По-видимому, использование ферментной системы хозяина для репликации вирусных РНК — обычное явление, ибо для многих растений, зараженных вирусами, характерно значительное увеличение синтеза РНК-зависимой РНК полимеразы.


РНК полимераза строит (-) цепь РНК, комплементарную (+) цепи вирусной РНК. В результате этого процесса в клетке появляется репликативная форма вирусной РНК (РФ РНК), представленная частично и полностью двухцепочечной структурой; (-) цепь служит матрицей для синтеза новых молекул вирусной (+) РНК, а последняя функционирует как мРНК

44 белок Нс-Рго — за передачу тлями, системное распространение по
растению, синергизм при смешанных инфекциях, является цистеиновой протеазой папаинового типа. Фрагментирование генома. При центрифугировании некоторых вирусов, выделенных из зараженных растений, в градиента плотности цезия или сахарозы (в центрифужную пробирку наслаивают растворы хлористого цезия или сахарозы от более концентрированного к менее концентрированным, сверху помещают исследуемый препарат и центрифугируют; смесь частиц в препарате, различающихся молекулярной массой, хорошо разделяется в градиенте на отдельные фракции) было обнаружено, что они представляют собой смесь более крупных и мелких частиц. Каждая фракция в отдельности не инфекционна или слабо инфекционна, а смесь обладает высокой инфекционностью. В растении соотношение крупных и мелких частиц обычно постоянно. Было обнаружено, что хотя частицы покрыты одинаковыми молекулами белка, их РНК отличается по структуре и кодируемым белкам, например, РНК, находящаяся в длинных частицах кодирует ранние белки — ферменты, а в коротких — структурные белки оболочки. Фракция, состоящая из длинных частиц,, способна заражать растения и формировать новое поколение РНК, но нестабильна и не способна сохраняться вне растительной клетки; короткие частицы стабильны не могут заражать растения и размножаться в них. У вирусов погрем- ковости табака, кольцевой пятнистости малины, черной кольцевой пятнистости томата, мозаики огурца и др. обнаружено по два компонента, у вируса мозаики коровьего гороха — три, а у вируса мозаики люцерны — четыре компонента. Использование помощника. Выше говорилось, что недостаток информации заставил некоторые вирусы использовать ферменты клетки хозяина в процессах репликации и трансляции. Есть вирусы (их предложено называть вирусоидами), которые имеют молекулу РНК, состоящую всего из нескольких сот нуклеотидов и не способную кодировать больше одного белка (например, структурного белка оболочки). Остальные белки, необходимые для внутриклеточного созревания, вирус получает от другого вируса — помощника, поэтому не может существовать в клетках, не зараженных помощником. Таков вирус SV — сателлит вируса некроза табака (ВНТ). Он никогда не встречается в свободных от ВНТ растениях и, хотя покрыт собственной белковой оболочкой, использует ранние белки, кодируемые геномом ВНТ. Независимая от помощников репликация короткой кольцевой молекулы РНК, не имеющей информации о структурном белке. Такие молекулы (вироиды) способны самореплицироваться в растении и вызывать серьезные заболевания (веретеновидность клубней картофеля и др.).
Структурные вирусные белки. Молекулы структурных белков вирусов растений объединяются друг с другом определенным образом в кри-

сталлические структуры, называемые капсидами. Одну или несколько тесно 45 сближенных белковых молекул, из которых складывается капсид, называют морфологической единицей или капсомером. Капсомеры у разных вирусов уложены в спиральные трубки (вирусы со спиральной симметрией) или многоугольники (вирусы с икосаэдрической симметрией). Капсид, содержащий внутри нуклеиновую кислоту вируса, называют нуклеокапсидом.
Вирусы со спиральной структурой имеют под электронным микроскопом вид палочек или нитей. Внутри спирально уложенных молекул белка (капсомеров) проходит нить РНК, также свернутая в спираль, шаг которой повторяет шаг спирали капсида. Форма частицы зависит от соотношения длины к ширине. Если это отношение меньше 50, то вирусные частицы имеют вид палочек (таковы вирусы погремковости табака с частицами размером 130-320 х 20 нм и табачной мозаики с частицами 300 х 18 нм).
При отношении длины к ширине, равном 50 и более раз, частицы приобретают вид гибких нитей. Такой вид имеют вирусы из групп Х-вируса картофеля (480-580 х 10 нм), Y-вируса картофеля (750 х 15 нм). А длина вируса желтухи свеклы достигает 2000 нм при ширине всего 10 нм.
Вирусы с кубической симметрией капсида имеют форму икосаэдров — многоугольников с 12 вершинами и 20 гранями. Вершины многоугольника образованы капсомерами, состоящими из пяти агрегированных молекул белки (пентамерами), а грани и ребра — из большого числа (кратного 20) капсомеров, состоящих из шести молекул (гексамеров). У большинства вирусов растений, имеющих кубическую симметрию, в капсиде содержится 180 молекул белка (12 пентамеров и 20 гексамеров).
Наконец, у некоторых вирусов растений (бронзовости томата, желтой карликовости картофеля и др.) длинный нуклеокапсид со спиральной симметрией или несколько нуклеокапсидов (если вирус имеет фрагментированный геном), заключены в наружную мембрану, состоящую из белков, плотно упакованных в гексагональную структуру и липидов.
Таким образом, вирусные частицы, наблюдаемые в электронном микроскопе, представляют собой покоящиеся структуры (вирионы). В вегетативной фазе в процессе внутриклеточного размножения вирионов их нет. Зрелы вирусные частицы следующего поколения образуют в зараженных клетках вирусные включения в виде различного рода кристаллов или аморфных Х-тел, в которых вирусные частицы перемешаны с цитоплазмой клетки хозяина. Включения могут формироваться в цитоплазме (ВТМ, УВК и др.), ядрах (вирусы желтухи свеклы, желтой мозаики ячменя), хло- ропластах (вирусы желтой мозаики турнепса, штриховатости ячменя), митохондриях (вирус погремковости табака), вакуолях (вирусы огуречной мозаики, некроза табака, ХВК).
Вирионы некоторых вирусов (ВТМ, ХВК) накапливаются в зараженных клетках в очень высокой концентрации и чрезвычайно устойчивы к внешним воздействиям (нагреванию, высушиванию). Другие вирусы (бронзовости томата, УВК) нестойки и инактивируются при значительно более мягких воздействиях

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции