Аттестационные тесты лабораторная диагностика бешенства животных

Сухарьков А.Ю, Назаров Н.А., Метлин А.Е. ФГБУ ВНИИЗЖ


Бешенство - острая инфекционная болезнь животных и человека, протекающая с тяжелым поражением нервной системы, как правило, с летальным исходом. Бешенство регистрируется во многих странах мира, в том числе и в России.

Диагностика бешенства играет важную роль для оказания своевременной постэкспозиционной лечебной помощи людям и борьбы с бешенством среди животных [7]. Она должна быть быстрой и достоверной, так как это необходимо для оценки риска, который угрожает людям.

В настоящее время базовыми методами диагностики бешенства являются реакция иммунофлуоресценции (РИФ) и биологическая проба на мышах, а также выделение вируса на культуре клеток, постепенно заменяющее биологическую пробу на мышах [6]. Несмотря на высокую надежность и чувствительность этих методов, они имеют ряд недостатков. Основным недостатком биологической пробы на мышах и выделения вируса в культуре клеток является то, что для получения результатов исследования может потребоваться длительное время [11]. Точность постановки диагноза методом РИФ во многом зависит от наличия у персонала диагностических лабораторий необходимой квалификации. Кроме этого, для проведения диагностики с использованием этих методов, как правило, не годятся пробы с признаками частичного разложения мозговой ткани, в силу возможного получения лож-ноотрицательных результатов. Эти диагностические системы также малопригодны для широкомасштабного мониторинга бешенства. Перечисленных выше недостатков метод имму-ноферментного анализа (ИФА) не имеет. Этот метод в числе других рекомендован для диагностики бешенства Всемирной Организацией Здравоохранения (В0З) и Всемирной Организацией Охраны Здоровья Животных (OIE) [5]. Иммуноферментный анализ отличается простотой и быстротой выполнения, может обходиться без применения дорогостоящего оборудования в случае визуальной оценки результатов исследований. Он отлично подходит для проведения мониторинга бешенства, при этом позволяя интерпретировать полученные результаты с высокой степенью достоверности.

Ранее нами был разработан твердофазный непрямой сэндвич-вариант иммуноферментного анализа для диагностики бешенства животных, с использованием поликлональных антител, полученных на рибонуклеопротеин вируса бешенства [2]. Прямой сэндвич-вариант ИФА более быстрый по времени и менее затратный, чем непрямой.

Целью данной работы являлась разработка прямого сэндвич-варианта ИФА для диагностики бешенства и проведение сравнительных испытаний прямого и непрямого сэндвич-варианта ИФА.

Материалы и методы. Рибонуклеопротеин вируса бешенства (далее, РНП ВБ) выделяли из клеток ВНК-21, инфицированных вирусом бешенства (далее, ВБ), штамм ВНИИЗЖ, по методике, рекомендованной ВОЗ в руководстве "Лабораторная диагностика бешенства" [8]. Вирус бешенства, штамм ВНИИЗЖ, очищали и концентрировали из культурального вирусного сырья, инактивированного димером этиленимина [3]. Концентрацию белка в очищенных препаратах вируса и РНП вируса определяли по методу Лоури [9]. Степень чистоты полученных антигенов контролировали методом вертикального электрофореза в агарозном геле с додецилсульфатом натрия в денатурирующих условиях.

В качестве улавливающих использовали поликлональ-ные антитела к РНП ВБ, которые получали иммунизацией кроликов соответствующим антигеном. Очищенный РНП ВБ вводили животным внутримышечно три раза (0, 40, 54 дни) в дозе 400 мкг на голову.

В качестве детекторных использовали антирабические антитела морской свинки, которые получали иммунизацией животных очищенным ВБ. Антиген вводили животным внутримышечно четырехкратно в дозе 200 мкг на голову с интервалами в 1 неделю, 5 и 2 недели. При иммунизации морских свинок и кроликов первую инъекцию проводили с полным, а последующие - с неполным адъювантом Фрейнда "Sigma".

Через две недели после последней инъекции в сыворотках крови иммунизированных животных определяли титры специфических антител методом твердофазного непрямого варианта иммуноферментного анализа. Титровали с шагом три, начиная с разведения 1:1000. В дальнейшей работе использовали сыворотки крови с титрами антител к ВБ и РНП ВБ не ниже 1:243000. Из отобранных сывороток выделяли фракцию IgG методом трехкратного высаливания сульфатом аммония. Концентрацию белка в конечных препаратах определяли методом спектрофотомерии при длине волны 280 нм.

Поликлональные антирабические антитела морских свинок использовали для получения антирабического перокси-дазного коньюгата по методу Накане [4].

Для отмывки лунок планшетов от компонентов реакции использовали Трис-HCl буферный раствор с добавлением Tween-20 (ТБСТ).

В качестве субстрата для пероксидазы использовали ор-тофенилендиамин.

Для учета результатов непрямого сэндвич-варианта ИФА использовали антивидовой пероксидазный конъюгат к антителам морской свинки производства НИИ эпидемиологии и микробиологии им. Н.Ф.Гамалеи (г. Москва) в разведении 1:1000.

Положительным контролем в ИФА служила инактивиро-ванная р-пропиолактоном [10] лиофилизированная 20%-ная суспензия мозговой ткани кролика, инфицированного ВБ штамма CVS. В качестве отрицательного контроля использовалась лиофилизированная 20%-ная суспензия мозговой ткани неинфицированного кролика.

Исследуемые образцы (пробы ткани головного мозга животных) поступали в ФГБУ "ВНИИЗЖ" из разных региональных ветеринарных лабораторий. Поступивший биоматериал до использования хранили при минус 20°С. Образцы мозговой ткани для исследования готовили следующим образом. В пенициллиновый флакон с Трис - НС1 буферным раствором помещали кусочки ткани головного мозга из разных отделов (продолговатый мозг, мозжечок, аммоновы рога, кора больших полушарий) в количестве, необходимом для приготовления 30%-ной суспензии. Содержимое флакона тщательно гомогенизировали путем интенсивного встряхивания и подвергали однократному замораживанию. Далее пробу подвергали частичному размораживанию при комнатной температуре, и интенсивно встряхивали для более полной гомогенизации. Затем содержимое флакона переносили в пластиковую центрифужную пробирку с крышкой в объеме 1,5 мл и центрифугировали в течение 20 минут при 1000g. Для исследования использовали супернатант в цельном виде. Оставшийся в пенициллиновом флаконе материал хранили при минус 200С.

Кроме прямого сэндвич-варианта ИФА пробы исследовали методами РИФ [1] и непрямым сэндвич-вариантом ИФА [2]. При исследовании проб головного мозга в РИФ использовали ФИТЦ-иммуноглобулин производства ФГБУ "ВНИИЗЖ".

Результаты и обсуждение. Исследования проб в прямом сэндвич-варианте ИФА выполняли по следующей схеме.

Сенсибилизация планшетов. Для сенсибилизации планшетов в лунки вносили поликлональные кроличьи антитела к РНП ВБ по 100 мкл в лунку, разведенные в карбонатно-би-карбонатном буферном растворе (рН 9,5) до концентрации 5 мкг/мл, и инкубировали в течение 18-20 ч при 4°С. Сенсибилизированный планшет 3 раза отмывали ТБСТ.

Внесение исследуемых проб и контрольных препаратов. В лунки вертикального ряда по очереди в трех повторностях вносили положительный, отрицательный, безантигенный (промывочный буферный раствор) контроли и исследуемые пробы по 100 мкл в лунку. Планшет инкубировали 1 ч при 37°С и затем трижды отмывали промывочным буферным раствором.

Внесение пероксидазного антирабического конъюгата. Рабочее разведение антирабического конъюгата с перокси-дазой хрена готовили на ТБСТ с добавлением 5%-ной нормальной сыворотки лошади. В лунки планшета вносили по 100 мкл приготовленного коньюгата, инкубировали 1 ч при 37°С и отмывали 5 раз промывочным буферным раствором. Рабочее разведение антирабического пероксидазного конъюгата предварительно определяли в прямом сэндвич-варианте ИФА методом последовательных разведений, с использованием положительного и отрицательного контрольных препаратов, которое составило 1:1500.

Внесение субстрат-хроматогенной смеси. Раствор субстрат-хроматогена вносили по 100 мкл на лунку. Инкубировали 20 минут при комнатной температуре в темноте, реакцию останавливали добавлением в каждую лунку 50 мкл 3н H2SO4.

Учет результатов . Результаты реакции учитывали с помощью сканирующего спектрофотометра "BioRad PR 2100" при длине волны 490 нм. Определяли среднюю оптическую плотность (ОП) безантигенного, положительного и отрицательного контролей, а также среднюю ОП тестируемых образцов. После этого рассчитывали ОП тестируемых образцов, положительного и отрицательного контролей, вычитая среднюю ОП безантигенного ряда. Согласно рекомендациям ВОЗ, расчетная ОП (ОПр) отрицательного и положительного контролей должна быть не выше 0,1 и не ниже 1,5 единиц, соответственно. Исследуемые образцы считали положительными, если их ОПр превышала ОПр отрицательного контроля на 0,1 единицы [5].

Для оценки диагностической специфичности разработанного прямого сэндвич-варианта ИФА исследовали 30 проб головного мозга от разных животных, отрицательных по бешенству в РИФ. Расчетная оптическая плотность отрицательных проб составила 0,013±0,0004, что свидетельствует о высокой специфичности разработанного ИФА, которая в данном исследовании составила 100%.

С целью измерения предела чувствительности разработанного метода провели анализ с использованием РНП ВБ известной концентрации. Проведенные исследования показали, что предел чувствительности метода находится в диапазоне 15-30 нг/мл. При этом предел чувствительности непрямого сэндвич-варианта ИФА, разработанного нами ранее [2], составил такую же величину.

Для изучения эффективности диагностики бешенства разработанным прямым сэндвич-вариантом ИФА в сравнении с другими методами, в том числе и непрямым сэндвич-вариантом ИФА, было исследовано 100 проб головного мозга животных, направленных в ФГБУ "ВНИИЗЖ" для исследования на бешенство. Результаты исследований представлены в таблице 1.

Таблица 1. Результаты исследований мозговой ткани животных, подозреваемых в заболевании бешенством, в прямом сэндвич-варианте ИФА, в сравнении с другими методами диагностики бешенства


Разработка и оптимизация условий постановки тест-системы для диагностики бешенства сэндвич методом твердофазного иммуноферментного анализа

Разработана тест-система и оптимизированы условия её постановки для выявления антигенов вируса бешенства на основе сэндвич метода твердофазного иммуноферментного анализа. Приведены результаты, свидетельствующие о достаточно высокой специфичности и чувствительности тест-системы, что позволяет предложить его для рутинной диагностики бешенства в качестве альтернативы импортным диагностикумам.

Ключевые слова: бешенство, вирус, антиген, иммуноглобулин, ТФ-ИФА, тест-система, сыворотка, конъюгат.

Восприимчивость к заболеванию всех видов домашних и диких животных, огромная опасность для человека определяют социальное и экономическое значение бешенства, и привлекает к нему пристальное внимание ветеринарной, медицинской науки и практики [1].

В большинстве регионов Казахстана эпизоотическая ситуация по бешенству чрезвычайно сложна - резко активизировались природные очаги этой инфекции, увеличилось число случаев заболеваний среди различных видов животных, ежегодно регистрируются случаи заболеваний людей с летальным исходом [2, 3]. Несмотря на проводимые мероприятия, в Республике Казахстан ограничить распространение рабической болезни и полностью ликвидировать бешенство животных до сих пор не удается.

Значимое место в борьбе с бешенством принадлежит экспресс диагностике, которая служит основанием необходимости проведения лечебно-профилактических и противоэпизоотических мероприятий. Для диагностики и выявления возбудителя бешенства разработаны и предлагаются различные методы: морфологическое исследование, реакция диффузионной преципитации в агаровом геле (РДП), метод иммунофлуоресценции, биологическая проба на лабораторных животных [4]. Среди тестов для ускоренной лабораторной диагностики бешенства животных интенсивно развивается метод иммуноферментного анализа. Явными преимуществами этого теста являются простота и быстрота выполнения, высокая чувствительность, стабильность реагентов, возможность количественного учета реакции, обработки большого количества проб, автоматизации процесса и объективность инструментального учета результатов [5]. Специфичность и чувствительность иммуноферментного теста для диагностики бешенства зависит от качества используемых иммунореагентов, оптимизации постановки теста и подтверждается способностью выявлять локальные предоминантные варианты вируса [6].

До настоящего времени использование данного теста в Республике Казахстан ограничено в связи с отсутствием коммерческих отечественных тест-систем для диагностики бешенства методом иммуноферментного анализа и высокой стоимостью импортных диагностикумов. Разработка и внедрение данного теста позволит проводить активный надзорза бешенством, результаты которого позволят адекватно оценить масштабы распространения данного заболевания на территории Республики Казахстан и своевременно принять научно-обоснованные противоэпизоотические и противоэпидемиологические мероприятия.

Целью настоящей работы являетсяразработка и оптимизация условий постановки тест-системы для диагностики бешенства сэндвич методом ТФ-ИФА.

Материалы и методы

Специфичность и активность антирабических сывороток и иммуноглобулинов оценивали в РДП с использованием антигенов из тест-системы для лабораторной диагностики бешенства в реакции диффузионной преципитации СТ ДГП 4-2009(НИИПББ, РК) и набора компонентов для диагностики бешенства животных в реакции диффузионной преципитации (ВНИТИБП, РФ). Постановку реакции осуществляли по общепринятой методике.

Результаты и обсуждение

Не уступая чувствительности и специфичности МФА, методы иммуноферментного анализа лишены выше перечисленных недостатков и к настоящему времени находят все большее применение в рутиной диагностики бешенства во многих странах мира [12]. Из всего многообразия известных на сегодняшний день различных вариантов ИФА, отличающихся по характеру используемых реагентов и последовательности отдельных этапов, для решения поставленной задачи нами был выбран двухцентровый метод ТФ ИФА. Высокая корреляция результатов сэндвич варианта ТФ-ИФА с результатами классической биопробы и МФА, а также возможность выявлять антиген вируса в пробах любой степени разложения и вне зависимости от использованных консервантов и фиксаторов делает этот тест идеальным, как в качестве самостоятельного метода диагностики, так и в сочетании с вышеописанными методами.

По данным разных авторов, порог данного теста варьирует в пределах 2-3lg МЛД50/мл [13]. Чувствительность метода может быть повышена использованием тестов на основе моноклинальных антител (МА), но для целей идентификации возбудителя болезни имеется необходимость использовать панели антинуклеокансидных и антигликопротеиновых МА на различные антигенные варианты вируса. Поэтому для диагностики бешенства наибольшее распространение получили наборы препаратов на основе поликлональных антител, поскольку данные антитела позволяют выявлять не только уникальные эпитопы, но и общие антигенные детерминанты антигенов вируса бешенства, тем самым повышая результативность реакции.

Важными критериями чувствительности, специфичности и воспроизводимости теста является активность, специфичность конъюгатов антител. А качество конъюгатов, в свою очередь, зависит от активности, специфичности и чистоты применяемых для конъюгации иммуноглобулинов или антител.

С этой целью нами была разработана схема получения гипериммунной антирабической сыворотки крови коз и ослов, которая позволила получить иммуноглобулины с титром преципитирующих анти:64÷1:128. В результате электрофореза в ПААГ препаратов иммуноглобулинов выявлены профили, соответствующие легким и тяжелым цепям иммуноглобулинов G класса и слабовыраженные профили белков других классов, что свидетельствует о достаточной чистоте полученных препаратов. На основе выделенных иммуноглобулинов был приготовлен иммунопероксидазный конъюгат.

Поскольку чувствительность ИФА зависит от целого ряда физико-химических факторов (температура, ионная сила и рН реакционной среды, концентрационные соотношения компонентов и продолжительность их взаимодействия), при конструировании тест-систем на основе полученных препаратов использовали эмпирический подбор оптимальных параметров постановки теста.

Конструирование иммуноферментного диагностикума включало поиск оптимальных параметров тест-системы, от которых зависят чувствительность и специфичность проводимой реакции. Важным фактором в разработке тест-системы являлось определение условий адсорбции на твердой фазе, т. е. установление оптимальной концентрации иммуноглобулиновой фракции антирабических антител, состава сенсибилизирующего буфера, условий отмывания не связавшихся компонентов, времени и температуры связывания иммуноглобулинов с поверхностью лунок полистироловых планшетов, рабочей дозы приготовленного специфического конъюгата антител с пероксидазой.

Для подбора оптимальных условий сорбции оценивали интенсивность иммуноферментной реакции при различных концентрациях иммуноглобулинов в растворе. Недостаток антител приводит к снижению чувствительности теста, а избыток к перерасходу дорогостоящего реагента. На достоверность результатов ИФА оказывает влияние неспецифическое связывание реагентов со свободными сайтами полистироловых планшет. В наших экспериментах мы испытывали различные количества антител в интервале 1÷20 мкг/мл (разведение иммуноглобулина 1:50 ÷ 1:600). Процесс адсорбции антител оценивали по интенсивности реакции с контрольными специфическими и негативными сыворотками. Наиболее оптимальный уровень насыщения поверхности планшет достигался при концентрации белка, равной 5 мкг/мл (1:200), при этом антитела с нормальными сыворотками реагировала отрицательно, а показатель позитивности составлял 4,5. При других испытанных концентрациях антител коэффициент позитивности варьировал от 3,0-4,2.

Существенным параметром, влияющим на чувствительность ИФА, является рН комплексирующего буфера. Полистироловые планшеты сенсибилизировали антителами к антигенам вируса бешенства в буферных растворах с рН от 4,0 до 10,0: ацетатном, фосфатном и карбонат-бикарбонатном. На основании анализа результатов проведенных исследований было установлено, что при рН 9,6 0,1М карбонат-бикарбонатного буфера обеспечивался самый высокий уровень адсорбции поликлональных антител к антигенам вируса бешенства на поверхности полистироловых планшет.

Следующим этапом наших исследований стало изучение влияния температуры и времени экспозиции на адсорбцию антител к антигенам вируса бешенства в лунках планшета. Анализ результатов проведенных исследований позволил установить, что оптимальным для сенсибилизации лунок планшета иммуноглобулинами является режим при температуре 4°С в течение 24 ч. или в течение 18 ч. при температуре 20°С (коэффициент позитивности равен 4,5-5,0), в то время как при 37°С и выдержке в 1 ч. адсорбционная способность иммуноглобулинов несколько ниже (коэффициент позитивности около 4,4).

Для определения оптимального уровня активности полученных конъюгатов при проведении ИФА подбирали оптимальное рабочее разведение, дающее максимальную цветовую реакцию при внесении их в полистироловые планшеты. Было установлено, что при рабочем разведении 1:600 коэффициент позитивности составил 6,0 против 4,8-5,2 при разведениях 1:1000-1:800. При изменении концентрации в диапазоне 1:400-1:200 существенной разницы в значениях коэффициента позитивности отмечено не было. Данный факт свидетельствует о насыщении сорбционной емкости планшета конъюгатом, начиная с разведения 1:600.

Для определения оптимальной продолжительности инкубации антигена в твердофазном методе ИФА оценивали интенсивность реакции по коэффициенту позитивности в зависимости от времени инкубирования (15, 30, 60, 90 минут) при температуре 37°С.

Результаты проведенных нами исследований позволили установить, что 60-минутная экспозиция при температуре 37°С является оптимальным временем инкубации рабического антигена с адсорбированными иммуноглобулинами при постановке ИФА, поскольку установлено, что коэффициент позитивности в диапазоне от 15 до 60 мин возрастал с 5,4 до 6,4, а далее стабилизировался.

Оптимальнымиусловиями инкубирования пероксидазного конъюгата с антигеном на иммуносорбенте, являлись 40-60 мин, при 37°С. Увеличение коэффициента позитивности в данном случае происходило по мере увеличения срока инкубации. Однако разница в величине данного показателя при 40; 60; 90 и 120 мин. экспозицией оказалась незначительной.

При оптимизации условий постановки ТФ-ИФА также осуществлены испытания сорбционных свойств твердой фазы, в качестве которых использовались 96-луночные планшеты для ИФА. С этой целью проводили титрацию положительного антигена в планшетах различных производителей. В результате установлено, что максимальной способностью сорбировать рабический антиген и однородностью сорбции (вариации 4-5%) обладают планшеты фирмы Nunc (Maxisorb) и планшеты фирмы Costar. Другие испытанные планшеты обладали меньшей сорбционной способностью и однородностью сорбции (вариации 4-15%). В связи с этим для дальнейших экспериментов выбраны планшеты Nunc, Costar, позволяющие достигать более высокую чувствительность и стандартность анализа.

Изучение влияния растворов для разбавления специфических компонентов показало, что применение для разбавления антигенов ФБС (0,01М), NaCl (0,15М) или физиологического раствора показывает сравнительно равные результаты по чувствительности и специфичности метода ИФА.

С использованием полученных оптимальных параметров постановки теста были проведены испытания специфичности и чувствительности ТФ-ИФА. Результаты специфичности ТФ-ИФАпредставлены в таблице.

Результаты специфичности тест-системы ТФ-ИФА

для выявления антигенов вируса бешенства









ЛАБОРАТОРНАЯ ДИАГНОСТИКА БЕШЕНСТВА

По данным Роспотребнадзора, за январь-декабрь 2015 г. в Российской Федерации зарегистрировано 6 случаев инфицирования человека вирусом бешенства, что превышает показатели 2014 г. в два раза. Так же в стране зарегистрировано 3739 случаев заболеваемости животных, сообщает Центральная научно-методологическая ветеринарная лаборатория. Из них на долю диких животных, приходится 48,8%, собак и кошек – 37,9%, сельскохозяйственных животных – 12,4% эпизодов.

Полученные данные свидетельствуют о резком усугублении эпизоотической ситуации по бешенству, что заставляет обратить специалистов ветеринарной медицины усиленное внимание на данную проблему.

Наиболее действенным методом контроля бешенства среди животных является своевременная иммунопрофилактика и диагностика.

Возбудителем заболевания является вирус бешенства Rabies lyssavirus.

Family/ Семейство – Rhabdoviridae;

Genus/ Род – Lyssavirus;

Species/ Вид - Rabies lyssavirus.

Методы лабораторной диагностики бешенства стандартизированы. Приказом Федерального агентства по техническому регулированию и метрологии от 30-09-2013 г. № 1127-ст межгосударственный стандарт ГОСТ 26075-2013 введен в качестве национального стандарта Российской Федерации с 1 января 2015 г.

Настоящий стандарт распространяется на все виды млекопитающих животных и устанавливает следующие методы лабораторной диагностики бешенства: метод флуоресцирующих антител (МФА); метод выделения вируса бешенства в культуре клеток мышиной нейробластомы CCL-131 (или невриномы Гассерова узла крысы - НГУК-1); биопроба на белых мышах; метод иммуноферментного анализа (ИФА); реакция диффузионной преципитации (РДП).

Для диагностики используются:

1. Метод флуоресцирующих антител. Выявление антигена вируса бешенства меченными флуоресцеинизотиоцианатом антирабическими антителами, с образованием характерных светящихся комплексов-включений, обнаруживаемых в поле зрения люминесцентного микроскопа.

Для выявления вирусного антигена в мазках-отпечатках мозга используют прямую и непрямую реакцию иммунофлюоресценции. Мазки фиксируют в холодном ацетоне в течение 8-10 ч при температуре 4° С и обрабатывают во влажной камере 30 мин. антирабический иммуноглобулин, меченым ФИТЦ, промывают фосфатным буфером, высушивают и исследуют в люминесцентном микроскопе. Антигены вируса наблюдается в виде зеленых гранул разной формы и величины. В случае отрицательного результата, требуется провести другие методы диагностики.

2. Метод выделения вируса в культуре клеток мышиной нейробластомы CCL-131. Основан на размножении вируса в культуре клеток и его идентификации методом флуоресцирующих антител.

Суспензированый пат. материал вносят в культуру клеток, оставляя лунки для контроля. Положительный контроль - суспензия мозга мыши со штаммом вируса бешенства CVS, отрицательный - суспензия мозга клинически здоровой мыши. Далее инкубируют во влажном CO2 инкубаторе с содержанием 5 CO2% при 37±1°С в течении 42-28ч. Высушивают, фиксируют в холодном ацетоне в течении 30 мин, вновь высушивают. Далее с добавлением ФАГ в рабочем разведении, помещают во влажную чашку Петри и инкубируют при 37±1°С в течении 30 мин. По окончании трехкратно промывают, погружая на 10 мин в сосуд с ФБР, ополаскивают дистиллированной водой и высушивают. Наносят нефлуоресцирующее иммерсионное масло и просматривают в люминесцентном микроскопе. Антиген вируса бешенства выявляется в цитоплазме культуры клеток в виде ярких зеленых гранул различной формы с четкими краями.

3. Метод биопробы. Выделение вируса бешенства на белых мышах путем введения им суспензии патологического материала с последующей идентификацией вируса методом флуоресцирующих антител.

Наиболее пригодными для заражения являются мыши-сосунки. Для постановки биопробы используют 15-20 животных. Заражение проводят под наркозом путем интрацеребрального введения 0,03 мл суспензии исследуемого материала. При наличии в исследуемом материале вируса бешенства у мышей возникает тремор мышц, параличи. В большинстве случаев животные погибают в течение пяти дней. Наличие вируса бешенства в зараженных и погибших мышах необходимо подтвердить с помощью прямой реакции иммунофлуоресценции или обнаружения телец Бабеша-Негри. Идентификацию обнаруженного вируса бешенства проводят также с помощью реакции нейтрализации на белых мышах.

4. Метод иммуноферментного анализа. (ELISA) Основан на специфическом взаимодействии вирусного антигена с антирабическим антителом, иммобилизованном на твердом носителе, с последующим выявлением связавшегося антигена с помощью второго, меченного ферментом, антитела, путем окрашивания продукта реакции хромогеном.

Готовые разведения антирабической сыворотки вносят в приготовленные лунки в агаровом геле. Чашки Петри помещают в термостат при 37±1°С на 48 часов. Реакцию считают положительной при появлении одной или 2-3 линий преципитации любой интенсивности между лунками, содержащими суспензию мозга и антирабический гамма-гло­булин. Отрицательный результат подтверждается другими методами.

Принимая во внимание высокую опасность болезни, обусловленную полной летальностью, специалисту ветеринарной медицины нужно знать, что окончательный диагноз может быть поставлен только методами лабораторной диагностики. Поэтому трудно переоценить значимость вышеперечисленных методов для практической ветеринарной медицины.

Библиографический список

Гайсаров, М.С. Эпизоотологическая характеристика бешенства животных в Республике Башкортостан, профилактика и меры борьбы с ним [Текст] : автореферат дис. канд. биол. наук : 16.00.03 / Гайсаров М. С.; Башкирский ГАУ. - Уфа : [б. и.], 2009. с. 18-19

Гулюкин, А.М. Значимость современных методов лабораторной диагностики и идентификации возбудителя бешенства для иммунологического мониторинга данного зооноза [Текст] / А.М. Гулюкин // М.:Вопросы вирусологии № 3, 2014 г. - с. 5-10.

Методы лабораторной диагностики бешенства. [Текст] : ГОСТ 26075-2013 - Введ. 2015-01-01. - М.: Госстандарт России, 2013. - 19с.

Бюджетное учреждение Удмуртской Республики


Многие из существующих в природе вирусов являются причиной нарушения репродуктивных способностей свиней. Среди них есть вирусы классической и африканской чумы свиней, болезни Ауески, парвовирусная инфекция свиней (ПВИС), вирус репродуктивно — респираторного синдрома свиней (РРСС), аденовирус, коронавирус, вирусы гриппа, ящура и везикулярного стоматита. Самых больших экономических убытков в патологии репродукции свиней наносят парвовирус и вирус РРСС.

Парвовирусная инфекция свиней — контагиозная вирусная болезнь, проявляющаяся клинически только у супоросных свиноматок и характеризующаяся прохолостами, малочисленными пометами, рождением мумифицированных плодов, мертвых и слабых поросят и реже абортами.

Возбудителем болезни является ДНК-содержащий вирус, относящийся к роду Parvovirus семейства Parvoviridae.

Эпизоотологические данные. К парвовирусной инфекции чувствительны только свиньи.

Источником возбудителя болезни являются больные и переболевшие животные, выделяющие вирус со слюной, с мочой, фекалиями, околоплодными водами, плацентой и спермой.

Течение и симптомы. Клинически болезнь проявляется только у супоросных сви­номаток в виде полного рассасывания эмбрионов или гибели плодов. Полное рассасывание эмбрионов происходит в том случае, если они погибли на 30-36 день беременности. После этого срока происходит кальцификация, мумификация плодов и отсутствие родов у свиноматок.

Передача вируса от одного плода к другому происходит медленно, в связи с этим они погибают на различных стадиях развития. Обычно не все плоды поражаются вирусом и при опоросе рождаются мумифицированными различной величины, мертвые, слабые и нормально развитые поросята. При заражении после 70-го дня супоросности плоды, как правило, устойчивы к летальному действию вируса, но после рождения могут быть вирусоносителями и отставать в росте.

У хряков-производителей болезнь протекает бессимптомно, но они выделяют вирус со спермой в течение 2-3 недель после заражения.

Диагностика основана на клинико-эпизоотологических данных и результатах лабораторных исследований. Лабораторная диагностика парвовирусной инфекции основывается на обнаружении специфического антигена и антител.

В ходе мероприятия представлена информация об эпизоотической ситуации по нодулярному дерматиту крупного рогатого скота в Российской Федерации, особенности клинического проявления болезни, возможные пути распространения инфекции, методы проведения противоэпизоотических мероприятий, а также профилактика заболевания.

По окончании мероприятия Александр Владимирович подробно ответил на вопросы специалистов лабораторной службы по методам лабораторной диагностики, рассказал о специальной тест-системе для оперативного определения животных, инфицированных опасным заболеванием — нодулярным дерматитом.

С докладом об итогах работы за 2018 год выступил заместитель директора УВДЦ А.Ю. Вербицкас. В ходе доклада Антон Юозанович осветил результаты лабораторно- диагностической деятельности
основных направлений УВДЦ. В частности он отметил: на ветеринарные лаборатории возложены функции по проведению огромного спектра лабораторных исследований в области эпизоотического мониторинга и мониторинга за качеством и безопасностью пищевой, сельскохозяйственной и иных видов продукции. Так, в 2018 году поступило 353249 проб материала, проведено 537614 исследований, выявлено 12795 положительных результатов. В разрезе структуры исследований наибольшее увеличение приходится на серологические исследования, в частности на диагностику лептоспироза и бруцеллеза, а также химико-токсикологические и бактериологические исследования пищевой продукции и кормов.

Антон Юозанович отметил хорошие результаты использования метода ПЦР как по времени исследований – от 4 до -12 часов, так и по точности постановки диагноза таких заболеваний, как хламидиоз, туберкулез, лептоспироз, сибирская язва, бруцеллез, африканская и классическая чума свиней, грипп птиц и др. Благодаря данному методу, специалистам УВДЦ удалось своевременно выявить высокопатогенный вирус гриппа птиц в Дебесском и Игринском районах, что позволило оперативно провести эпизоотические мероприятия по локализации и ликвидации очагов заболевания.

Также в ходе совещания рассмотрены результаты работы Испытательного центра УВДЦ, который в 2018 году успешно прошел выездную экспертизу соответствия критериям Росаккредитации, т.к. обеспечение населения качественной и безопасной продукцией животноводства – одно из важнейших направлений в деятельности лабораторной ветеринарной службы. За отчетный период поступило 13468 проб мясной, рыбной и молочной продукции.

Большое внимание уделяется метрологическому обеспечению в системе ветеринарных лабораторий. В УВДЦ система менеджмента качества поддерживается на должном уровне: разработано 29 новых внутренних документов. Согласно утвержденным планам, в учреждении проведено 7 внутренних аудитов. Для расширения области деятельности лаборатории освоено 53 методики.

Эффективность работы зависит от профессионализма кадров. За прошедший учебный год отделом подготовки кадров УВДЦ проведено пятнадцать курсов повышения квалификации, четыре семинара в рамках модульной программы и восемь семинаров в рамках методического руководства за диагностической деятельностью межрайонных ветеринарных лабораторий, выдано 190 удостоверений о повышении квалификации.

36 специалистов УВДЦ повысили свою квалификацию в ведущих институтах и лабораториях страны.

Подводя итог работы УВДЦ, Антон Юозанович отметил, что все задачи, стоящие в 2018 год, выполнены в полном объеме.


В своём выступлении начальник Главного управления ветеринарии Удмуртской Республики Р. Ф. Габдрахманов рассказал участникам совещания о сложившейся эпизоотической ситуации в Российской Федерации и Удмуртской Республике по африканской чуме свиней, гриппу птиц, бешенству, об экономических потерях при ликвидации данных заболеваний. Роман Фиюсович дал высокую оценку деятельности УВДЦ, поблагодарил сотрудников учреждения за работу, определил задачи на 2019 год.

Директор УВДЦ Ольга Николаевна отметила, что, несмотря на многочисленные трудности, стоящие перед лабораторией, коллектив завершил 2018 год с высокими показателями своей деятельности, делая всё возможное для сохранения эпизоотической и продовольственной безопасности Удмуртской Республики.

На сегодняшний день на территории Удмуртской Республики имеется 11 промышленных свиноводческих предприятий различных форм собственности и 4 предприятия, находящиеся в ведении федеральных органов исполнительной власти, работающие в режиме закрытого типа.

В режиме карантина по АЧС в дикой фауне на 25 февраля 2019 г. находится 3 инфицированных АЧС объекта: 2 — в Ленинградской и 1 – в Калининградской областях.


В ходе семинара рассмотрены следующие вопросы:

— ветеринарно-санитарная экспертиза меда (виды меда, химический состав, методы исследований);

— методы определения фальсификации меда;

— органолептические и лабораторные методы исследований меда;

— ветеринарно-санитарная оценка яиц и яйцепродуктов при инфекционных и инвазионных болезнях и мероприятия, проводимые при их обнаружении;

— микробиологические методы исследования яиц.

В практической части семинара слушателям продемонстрированы методы исследования качества меда.

Вниманию слушателей курсов были представлены следующие темы:

— общие требования к компетентности испытательных (калибровочных) лабораторий (ГОСТ ИСО/МЭК 17025-2009);

— характеристика биологических агентов разных групп патогенности;

— возбудители пищевых токсикоинфекций;

— микозы и микотоксикозы;

— методы лабораторной диагностики бактериальных болезней животных и пищевых токсикоинфекций;

— основы биологической безопасности и защиты;

— организация контроля выполнения требований биологической безопасности;

— методы обращения с медицинскими и биологическими отходами.

Особое внимание уделено вопросам, связанным с санитарно-эпидемиологическими требованиями в подразделениях, работающих с патогенными биологическими агентами.

Все слушатели (43 человека) успешно освоили программу, прошли итоговую аттестацию, получив удостоверение о повышении квалификации.

Цель обучения — совершенствование специальных профессиональных знаний и компетенций, необходимых для профессиональной деятельности, позволяющих правильно применять требования при осуществлении отбора проб (образцов) объектов ветеринарного надзора для проведения лабораторных исследований в испытательных центрах (лабораториях).

Процесс обучения предусматривал теоретическое обучение, семинарские занятия, практическую часть по процедурам и методам отбора проб в зависимости от объекта.

В рамках изучения программы слушатели курсов освоили следующие учебные дисциплины (модули):

В рамках модулей обучающиеся изучили нормативно-правовые документы в области процедуры отбора проб (образцов), ВСЭ, контроля качества, безопасности продукции и сырья животного происхождения (ТР, СанПины, ГОСТы, правила, инструкции и др.), при отборе проб кормов и кормовых добавок на территории РФ с учетом требований Таможенного союза. На практике освоили процедуру отбора проб биоматериала для проведения лабораторных исследований с целью диагностики болезней животных.


В ходе итоговой аттестации слушатели продемонстрировали высокий теоретический и практический уровень освоения программы, получили удостоверения о повышении квалификации.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции