Мышиный токсин чумы формула


Попков В. М., Чеснокова Н. П., Ледванов М. Ю.,

Особенности структуры и биологических эффектов токсинов возбудителя чумы

Наличие природных очагов чумы, занимающих значительные территории, в том числе и в России, усиление международной и внутренней миграции населения, военные конфликты, а также возможность использования биотеррористами возбудителя в рецептуре биологических агентов создают неустойчивую эпидемиологическую обстановку и не только потенциальную, но и реальную угрозу возникновения вспышек чумы среди населения [2, 3, 34, 35, 70, 73].

В настоящее время достигнуты большие успехи в разработке профилактических мероприятий с использованием различных методов вакцинации, а также методов этиотропного лечения чумной инфекции, основанных на использовании антибиотиков широкого спектра действия, сульфаниламидных, нитрофурановых препаратов и т.д. [2, 47]. Использование высокоэффективных бактерицидных препаратов освобождает организм от возбудителя, однако сопровождается интенсивным распадом микробных клеток и выделением в системный кровоток разнообразных токсических и ферментных факторов патогенности возбудителя, в том числе эндотоксина. Персистирование токсинов в организме сопровождается сорбцией их структурами различных органов и тканей, развитием сенсибилизации, вторичных иммунопатологических и метаболических нарушений, во многом определяющих тяжесть течения и исход заболевания. Значимость указанных вторичных расстройств, отсутствие высокоэффективных методов их медикаментозной коррекции обусловливают необходимость дальнейшего изучения проблем патогенеза чумы, выявления общих закономерностей и особенностей эффектов токсинов и ферментов возбудителя и совершенствования принципов патогенетической терапии этого грозного заболевания.

Следует отметить, что патогенные эффекты эндотоксина Y. pestis потенцируются и модифицируются за счет экзотоксина, а также ферментов патогенности [48, 49].

Наряду с вышеуказанными общими закономерностями молекулярно-клеточной организации ЛПС многих представителей грамотрицательных бактерий, установлены определенные особенности нативного ЛПС чумного микроба.

В ряде отечественных и зарубежных работ опубликованы результаты всестороннего анализа структуры ЛПС, синтезируемых разными штаммами Y.pestis, отличающимися по географическому происхождению, эпидемической значимости, условиям культивирования: bv.medievalis ssp.pestis, bv.orientalis ssp.pestis, bv.antique ssp.pestis, bv.antique ssp.caucasica, bv.medievalis ssp.altaica и др.

ЛПС Y.pestis относится к R-форме молекул и не содержит полисахаридной цепи. Основными структурными единицами ЛПС чумного микроба являются кор и липид А. Внутренний кор образован 3-дезокси-?-D-манно-октулозовой кислотой, представленной двумя остатками L-глицеро-?-D-манно-гептозного трисахарида [24]. Липофильная часть молекулы ЛПС Y. pestis представлена липидом А, который был впервые описан в качестве нерастворимого в воде осадка, полученного при кислотной деградации молекулы ЛПС. Свободный липид А Y. pestis может быть получен только в результате мягкого кислотного гидролиза ЛПС, поскольку кетозидная связь между коровым олигосахаридом и липидом А является одной из наиболее кислотостабильных связей.

К числу основных биологических свойств ЛПС чумного микроба относится способность вызывать местный и генерализованный феномен Шварцмана, активировать продукцию белков острой фазы воспаления, летальную активность, пирогенность, иммуногенность, митогенность, индуцировать освобождение фагоцитирующими клетками лизосомальных ферментов, цитокинов, токсических радикалов, стимулировать альтернативный путь активации комплемента, влиять на коагуляционный потенциал крови. Широкий спектр биологических эффектов ЛПС Y. pestis обусловлен гетерогенностью структуры рецепторов биологических мембран клеток различной морфофункциональной организации [12, 14, 16, 17].

Эндотоксин, попадая в кровоток, связывается с LBP–белком плазмы крови (lipopolysaccharid binding protein), относящимся к категории острофазовых белков. В комплексе с LBP-белком ЛПС транспортируется от мицеллярных агрегатов к мембранам и взаимодействует с CD14-рецепторами на поверхности клеток, в частности лейкоцитов, что ведет к активации клеточных функций, обеспечивающих фагоцитоз, представление антигенов, продукции NO, активных форм кислорода, низкомолекулярных медиаторов воспаления и группы провоспалительных цитокинов с полимодальными эффектами локального и системного действии, к которым относятся IL-1, IL-2, IL-6, IL-18, TNF, интерфероны I типа, хемокины и другие индукции цитокинобразования.

Однако катионные антимембраннные пептиды (КАМП) – факторы неспецифической защиты клеток различных тканей – имеют более высокое сродство к ЛПС по сравнению с сывороточным LBP–белком и таким образом препятствуют связыванию ЛПС с TLR. Y. рestis обладает способностью противостоять КАМП, причем на уровень устойчивости к ним влияет температура культивирования бактерий.

Методом проточной цитофлоуриметрии установлена способность ЛПС чумного микроба вызывать характерную для апоптоза деградацию ДНК лимфоцитов и перитонеальных макрофагов белых мышей in vitro, с учетом, что макрофаги более чувствительны к ЛПС, чем лимфоциты. Способность ЛПС чумного микроба индуцировать апоптоз макрофагов и лимфоцитов является дозозависимой.

Следует отметить, что эндотоксин чумного микроба оказывает выраженное патогенное действие на систему мононуклеарных фагоцитов, угнетая их поглотительную и секреторную активность. При этом наблюдаются изменения размеров и формы макрофагов, увеличивается объем цитоплазмы, появляются многочисленные вакуоли. Внутри фагоцитов ЛПС способен нейтрализовать действие катионных белков [1].

Сравнительный анализ влияния препаратов ЛПС на первичную культуру перитонеальных макрофагов экспериментальных животных показал, что метод выделения ЛПС и температура выращивания бактерий не оказывают существенного влияния на цитотоксичность препаратов.

Г.И. Васильева и соавт. отмечают более высокий дозозависимый эффект липополисахаридных препаратов в отношении макрофагов мышей, чем морских свинок, который обусловлен, по–видимому, большей чувствительностью макрофагов мышей к цитотоксическому действию ЛПС [24].

В соответствии с данными А.М. Дмитровского и Т.И. Тугамбаева (1986), после внутрибрюшинной инъекции ЛПС чумного микроба мышам выделяются три фазы изменения степени активности кислородзависимых бактерицидных систем фагоцитов: первая фаза – резкого угнетения, вторая – стимуляции и третья – стадия постепенного возврата активности к исходному уровню. При активации эндотоксином нейтрофилов и последующей их дегрануляции выделяется ряд биологически активных веществ, обусловливающих развитие инфекционно–токсического шока [28].

В ряде работ показано, что структура ЛПС определяет чувствительность микробных клеток к бактерицидному действию катионных антимикробных пептидов (КАМП) и других факторов неспецифической резистентности сыворотки крови, участвуя в связывании С3-фракции системы комплемента с поверхностью бактериальной клетки Y. pestis. Несмотря на то, что многие штаммы (за исключением штамма КIMD1, содержащего плазмиду pPst) способны фиксировать этот компонент комплемента, тем не менее, лизис микробных клеток под действием сыворотки возникает только при действии глубокого R– мутанта EV11M (ssp. pestis) и штаммов 1146 и 1680 р (ssp. caucasica). При этом лизис бактерий обеспечивается активацией комплемента по альтернативному пути.

Эндотоксин, взаимодействуя с рецепторами практически всех клеток крови и эндотелия сосудов, обеспечивает нарушение баланса различных биорегуляторных молекул, в частности, простагландинов [58]. Установлено, что ЛПС чумного микроба, как и другие бактериальные ЛПС, активирует циклоксигеназный и липоксигеназный пути метаболизма ненасыщенных жирных кислот. Изменения содержания простагландинов под влиянием ЛПС обусловливают развитие процессов тромбообразования, внутрисосудистой коагуляции, вазо- и бронходилятацию [39, 58].

Прямые и цитокинопосредованные патогенные эффекты эндотоксина Y.pestis на клетки различной морфофункциональной организации сопровождаются выраженными сдвигами интегративной деятельности прокоагулянтной, антикоагулянтной и фибринолитической систем с последующими расстройствами гемостаза, в том числе инициацией ДВС-синдрома и соответствующими нарушениями системной, регионарной гемодинамики и микроциркуляции. Так, гиперкоагуляционные сдвиги, обнаруженные Е.В. Понукалиной (1990) на начальных этапах развития чумной интоксикации, были обусловлены активацией внешнего механизма формирования протромбиназной активности за счет контактной активации XII фактора Хагемана [41].

В работах А.В. Захарова (1991 г.) показано, что введение живой чумной вакцины в дозах, не превышающих 100 млн микробных клеток, вызывает развитие однотипной компенсированной гиперкоагуляции, усиливающейся на пятые и седьмые сутки с нормализацией гемостатического потенциала крови к тридцатому дню после вакцинации.

Как известно, геморрагический синдром является одним из ведущих при чумной инфекции и интоксикации, осложняя течение всех клинических форм чумы, определяя тяжесть указанной патологии, отсутствие эффекта антибактериальной терапии, а зачастую, и развитие летальных исходов.

Характерной особенностью эндотоксемии является активация протеолитических систем, в частности, фибринолитической, которая опосредуется за счет калликреин-кининовой системы, системы комплемента, снижения концентрации ингибиторов и нарастание активности активаторов фибринолиза [41].

В исследованиях Е.В. Понукалиной (1990 г.) выявлены стабильная активация антикоагулянтных механизмов гемостаза и системы фибринолиза, сочетающиеся с развитием выраженного геморрагического синдрома [41].

Так, подкожное введение белым мышам ЛПС Y. pestis, а также гигадоз живой чумной вакцины (до 10 млрд. микробных клеток), ее аутолизата, и антигена, приготовленного по методу Буавена, сопровождаются развитием острого диссеминированного внутрисосудистого свертывания крови и усилением фибринолиза. ЛПС, живая чумная вакцина штамма ЕВ и ее аутолизат вызывают существенное снижение активности фактора XIII – фибриназы.

До настоящего времени остается практически неизученным состояние реологических свойств крови как при чумной инфекции и интоксикации, так и при действии основных токсических и антигенных фракций чумного микроба.

Принимая во внимание приведенные выше данные литературы относительно биологических эффектов ЛПС чумного микроба, проявляющиеся выраженными сдвигами интегративной деятельности прокоагулянтной, антикоагулянтной и фибринолитической систем с последующими расстройствами гемостаза, изменением функций эндотелия, клеток периферической крови, представляется целесообразным дополнить существующие концепции механизмов нарушений реологических свойств крови при чумной интоксикации.

В связи с этим в экспериментах с использованием внутрибрюшинного введения белым крысам ЛПС чумного микроба нами изучены вязкость цельной крови, сыворотки, плазмы при различных скоростях сдвига, а также индексы деформируемости и агрегации эритроцитов, показатели гематокрита. В различных вариантах моделирования чумной интоксикации с использованием ЛПС в возрастающих дозах (от ЛД25 до 2ЛД50), выявлена общая закономерность снижения реологических свойств крови, индексов деформируемости и агрегации эритроцитов при различных скоростях сдвига, коррелирующая с тяжестью течения изучаемой патологии.

Полученные нами результаты позволяют заключить, что к числу ведущих патогенетических факторов расстройств регионарного кровотока и микроциркуляции при чумной интоксикации, индуцируемой ЛПС Y. pestis, относится снижение реологических свойств крови при различных скоростях сдвига, индексов деформируемости и агрегации эритроцитов, коррелирующее с тяжестью клинических проявлений патологии.

На основании этих результатов можно сделать вывод, что уменьшение вязкости цельной крови при малых скоростях сдвига в значительной мере обусловливается развитием системного воспалительного ответа и резким возрастанием в крови уровня острофазных высокомолекулярных белковых и липопротеидных фракций, опосредующих межклеточные взаимодействия. Возрастание вязкости крови при малых скоростях сдвига вызвано резким увеличением гематокритного показателя. Возрастание индексов деформируемости и агрегации эритроцитов, а также вязкости крови при высоких скоростях сдвига связаны, возможно, с изменением структуры мембраны эритроцитов под влиянием ЛПС чумного микроба [7–12, 14–16].

В последние годы в качестве одного из интегративных показателей тяжести аутоинтоксикации при патологии инфекционной и неинфекционной природы используют определение в крови так называемых средних молекул – веществ молекулярной массой от 500 до 5000, накапливающихся в крови при интоксикациях. Как известно, из пула молекул средней массы выделены олигопептиды с высоким содержанием дикарбоновых аминокислот, цистеина, лизина, глицина и низким содержанием ароматических аминокислот, а также углеводные компоненты, соединения глюкуроновой кислоты и олигосахара. Некоторые из этих веществ являются продуктами деградации сывороточных белков, в частности ?-цепи фибриногена и ?2-цепи-микроглобулина. Установлено, что группа веществ средней молекулярной массы включает в себя и продукты липопероксидации. В последующем нами проведены сравнительные серии экспериментов на белых крысах по изучению эффектов ЛПС чумного микроба на интенсивность процессов ПОЛ и уровень молекул средней массы. Как оказалось, воздействие ЛПС сопровождалось прогрессирующим накоплением продуктов липопероксидации в плазме крови и эритроцитах экспериментальных животных, что закономерно сочеталось с накоплением средних молекул в крови. Интенсификация процессов ПОЛ и повышение уровня средних молекул коррелировали с нарастанием тяжести симптомов интоксикации [4, 5, 6].

Очищенный токсин не вступает в реакцию с антикапсульными сыворотками, а антитоксин не реагирует с капсульным антигеном. Однако антитоксические сыворотки не предохраняют против чумы, а токсин нельзя превратить в настоящий анатоксин, хотя при соответствующей обработке он теряет токсичность и продолжает связываться со специфическими антителами.

В изменении функции тромбоцитов и содержания в них циклических нуклеотидов выявляется определенная стадийность. Гиперагрегация, возникающая на ранних этапах интоксикации, сменяется гипоагрегацией на поздних, необратимых стадиях. Последнее обусловлено резким повышением уровня цГМФ в кровяных пластинках [56].

Полученные данные свидетельствуют о важной роли активации перекисного окисления липидов в дестабилизации эритроцитарных мембран, снижении их перекисной устойчивости, деформируемости и вязкостных свойств крови, обусловливающих нарушение процессов микроциркуляции, оксигенации и трофики тканей при чумной интоксикации.

Обращает на себя внимание тот факт, что чумная инфекция и интоксикация сопровождаются развитием выраженной гипоксии сложного генеза, включающего в себя циркуляторные, гемические, дыхательные, тканевые расстройства.

Следует отметить, что в основе развития циркуляторных расстройств при чумной инфекции и интоксикации лежит, по-видимому, сложный комплекс патогенетических механизмов. Так, очевиден прямой миокардиотоксический эффект факторов патогенности чумного микроба, клиническими признаками которого являются расширение границ сердца, глухость сердечных тонов, аритмия, прогрессирующая тахикардия, резкое падение артериального давления и т.д.

С другой стороны, не исключена возможность прямого цитопатогенного воздействия токсических и ферментных факторов патогенности возбудителя на сосуды. Известно, что нейраминидаза, гиалуронидаза, фосфолипаза, протеазы чумного микроба воздействуют на компоненты межклеточного вещества, биологических мембран, такие как гиалуроновая кислота и продукты ее деградации, гликопротеиды, гликолипиды, олигосахариды, аминокислоты и пептиды, фосфолипиды и др. [29, 48].

Как известно, в динамике чумной инфекции и интоксикации возникает не только циркуляторная, но и гемическая гипоксия, обусловленная способностью различных фракций гемолизина, аденилатциклазы и цАМФ-связывающего белка чумного микроба вызывать дезорганизацию мембран эритроцитов [22]. Известны также неспецифические гемолизины – аммиак и другие летучие амины, обеспечивающие интенсивный распад эритроцитов. Таким образом, продукция гемолизинов и других факторов патогенности чумного микроба является одной из важных причин развития гемической гипоксии при чумной инфекции и интоксикации.

В основе развития тяжелой гипоксии, свойственной различным клиническим формам чумной инфекции, может быть и дыхательная недостаточность, обусловленная развитием первичной и вторичной пневмонии, нарушением кровообращения в легочной ткани, отеком легких, а также возникновением периодического дыхания [46, 47].

Расстройства микрогемодинамики, регионарного и системного кровотоков могут быть обусловлены также нарушениями коагуляционного потенциала крови, ее реологических свойств.

Общей закономерностью гипоксических состояний различного происхождения, в том числе возникающих в динамике чумной инфекции и интоксикации, являются формирование метаболического ацидоза за счет избыточного накопления в крови и тканях продуктов гликолиза, протеолиза, липолиза, нарушение электролитного баланса клеток, а также активация процессов свободнорадикального окисления липидов, вызывающих дестабилизацию биологических мембран клеток различных органов и тканей, нарушение их возбудимости и функциональной активности [23, 31, 62].

Данные многочисленных экспериментальных и клинических исследований, направленных на выяснение роли свободнорадикального окисления липидов в патогенезе разнообразных патологических процессов и заболеваний, позволяют рассматривать процессы перекисного окисления липидов (ПОЛ) как универсальный механизм повреждения мембранных структур клеток различных органов и тканей при воздействии патогенных факторов инфекционной и неинфекционной природы [18, 26, 33, 42, 53].

Таким образом, в условиях бактериально–токсического шока при чумной инфекции и интоксикации возникает сложный комплекс вторичных неспецифических метаболических и функциональных расстройств, заметно усугубляющих тяжесть течения заболевания и нередко являющихся причиной отсутствия должного эффекта терапевтических мероприятий.

В связи с этим не подлежит сомнению актуальность дальнейших исследований взаимосвязи и значимости специфических эффектов токсических и ферментных факторов патогенности чумного микроба и вторичных неспецифических нарушений метаболических процессов и функций различных органов и систем в патогенезе чумной инфекции и интоксикации. Использование в целях депотенцирования цитопатогенного и летального действий токсических компонентов возбудителя чумы антиоксидантов, антигипоксантов, мембранопротекторов, донаторов сульфгидрильных групп может в значительной мере повысить эффективность комплексного лечения указанной патологии, расширить возможности объективной оценки тяжести заболевания, прогнозирования его развития.

Среди бактериальных инфекций наиболее опасной является чума, оставившая глубокий след в истории человечества. Три ее пандемии унесли жизни около 200 млн. человек. В прошлом эпидемии чумы нередко приводили к падению государств и разрушению древних цивилизаций. В отдельных странах погибало до 9/10 населения. И в настоящее время данная инфекция постоянно остается в поле зрения органов здравоохранения. Существование на территориях нашей страны и многих государств мира очагов чумы, где возбудитель циркулирует среди грызунов, обуславливает потенциальную угрозу эпидемических осложнений. Использование современных транспортных средств может способствовать заносу инфекции на расстояния, в том числе и в районы, где нет достаточной настороженности медицинской службы в отношении этого заболевания. Кроме того, войны и другие социальные и экологические катастрофы по-прежнему могут угрожать взрывами чумных эпидемий.

Чума - острое инфекционное заболевание, относящееся к группе особо опасных карантинных болезней. Носителями возбудителя чумы в природе являются различные виды грызунов, а переносчиками - их блохи. До настоящего времени многие миллионы квадратных километров суши продолжают оставаться местом обитания более 200 видов грызунов, которые заражаются чумой в природе, не считая синантропных крыс и мышей. Поэтому чума, по классификации Е.Н. Павловского, отнесена к природно-очаговым трансмиссивным болезням. Главный механизм существования чумы в природе - эпизоотический процесс. Эпизоотия чумы - это множественные последовательные заражения животных друг от друга, при которых передача возбудителя просходит по схеме : грызун - блоха - грызун. Согласно классификации бактерий, используемой в определителе Берги, чумной микроб (Y.pestis) относят к роду Yersiniae семейства Enterobacteriaceae.

Липополисахарид, или R-гликолипид, имеет очень ограниченный состав моносахаридов. Липополисахариду принадлежит ведущая роль в патогенезе чумы. При этом установлено, что липополисахарид чумного микроба универсально токсичен для лабораторных животных - мышей, крыс, морских свинок, кроликов, обезьян. Летальная токсичность препаратов липополисахарида чумного микроба достаточна высока. Их LD50 для мышей при внутрибрюшинном введении варьирует в пределах 0.18-3.0 мг.

Фибринолизин. Фибринолитическая активность является одним из наиболее постоянных свойств чумного микроба, присущих как высоко- , так и слабовирулентным штаммам. Предполагается, что фибринолизин чумного микроба является активатором плазминогена. Условия, благоприятствующие проявлению фибринолизина, создаются при коагуляции фибриногена плазмокоагулазой Y.pestis. Последнее объясняется тем, что при связывании фибриногена происходит концентрирование соответствующего фибринолитического агента в сгустке фибрина, приводящее к его изоляции от ингибиторов. Если учесть, что в очагах воспаления при чуме почти всегда скапливается большое количество микробов, являющихся активаторами плазминогена, то коагуляцию следует расценивать как фактор, способствующий разрушению фибринового барьера и облегчающий дальнейшее распространение бактерий. С другой стороны, наличие у чумного микроба способности к коагуляции плазмы может явиться фактором, который в какой-то мере также предохраняет бактерии от фагоцитоза. Ген, кодирующий синтез фибринолизина, расположен на плазмиде 6.3 МД (pPst).

Факторы патогенности чумного микроба приводят к ишемии в тканях, гипоксии и, как следствие, изменение активности процессов перекисного окисления липидов (ПОЛ).

ПОЛ протекает в клетках и норме. Оно является небходимым звеном таких жизненно важных процессов, как транспорт электронов в цепи дыхательных ферментов, синтез простогландинов и лейкотриенов, пролиферация и дифференцировка клеток, фагоцитоз, метаболизм катехоламинов и др. ПОЛ участвует в процессах регуляции липидного состава биомембран и, как следствие, активности мембраносвязанных ферментов. Интенсивность ПОЛ регулируется соотношением факторов активирующих (прооксиданты) и подавляющих этот процесс (антиоксиданты - (АО)). В норме 1-2% от потребляемого кислорода.

К числу наиболее активных прооксидантов относятся легко самоокисляющиеся соединения, индуцирующие образование свободных радикалов (нафтохиноны, витамины A , D); восстановители (НАДФН, НАДН, липоевая кислота, низкие концентрации аскорбиновой кислоты); соединения, образующиеся в процессе обмена веществ - свободнорадикальные продукты различного происхождения (эндоперекиси простогландинов, продукты метаболизма лейкотриенов, адреналина).

Выраженный АО-эффект оказывают вещества токоферольного ряда (a-токоферол, тироксин, стероидные гормоны); убихиноны; селен и его соединения (главным образом глутатионпероксидазы); супероксиддисмутаза; вещества, содержащие тиоловую группу; анионы, связывающие железо.

В реакции пероксидации могут вовлекаться соединения различного биохимического состава. Однако ведущее значение среди них имеет ПОЛ. Это определяется тем, что они в большей мере обеспечивают структурную и функциональную основу жизнедеятельности клеток, а также легко вступают в оксидазные реакции.

Процесс ПОЛ можно разделить на несколько этапов:

1). Формирование активных форм кислорода, прежде всего гидроксильного радикала, обладающего максимальной реактогенностью, под влиянием различных инициирующих факторов инфекционной и неинфекционной природы.

2). Извлечение водорода из боковых цепей ненасыщенных жирных кислот с образованием углеродосодержащего радикала и воды.

3). Взаимодействие углеродосодержащего радикала с молекулярным кислородом с образованием перекисного радикала.

4). Извлечение водорода из боковой цепи ненасыщенных жирных кислот пероксидным радикалом с образованием липидной гидроперекиси и еще одного углеродного радикала.

5). Липидные гидроперекиси увеличивают концентрацию цитотоксических альдегидов, а углеродсодержащий радикал поддерживает реакцию формирования пероксидных радикалов по цепочке.

Изменение состава и вязкости липидов мембраны в результате протекания ПОЛ существенно влияет на активность мембраносвязанных ферментов, регулирующих процессы энергообеспечения клеток, транспорт катионов, синтез нуклеиновых кислот, чувствительность к нейроэффекторным и гуморальным управляющим влияниям. Таким образом, в норме изменение интенсивности ПОЛ и активности антиоксидантных систем в значительной мере модифицирует состав и структуру липидной фазы мембран, их липопротеидных комплексов, а также мембраносвязанных ферментов. В соответствии с этим меняется в конечном счете и характер ответа клеток на различные воздействия.

Чрезмерная интенсификация ПОЛ обуславливает повреждение белковых и липидных компонентов мембран, а также мембраносвязывающих и свободных ферментов клеток.

РЕЗУЛЬТАТЫ: В экспериментах, проведенных спустя 1,5-2 часа после введения чумного аутолизата белым крысам, то есть в доклинический период интоксикации, было обнаружено значительное повышение уровней ГПЛ и МДА в плазме крови и эритроцитах.

На среднетяжелой стадии, спустя 4 часа, количество МДА и ГПЛ в плазме крови и эритроцитах оставалось достоверно высоким. В плазме крови происходило дальнейшее прогрессирующее накопление МДА.

В период тяжелых клинических проявлений интоксикации - спустя 24 часа после введения аутолизата - отмечалось прогрессирующее накопление ГПЛ и МДА и в плазме крови, и в эритроцитарной массе.

Таблица 1. Изменения уровней ГПЛ и МДА в плазме крови и эритроцитах при отравлении мышей чумным аутолизатом

Слайды и текст этой презентации


Министерство здравоохранения и социального развития РФ
ГБОУ ВПО Первый МГМУ им. И.М. Сеченова Минздрава России
Кафедра инфекционных болезней лечебного факультета

Выполнил:
студент V курса 33 группы Керимов Шарвели


Чума — острая, особо опасная природно-очаговая инфекционная болезнь из группы карантинных; характеризуется выраженной интоксикацией, лихорадкой и развитием серозно-геморрагического воспаления с преимущественным поражением лимфатических узлов, легких и кожи, а также способностью принимать септическое течение.


Возбудитель чумы – Yersinia pestis, является представителем рода Yersinia семейства Enterobacteriaceae — неподвижные (жгутиков нет) грамотрицательные микроорганизмы, чаще имеющие вид коротких палочек с закругленными концами, длина их 1—3 мкм, ширина — 0,3—0,7 мкм.

Yersinia pestis имеет более 20 антигенов, в том числе термолабильный капсульный К АГ (FI), который защищает возбудителя от фагоцитоза полиморфно-ядерными лейкоцитами,
термостабильный соматический О АГ (фракции V- и W-), которые предохраняют микроб от лизиса в цитоплазме мононуклеаров, обеспечивая внутриклеточное размножение.

Спор не образуют, в организме образуют капсулу. Факультативный анаэроб.
Психрофил. tопт роста — 26-27 °С


Генетическое детерминирование АГ-ой структуры Y.pestis осуществляется хромосомными и плазмидными генами.
Плазмида вирулентности pCad (общая для всех йерсиний)

Только у Y.pestis — pPst и pPra

Пестициногенность и фибринолизинкоагулазные св-ва

Иерсиниабактин хромосомные гены


а) в трупах при +20 °С сохраняется 2 недели;
в) в замороженных трупах — 7-12 мес;
c) в гное бубонов, мокроте — 1 мес;
d) на одежде — 6 мес;
e) в жилье на предметах обихода — 6 месяцев;
f) в воде — 1-3 мес;
g) в почве — до 7 мес.

Нагревание: при +60 °С погибает в течение 30 мин,
при +100 °С — 1-5 мин.

К УФ чувствителен. Плохо выдерживает конкуренцию с другой микрофлорой.
Дезинфектанты в обычных концентрациях (карболовой кислоты, хлорамина, лизола, хлорной извести) вызывают гибель возбудителя в течение 1-5 мин.


Основной резервуар и источник инфекции —грызуны всех видов, реже — верблюды, собаки, кошки.
Переносчики — блохи.

Механизм заражения:
Трансмиссивный (основной)
Контактный
Аэрогенный
Фекально-оральный (алиментарный путь).

Больной бубонной формой чумы до вскрытия бубона не представляет опасности для окружающих.
При переходе её в септическую или лёгочную форму становится высокозаразным, выделяя возбудитель с мокротой, секретом бубона, мочой, испражнениями.


Природные очаги инфекции существуют на всех континентах, за исключением Австралии: в Азии, Афганистане, Монголии, Китае, Африке, Южной Америке.
В России выделяют около 12 природно-очаговых зон: на Северном Кавказе, в КБР, Дагестане, Забайкалье, на Алтае, в Калмыкии, Сибири и Астраханской области.


Внедрение возбудителя (через кожу, дыхательные пути, пищеварительный канал)
Проникновение возбудителя в регионарные лимфоузлы (образование бубона)
Прорыв микробов в кровь, бактериемия, генерализация инфекции, метастазирование во внутренние органы
Действие токсинов:
гиалуронидаза – повышение проницаемости тканевых барьеров, нарушения микроциркуляции
коагулаза – образование тромбов, нарушение кровоснабжения, дегенерация
фибринолизин – нарушение свертывания крови, ДВС-синдром
мышиный токсин – кровоизлияния в надпочечники, падение АД
нарушение координирующей роли ЦНС
развитие ИТШ




Бубонная форма – бубоны первичные, вторичные
Явления периаденита (резкая болезненность, сплошной плотный бугристый конгломерат, неподвижный, кожа над ним багровая, блестящая).
Исходы – рассасывание, нагноение (с образованием свища, а после его заживления – рубца), склерозирование


Легочная форма – выраженная интоксикация, одышка, многократная рвота, колющая боль в груди, кашель сухой или влажный с кровавой мокротой. Несоответствие скудных физикальных данных тяжести состояния. Цианоз. Психомоторное возбуждение, бред.


Септическая форма – тяжелая интоксикация, нарушения сознания, геморрагический синдром, гепатоспленомегалия, молниеносное развитие инфекционно-токсического шока и смерть больного.

Изменения на коже и сосудистые нарушения при чуме


Кожная форма чумы: встречается редко, как правило, переходит в кожно-бубонную. Выделяют быстро сменяющиеся стадии превращения кожных элементов: пятно→ папула→ везикула→ пустула. При благоприятном исходе, в дальнейшем образуется рубец.

Кишечная форма проявляется болями в животе, рвотой и жидким стулом с примесью крови.


[кожной и кожно-бубонной форм чумы, туляремии и других синдромосходных заболеваний]


[легочной формы чумы и других синдромосходных заболеваний]

ЛАБОРАТОРНАЯ ДИАГНОСТИКА ЧУМЫ

Серологический - для экспресс-диагностики — РИФ.
РНГА и ИФА — для ретроспективного
диагноза и обследования природных очагов (выявление АТ к К-АГ).
Иммунологичекий — выявление FI- АГ
Молекулярно-генетические методы — ПЦР

Общий анализ крови – нейтрофильный
Лейкоцитоз со сдвигом формулы влево, ускоренная СОЭ
Тенденция к ↓эритроцитов и Hb.


Стационарное лечение в услових строгой изоляции
Диета — индивидуальна. Столы №: 1, 2, 4, 5, 7, 13, 15.
Медикаментозная терапия:
1) Антибиотики !
Препарат выбора — стрептомицин (в/в, в/м) - 1,0 г х 2 р/сут.
Альтернатывные препараты — тетрациклинового ряда:
тетрациклин (per os) — 1,0-2,0 г х 4 р/сут.;
доксициклин (per os, в/в) — 0,1-0,2 г х 1-2 р/сут.
Также хлорамфеникол (per os, в/в) — 0,5-0,75 г х 4 р/сут.,
рифампицин (per os, в/в) — 0,3 г х 3 р/сут.
При кожной форме - бактрим по 1 т. (0,08 г триметоприма) х 4 р/сут.
Курс лечения: при диссеминированной форме 10 дней,
при бубонной и кожной формах - 7 дней.
2) Патогенетическая терапия: направлена на детоксикацию, коррекцию и поддержание гомеостаза - кристаллоидные растворы, криоплазма, катехоламины, кислород (при необходимости ИВЛ), витаминотерапия, иммунозаместительная терапия (пентаглобин).
3) Симптоматические средства.



Мероприятия проводятся в двух основных направлениях: наблюдение за состоянием природных очагов чумы и предупреждение возможного заноса болезни из других стран.
Подозрительных на заболевание чумой немедленно изолируют и госпитализируют. Лиц, соприкасавшихся с больным, зараженными вещами, трупом, изолируют на 6 дней контактировавших с больными легочной формой чумы размещают индивидуально, проводят медицинское наблюдение с ежедневной термометрией.
Этим лицам, а также обслуживающему медперсоналу проводят экстренную Химиопрофилактику тетрациклином по 0,5 г внутрь 3 раза в сутки или хлортетрациклином внутрь по 0,5 г 3 раза в сутки в течение 5 дней
Весь медперсонал, обслуживающий больных, работает в полном противочумном костюме


Памятник жертвам чумы ( г. Карловы Вары, Чехия)

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Иммунитет и инфекции